首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Protein synthesis and transport in the regenerating goldfish visual system   总被引:13,自引:0,他引:13  
The nature of the proteins synthesized in the goldfish retina and axonally transported to the tectum during optic nerve regeneration has been examined. Electrophoretic analysis of labeled soluble retinal proteins by fluorography verified our previous observation of a greatly enhanced synthesis of the microtubule subunits. In addition, labeling of a tubulin-like protein in the retinal particulate fraction was also increased during regeneration. Like soluble tubulin, the particulate material had an apparent MW of 53–55K and could be tyrosylated in the presence of cycloheximide and [3H]tyrosine. Comparison of post-crush and normal retinal proteins by two-dimensional gel electrophoresis also revealed a marked enhancement in the labeling of two acidic 68–70K proteins. Analysis of proteins slowly transported to the optic tectum revealed changes following nerve crush similar to those observed in the retina, with enhanced labeling of both soluble and particulate tubulin and of 68–70K polypeptides. The most striking change in the profile of rapidly transported protein was the appearance of a labeled 45K protein which was barely detectable in control fish.  相似文献   

2.
SUMMARY 1. We previously showed that actin is transported in an unassembled form with its associated proteins actin depolymerizing factor, cofilin, and profilin. Here we examine the specific activities of radioactively labeled tubulin and neurofilament proteins in subcellular fractions of the chicken sciatic nerve following injection of L-[35S]methionine into the lumbar spinal cord.2. At intervals of 12 and 20 days after injection, nerves were cut into 1-cm segments and separated into Triton X-100-soluble and particulate fractions. Analysis of the fractions by high-resolution two-dimensional gel electrophoresis, immunoblotting, fluorography, and computer densitometry showed that tubulin was transported as a unimodal wave at a slower average rate (2–2.5 mm/day) than actin (4–5 mm/day). Moreover, the specific activity of soluble tubulin was five times that of its particulate form, indicating that tubulin is transported in a dimeric or small oligomeric form and is assembled into stationary microtubules.3. Neurofilament triplet proteins were detected only in the particulate fractions and transported at a slower average rate (1 mm/day) than either actin or tubulin.4. Our results indicate that the tubulin was transported in an unpolymerized form and that the neurofilament proteins were transported in an insoluble, presumably polymerized form.  相似文献   

3.
RAPID TRANSPORT OF FUCOSYL GLYCOPROTEINS TO NERVE ENDINGS IN MOUSE BRAIN   总被引:4,自引:3,他引:1  
Abstract— Mice were injected intracerebrally with mixtures of [3H]fucose and [14C]gluco-samine, and incorporation into macromolecules in various subcellular fractions of brain was studied at 1, 2, 3 and 4 h after administration of the precursors. There was a lag of several hours between the incorporation of [3H]fucose into the glycoproteins of the whole brain fractions and of that into the soluble and particulate glycoproteins of the nerve ending fractions. In contrast, no lag was observed between the incorporation of [14C]glucosamine into the macromolecules of the whole brain fractions and of that into the soluble macro-molecules of the nerve ending fraction. We conclude that fucosyl glycoproteins of the nerve ending fraction were synthesized in the nerve cell bodies and transported to nerve endings by rapid axoplasmic transport, whereas a substantial proportion of the glucosamine in the soluble macromolecules of the nerve ending fraction was incorporated by the nerve endings themselves. In addition, our evidence indicates that cyclobeximide inhibited fucose incorporation into brain glycoproteins by inhibiting the synthesis of acceptor proteins rather than fucosyl transferase.  相似文献   

4.
Colchicine blocks axoplasmic flow and produces neurofibrillary degeneration. Brain slices from mice injected intracerebrally with colchicine incorporated more [14C]leucine into protein and had a decreased uptake of [14C]leucine into the perchloric acid-soluble pool than did their controls. Brain RNA content was decreased and free leucine increased by colchicine-induced encephalopathy. The specific activities of proteins from subcellular fractions of colchicine-injected brain were increased in the nuclear fraction, the 100,000-g supernatant, and its vinblastine-precipitable tubulin. The ratio of the specific activity of the crude mitochondrial fraction to that of the total homogenate was decreased, as would be consistent with impaired movement of newly labeled protein into synaptosomes. Colchicine-injected brain extracts contained one or more cytosol fractions that stimulated ribosomal incorporation of [14C]leucine into protein in a cell-free system. Colchicine-binding-activity measurements indicated loss of soluble and particulate tubulin in colchicine-injected brains; the decrease of soluble tubulin was verified by its selective precipitation with vinblastine. Colchicine encephalopathy did not affect the rate of spontaneous breakdown of in vitro colchicine binding activity. Similarities of colchicine encephalopathy to the neuron's response to axonal damage suggest that colchicine-induced increase in protein synthesis may, in part, reflect a neuronal response to blockage of neuroplasmic transport.  相似文献   

5.
Colchicine blocks axoplasmic flow and produces neurofibrillary degeneration. Brain slices from mice injected intracerebrally with colchicine incorporated more [14C]leucine into protein and had a decreased uptake of [14C]leucine into the perchloric acid-soluble pool than did their controls. Brain RNA content was decreased and free leucine increased by colchicine-induced encephalopathy. The specific activities of proteins from subcellular fractions of colchicine-injected brain were increased in the nuclear fraction, the 100,000-g supernatant, and its vinblastine-precipitable tubulin. The ratio of the specific activity of the crude mitochondrial fraction to that of the total homogenate was decreased, as would consistent with impaired movement of newly labeled protein into synaptosomes. Colchicine-injected brain extracts contained one or more cytosol fractions that stimulated ribosomal incorporation of [14C]leucine into protein in a cell-free system. Colchicine-binding-activity measurements indicated loss of soluble and particulate tubulin in colchicine-injected brains; the decrease of soluble tubulin was verified by its selective precipitation with vinblastine. Colchicine encephalopathy did not affect the rate of spontaneous breakdown of in vitro colchicine binding activity. Similarities of colchicine encephalopathy to the neuron's response to axonal damage suggest that colchicine-induced increase in protein synthesis may, in part, reflect a neuronal response to blockage of neuroplasmic transport.  相似文献   

6.
High resolution 2DGE (two-dimensional gel electrophoresis) was used to characterize neuronal and glial proteins of the rat optic nerve, to examine the phases of intraaxonal transport with which the neuronal proteins are associated, and to identify the ribosomal populations on which these proteins are synthesized. Neuronal proteins synthesized in the retinal ganglion cells were identified by injecting the eye with L-[35S]methionine, followed by 2DGE analysis of fast and slow axonally transported proteins in particulate and soluble fractions. Proteins synthesized by the glial cells were labeled by incubating isolated optic nerves in the presence of L-[35S]methionine and then analyzed by 2DGE. A number of differences were seen between filamentous proteins of neurons and glia. Most strikingly, proteins in the alpha- and beta-tubulin region of the 2D gels of glial proteins were distinctly different than was observed for axonal proteins. As expected, neurons but not glia expressed neurofilament proteins, which appeared among the slow axonally transported proteins in the particulate fraction; significant amounts of the glial filamentous protein, GFA, were also labeled under these conditions, which may have been due to transfer of amino acids from the axon to the glial compartment. The fast axonally transported proteins contained relatively large amounts of high-molecular-weight acidic proteins, two of which were shown to comigrate (on 2DGE) with proteins synthesized by rat CNS rough microsomes; this finding suggests that rough endoplasmic reticulum may be a major site of synthesis for fast transported proteins. In contrast, the free polysome population was shown to synthesize the principal components of slow axonal transport, including tubulin subunits, actin, and neurofilament proteins.  相似文献   

7.
Membrane-bound tubulin in brain and thyroid tissue.   总被引:26,自引:0,他引:26  
Brain and thyroid tissue contain membrane-bound colchicine-binding activity that is not due to contamination by loosely bound cytoplasmic tubulin. This activity can be solubilized to the extent of 80 to 90% by treatment with 0.2% Nonidet P-40 with retention of colchicine binding. Extracts so obtained contain a prominent protein band in disc gel electrophoresis that co-migrates with tubulin. Membranes, and the solubilized protein therefrom, exhibit ligand binding properties like tubulin; for colchicine the KA is approximately 1 X 10(6) M-1 in brain and approximately 0.6 X 10(6) M-1 in thyroid; for vinblastine the KA is approximately 8 X 10(6) M-1 for both tissues; and for podophyllotoxin the Ki is approximately 2 X 10(-6) M for both tissues. Displacement by analogues of colchicine is of the same order as for soluble tubulin. Although membrane-bound colchicine-binding activity shows greater thermal stability and a higher optimum binding temperature (54 degrees versus 37 degrees) than soluble tubulin, this appears to be the result of the membrane environment since the solubilized binding activity behaves like the soluble tubulin. Antibody against soluble brain tubulin reacts with membranes and solubulized colchicine-binding activity from both brain and thyroid gland. We conclude that brain and thyroid membrane preparations contain firmly bound tubulin or a very similar protein.  相似文献   

8.
Mice were injected intracerebrally with [14C]glucosamine, and incorporation into macromolecules in various subcellular fractions of brain was studied at a number of times after administration of the precursor. The [14C]glucosamine was rapidly incorporated into macromolecules of all the subcellular fractions of brain including both the soluble and particulate fractions of isolated nerve endings. Incorporation into macromolecules in the soluble fraction of nerve endings was quite extensive 3 hr after administration of the precursor and the specific acitvity of this fraction fell thereafter. In contrast there was only slight incorporation of [14C] leucine into the soluble protein from isolated nerve endings in the first few hours after administration, whereas the other subcellular fractions were maximally labelled at that time. The data suggests that, unlike protein which is largely transported to nerve endings in the axoplasm, there is extensive incorporation of carbohydrate into macromolecules in nerve endings. Whereas the protein component of a glycoprotein or mucopolysaccharide may be transported to the nerve ending from the perikaryon, the structure and function of this protein may be modified at the nerve ending by further incorporation of glucosamine, sialic acid and possibly other carbohydrates. The carbohydrate-containing macromolecules could influence nerve ending function immediately after these final synthetic reactions since these reactions occur at the nerve ending and not in the perikaryon.  相似文献   

9.
It is well established that microtubules interact with intracellular membranes of eukaryotic cells. There is also evidence that tubulin, the major subunit of microtubules, associates directly with membranes. In many cases, this association between tubulin and membranes involves hydrophobic interactions. However, neither primary sequence nor known posttranslational modifications of tubulin can account for such an interaction. The goal of this study was to determine the molecular nature of hydrophobic interactions between tubulin and membranes. Specifically, I sought to identify a posttranslational modification of tubulin that is found in membrane proteins but not in cytoplasmic proteins. One such modification is the covalent attachment of the long chain fatty acid palmitate. The possibility that tubulin is a substrate for palmitoylation was investigated. First, I found that tubulin was palmitoylated in resting platelets and that the level of palmitoylation of tubulin decreased upon activation of platelets with thrombin. Second, to obtain quantities of palmitoylated tubulin required for protein structure analysis, a cell-free system for palmitoylation of tubulin was developed and characterized. The substrates for palmitoylation were nonpolymerized tubulin and tubulin in microtubules assembled with the slowly hydrolyzable GTP analogue guanylyl-(alpha, beta)-methylene-diphosphonate. However, tubulin in Taxol-assembled microtubules was not a substrate for palmitoylation. Likewise, palmitoylation of tubulin in the cell-free system was specifically inhibited by the antimicrotubule drugs Colcemid, podophyllotoxin, nocodazole, and vinblastine. These experiments identify a previously unknown posttranslational modification of tubulin that can account for at least one type of hydrophobic interaction with intracellular membranes.  相似文献   

10.
: Tubulin tyrosine ligase catalyzes the reversible addition of tyrosine to the C-terminus of tubulin α chains. By using ligase and carboxypeptidase A in conjunction, we have previously shown that brain cytoplasmic tubulin exists in three forms: 15–40% already has C-terminal tyrosine, another 10-30% can accept additional tyrosine, and about one-half is an uncharacterized species which is not a ligase substrate. A membrane-bound fraction of brain tubulin, purified by vinblastine precipitation from a detergent extract, has been found to differ by the complete absence of preexisting tyrosine. The membrane fraction from which tubulin was extracted also contained masked forms of both ligase and a distinct detyrosylating enzyme, which can be released by detergent extraction. The turnover of α-chain C-terminal tyrosine in vivo was studied by incubating brain mince with labeled tyrosine, or injecting it intracerebrally, under conditions where protein synthesis was inhibited. Tyrosine appeared to turn over to about the same extent in membrane-bound, as in soluble, tubulin. This apparently paradoxical result was not due to ATPase in the membrane fraction, which might have allowed ligase-catalyzed exchange between free and fixed tyrosine. Authentic [14C]tyrosylated tubulin added to the brain membrane fraction was not detyrosylated or subject to endoprotease digestion during subsequent procedures to isolate tubulin. The unexpected finding that tubulin tyrosylated at the C-terminal in vivo appears to be in the “non-substrate” fraction points toward a possible resolution of the paradox.  相似文献   

11.
The composition of the fast and slow components of axonal transport in the goldfish optic nerve was investigated, using specific radioactive precursors injected into the eye. Tritiated glucosamine and fucose label macromolecules, presumably glycoproteins, which are rapidly transported from the eye to the optic tectum. Material labeled with these precursors is not evident in the slowly transported component. Glucosamine and fucose incorporation are blocked when a protein synthesis inhibitor, acetoxycycloheximide, is injected into the eye concurrently with the precursors. As well as labeling macromolecules, 3H-glucosamine and 3H-N-acetylmannosamine ( a precursor of sialic acids) also label rapidly-transported chloroform-methanol-extractable material which may contain transported glycolipids. Two procedures were used to show that the slow component of axonal transport contains tubulin, a protein characteristic of the microtubules:
  • (a) Tracer doses of tritiated colchicine injected into the eye label a wave of radioactivity which moves 0.5 mm/day, the rate of slow axonal transport in the goldfish optic nerve. We believe this wave represents the movement of colchicine which is bound to colchicine-binding protein moving in the slow component of axonal transport.
  • (b) Tritiated proline labels a slowly transported protein which is precipitated by vinblastine and has a mobility on polyacrylamide gels comparable to authentic tubulin. These results indicate that the fast and slow components of axonal transport each provide specific chemical substances to the nerve endings.
  相似文献   

12.
The influence of early hypothyroidism on the concentration and biochemical properties of soluble and particulate tubulin from the cerebral cortex and cerebellum was investigated during development in the rat. Cellular soluble tubulin concentration (pmol colchicine bound/μg DNA) was approx 16% lower in both brain areas of hypothyroid animals compared to controls at 25 days of age. No effect of thyroid hormone deficiency was observed when tubulin concentration was expressed in terms of tissue protein or weight. The particulate tubulin concentration was approx 20% lower in the cerebral cortex of 25-day-old hypothyroid rats although the distribution of tubulin between soluble and particulate fractions was similar to controls. The incorporation of [14C]leucine into cerebral cortical tubulin in vitro (c.p.m. in tubulin/c.p.m. in total protein) was not significantly altered by the hormonal deficiency. Thus there was no apparent evidence of a selective defect in tubulin synthesis. Tubulin from hypothyroid rats behaved similarly to control samples with respect to the effects of pharmacological agents and temperature, lability of binding, chromatographic profile and electrophoretic mobility on sodium dodecyl sulfate polyacrylamide gels.  相似文献   

13.
Characterization of Tubulin in Mouse Brain Myelin   总被引:5,自引:4,他引:1  
Analysis of mouse brain myelin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that in the high-molecular-weight range it contained, besides the Wolfgram protein doublet, proteins comigrating with actin and with both subunits of tubulin. The occurrence of these alpha and beta subunits was confirmed by peptide mapping in myelin analyzed by two-dimensional electrophoresis. This tubulin did not arise from an artifactual binding of soluble brain tubulin to the myelin fraction: addition of exogenously labeled tubulin to brain homogenates proved that during myelin isolation by the procedure of Norton and Poduslo (1973) the contaminating tubulin was washed out. On the other hand, the distribution of tubulin isoforms in myelin was investigated by isoelectric focusing and compared with the distribution of the 21 isoforms listed for the whole brain soluble tubulin. It was shown that many isoforms were found in myelin (three isoforms for the alpha subunit and nine for the beta subunit), and that some isoforms were represented both in myelin and in soluble tubulin, but in different relative proportions.  相似文献   

14.
Abstract: Axonal transport of microtubule-associated protein τ was studied in the motor fibers of the rat sciatic nerve 1–4 weeks after labeling of the spinal cord with [35S]methionine. As 60–70% of low molecular weight τ in this system was found to be insoluble in 1% Triton-containing buffer, labeled proteins in 6-mm consecutive nerve segments were first separated into Triton-soluble and insoluble fractions. Two-dimensional gel electrophoresis and immunoblotting with anti-tau antibody confirmed the presence of τ among labeled, transported proteins in both fractions. Isoform composition of labeled τ was similar to that of bulk axonal τ, the most acidic species with apparent molecular mass of 66 kDa being the major component. Transport profiles obtained by measuring radioactivities associated with this major isoform showed that soluble and insoluble τ were transported at different rates. Insoluble τ, which contained the majority of τ-associated radioactivity, was transported at 1.7 mm/day in slow component a (SCa), whereas soluble τ was transported faster, at 3 mm/day, corresponding to the rate of slow component b (SCb). Cotransport of insoluble τ with insoluble tubulin in SCa suggests its association with stable microtubules.  相似文献   

15.
Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2)-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA) for casein kinase (CK1) and P2 (RRRADDSDDDDD) for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA) also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II-A and kemptide in the parasite soluble fraction. Since the sum of the values obtained in the parasite cytosolic and particulate fractions were always higher than the values observed in the total T. evansi lysate, the kinase activities examined here appeared to be inhibited in the original extract.  相似文献   

16.
The cytoplasmic C-terminal domains (CTs) of the NR1 and NR2 subunits of the NMDA receptor have been implicated in its anchoring to the subsynaptic cytoskeleton. Here, we used affinity chromatography with glutathione S-transferase-NR1-CT and -NR2B-CT fusion proteins to identify novel binding partner(s) of these NMDA receptor subunits. Upon incubation with rat brain cytosolic protein fraction, both NR1-CT and NR2B-CT, but not glutathione S-transferase, specifically bound tubulin. The respective fusion proteins also bound tubulin purified from brain, suggesting a direct interaction between the two binding partners. In tubulin polymerization assays, NR1-CT and NR2B-CT significantly decreased the rate of microtubule formation without destabilizing preformed microtubules. Moreover, only minor fractions of either fusion protein coprecipitated with the newly formed microtubules. Consistent with these findings, ultrastructural analysis of the newly formed microtubules revealed a limited association only with the CTs of the NR1 and NR2B. These data suggest a direct interaction of the NMDA receptor channel subunit CTs and tubulin dimers or soluble forms of tubulin. The efficient modulation of microtubule dynamics by the NR1 and NR2 cytoplasmic domains suggests a functional interaction of the receptor and the subsynaptic cytoskeletal network that may play a role during morphological adaptations, as observed during synaptogenesis and in adult CNS plasticity.  相似文献   

17.
Rapid transport of protein in the optic system of the goldfish   总被引:12,自引:8,他引:4  
Abstract— Several amino acids, particularly [3H]proline and [3H]asparagine specifically and efficiently labelled rapidly transported proteins in the goldfish optic nerve and tectum after intraocular injection. Studies with these amino acids showed that the rapidly transported proteins moved as a discrete band at a rate which was temperature-dependent, and was equal to 70-100 mm per day at 20°C. Transported protein in the optic tectum was 80 per cent particulate and was found in synaptosomal, mitochondrial, and myelin fractions, but not in purified nuclei or ribosomes.  相似文献   

18.
The axonal transport of the diverse isotubulins in the motor axons of the rat sciatic nerve was studied by two-dimensional polyacrylamide gel electrophoresis after intraspinal injection of [35S]methionine. 3 wk after injection, the nerve segments carrying the labeled axonal proteins of the slow components a (SCa) and b (SCb) of axonal transport were homogenized in a cytoskeleton-stabilizing buffer and two distinct fractions, cytoskeletal (pellet, insoluble) and soluble (supernatant), were obtained by centrifugation. About two-thirds of the transported-labeled tubulin moved with SCa, the remainder with SCb. In both waves, tubulin was found to be associated mainly with the cytoskeletal fraction. The same isoforms of tubulin were transported with SCa and SCb; however, the level of a neuron-specific beta-tubulin subcomponent, termed beta', composed of two related isotubulins beta'1 and beta'2, was significantly greater in SCb than in SCa, relative to the other tubulin isoforms. In addition, certain specific isotubulins were unequally distributed between the cytoskeletal and the soluble fractions. In SCa as well as in SCb, alpha'-isotubulins were completely soluble in the motor axons. By contrast, alpha' and beta'2-isotubulins, both posttranslationally modified isoforms, were always recovered in the cytoskeletal fraction and thus may represent isotubulins restricted to microtubule polymers. The different distribution of isotubulins suggests that a recruitment of tubulin isoforms, including specific posttranslational modifications of defined isoforms (such as, at least, phosphorylation of beta' and acetylation of alpha'), might be involved in the assembly of distinct subsets of axonal microtubules displaying differential properties of stability, velocity and perhaps of function.  相似文献   

19.
R K Margolis  R U Margolis  C Preti  D Lai 《Biochemistry》1975,14(22):4797-4804
The distribution, carbohydrate composition, and metabolism of glycoproteins have been studied in mitochondria, microsomes, axons, and whole rat brain, as well as in various synaptosomal subfractions, including the soluble protein, mitochondria, and synaptic membranes. Approximately 90% of the brain glycoproteins occur in the particulate fraction, and they are present in particularly high amounts in synaptic and microsomal membranes, where the concentration of glycoprotein carbohydrate is 2-3% of the lipid-free dry weight. Treatment of purified synaptic membranes with 0.2% Triton X-100 extracted 70% of the glycoprotein carbohydrate but only 35% of the lipid-free protein residue, and the resulting synaptic membrane subfractions differed significantly in carbohydrate composition. The glycoproteins which are not extracted by Triton X-100 also have a more rapid turnover, as indicated by the 80-155% higher specific activity of hexosamine and sialic acid 1 day after labeling with [3H]glucosamine in vivo. The specific activity of sialic acid in the synaptosomal soluble glycoproteins 2 hr after labeling was greater than 100 times that of the synaptosomal particulate fraction, whereas the difference in hexosamine specific activity in these two fractions was only twofold, and by 22 hr there was little or no difference in the specific activities of sialic acid and hexosamine in synaptosomal soluble as compared to membrane glycoproteins. These data indicate that sialic acid may be added locally to synaptosomal soluble glycoproteins before there is significant labeling of nerve ending glycoproteins by axoplasmic transport. Fifty to sixty percent of the hyaluronic acid and heparan sulfate of brain is located in the various membranes comprising the microsomal fraction, whereas half of the chondroitin sulfate is soluble and only one-third is in microsomal membranes. When microsomes are subfractionated on a discontinuous density gradient over half of the hyaluronic acid and chondroitin sulfate are found in membranes with a density less than that of 0.5 M sucrose (representing a six- to sevenfold enrichment over their concentrations in the membranes applied to the gradient), whereas half of the heparan sulfate is present in membranes with a density greater than that of 0.8 M.  相似文献   

20.
Membrane tubulin   总被引:5,自引:0,他引:5  
Tubulin has been identified as a membrane component of nerve synaptosomes and myelin, plasma membranes of platelets, thyroid, and tissue culture cells, brain and liver coated vesicles, mitochondria, and in cilia but not flagella of certain molluscs. Membrane tubulin can differ from cytoplasmic forms in isoelectric point, non-polar amino acid substitutions, lack of carboxy-terminal tyrosine, carbohydrate content, and selective ability to reassociate with lipids. This tubulin may function as an attachment site for binding vesicles or plasma membranes to cytoplasmic microtubules, as a source of precursor tubulin at the growing tips of axonemes, or as a component of signal transduction in sensory cilia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号