首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FGF-1 binds to and activates specific transmembrane receptors (FGFRs) and is subsequently internalized and translocated to the interior of the cell. To elucidate the role of the receptor in the translocation process, we studied the effects of the elimination of distinct sites of the ligand-receptor interaction. On the basis of the structure of the FGF-1-FGFR1 complex, we substituted four key amino acid residues of FGF-1 from the FGF-receptor binding site with alanines, constructing four point mutants and one double mutant. We determined by in vivo assays in NIH 3T3 cells the ability of the mutants to bind to specific FGF receptors, to stimulate DNA synthesis, and to activate downstream signaling pathways. We found that correct binding to the receptor is necessary for optimal stimulation of DNA synthesis. All four single mutants became phosphorylated to different extents, indicating that they were translocated to the cytosol/nucleus with varying efficiency. This indicates that despite a low affinity for FGFR, translocation to the cytosol/nucleus can still occur. However, simultaneous substitution in two of the positions led to a total loss of biological activity of the growth factor and prevented its internalization, implying that there is only one strongly receptor-dependent, productive way of translocating FGF-1. We also found that the process of translocation did not correlate with the thermal stability of the protein. Additionally, we observed a clear negative correlation between the stability of the FGF-1 mutants and the efficiency of their phosphorylation, which strongly suggests that protein kinases prefer the unfolded state of the protein substrate.  相似文献   

2.
Fibroblast growth factors (FGFs), like nerve growth factor (NGF), induce morphological differentiation of PC12 cells. This activity of FGF is regulated by glycosaminoglycans. To further understand the mechanisms of FGF and glycosaminoglycan actions in PC12 cells, we studied the regulation of protein phosphorylation and ornithine decarboxylase (ODC) activity by FGF in the presence and absence of heparin. As with NGF, aFGF and bFGF increased the incorporation of radioactive phosphate into the protein tyrosine hydroxylase (TH). The increase in TH phosphorylation was localized to the tryptic peptide, T3. Both T3 and T1 phosphorylations occur in response to NGF, but there was no evidence that aFGF or bFGF stimulated the phosphorylation of the T1 peptide. This result suggests differential regulation of second messenger systems by NGF and FGF in PC12 cells. Heparin, at a concentration that potentiated aFGF-induced neurite outgrowth 100-fold (100 micrograms/ml), did not alter the ability of aFGF to increase S6 phosphorylation or ODC activity. One milligram per milliliter of heparin, a concentration that inhibited bFGF-induced neurite outgrowth, also inhibited bFGF-induced increases in S6 phosphorylation and ODC activity. These observations suggest (i) that acidic and basic FGF activate a protein kinase, possibly protein kinase C, resulting in the phosphorylation of peptide T3 of TH; (ii) that the FGFs and NGF share some but not all second messenger systems; (iii) that heparin potentiates aFGF actions and inhibits bFGF actions in PC12 cells via distinct mechanisms; (iv) that heparin does not potentiate the neurite outgrowth promoting activity of aFGF by enhancing binding to its PC12 cell surface receptor; and (v) that heparin may coordinately regulate several activities of bFGF (induction of protein phosphorylation, ODC and neurite outgrowth) via a common mechanism, most likely by inhibiting the productive binding of bFGF to its PC12 cell surface receptor.  相似文献   

3.
Wesche J  Wiedłocha A  Falnes PO  Choe S  Olsnes S 《Biochemistry》2000,39(49):15091-15100
Acidic fibroblast growth factor (aFGF) is transported to the cytosol and the nucleus when added to cells expressing FGF receptors, implying that aFGF must cross cellular membranes. Since protein translocation across membranes commonly requires extensive unfolding of the protein, we were interested in testing whether this is also necessary for membrane translocation of aFGF. We therefore constructed mutant growth factors with intramolecular disulfide bonds to prevent complete unfolding. Control experiments demonstrated that translocation of aFGF by the diphtheria toxin pathway, which requires extensive unfolding of the protein, was prevented by disulfide bond formation, indicating that the introduced disulfide bonds interfered with the unfolding of the growth factor. On the other hand, when the growth factor as such was added to cells expressing FGF receptors, the disulfide-bonded mutants were translocated to the cytosol and the nucleus equally well as wild-type aFGF. The possibility that the translocation of the mutants was due to reduction of the disulfide bonds prior to translocation was tested in experiments using an irreversibly cross-linked mutant. Also this mutant was transported to the cytosol and to the nucleus. The results suggest that extensive unfolding is not required for membrane translocation of aFGF.  相似文献   

4.
Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.  相似文献   

5.
6.
Two tyrosine phosphorylation sites in the human platelet-derived growth factor receptor (PDGFR) beta subunit have been mapped previously to tyrosine (Y)751, in the kinase insert, and Y857, in the kinase domain. Y857 is the major site of tyrosine phosphorylation in PDGF-stimulated cells. To evaluate the importance of these phosphorylations, we have characterized the wild-type (WT) and mutant human PDGF receptor beta subunits in dog kidney epithelial cells. Replacement of either Y751 or Y857 with phenylalanine (F) reduced PDGF-stimulated DNA synthesis to approximately 50% of the WT level. A mutant receptor with both tyrosines mutated was unable to initiate DNA synthesis, as was a kinase-inactive mutant receptor. Transmodulation of the epidermal growth factor receptor required Y857 but not Y751. We also tested the effects of phosphorylation site mutations on PDGF-stimulated receptor kinase activity. PDGF-induced tyrosine phosphorylation of two cellular proteins, phospholipase C gamma 1 (PLC gamma 1) and the GTPase activating protein of Ras (GAP), was assayed in epithelial cells expressing each of the mutant receptors. Tyrosine phosphorylation of GAP and PLC gamma 1 was reduced markedly by the F857 mutation but not significantly by the F751 mutation. Reduced kinase activity of F857 receptors was also evident in vitro. Immunoprecipitated WT receptors showed a two- to fourfold increase in specific kinase activity if immunoprecipitated from PDGF-stimulated cells. The F751 receptors showed a similar increase in activity, but F857 receptors did not. Our data suggest that phosphorylation of Y857 may be important for stimulation of kinase activity of the receptors and for downstream actions such as epidermal growth factor receptor transmodulation and mitogenesis.  相似文献   

7.
U2OS Dr1 cells, originating from a human osteosarcoma, are resistant to the intracellular action of diphtheria toxin but contain toxin receptors on their surfaces. These cells do not have detectable amounts of fibroblast growth factor receptors. When these cells were transfected with fibroblast growth factor receptor 4, the addition of acidic fibroblast growth factor to the medium induced tyrosine phosphorylation, DNA synthesis, and cell proliferation. A considerable fraction of the cell-associated growth factor was found in the nuclear fraction. When the growth factor was fused to the diphtheria toxin A fragment, it was still bound to the growth factor receptor and induced tyrosine phosphorylation but did not induce DNA synthesis or cell proliferation, nor was any fusion protein recovered in the nuclear fraction. On the other hand, when the fusion protein was associated with the diphtheria toxin B fragment to allow translocation to the cytosol by the toxin pathway, the fusion protein was targeted to the nucleus and stimulated both DNA synthesis and cell proliferation. In untransfected cells containing toxin receptors but not fibroblast growth factor receptors, the fusion protein was translocated to the cytosol and targeted to the nucleus, but in this case, it stimulated only DNA synthesis. These data indicate that the following two signals are required to stimulate cell proliferation in transfected U2OS Dr1 cells: the tyrosine kinase signal from the activated fibroblast growth factor receptor and translocation of the growth factor into the cell.  相似文献   

8.
Sphingosine-1-phosphate, a sphingolipid metabolite, is involved in the mitogenic response of platelet-derived growth factor (PDGF) and is formed by activation of sphingosine kinase. We examined the effect of PDGF on sphingosine kinase activation in TRMP cells expressing wild-type or various mutant betaPDGF receptors. Sphingosine kinase was stimulated by PDGF in cells expressing wild-type receptors but not in cells expressing kinase-inactive receptors (R634). Cells expressing mutated PDGF receptors with phenylalanine substitutions at five major tyrosine phosphorylation sites 740/751/771/1009/1021 (F5 mutants), which are unable to associate with PLCgamma, phosphatidylinositol 3-kinase, Ras GTPase-activating protein, or protein tyrosine phosphatase SHP-2, not only failed to increase DNA synthesis in response to PDGF but also did not activate sphingosine kinase. Moreover, mutation of tyrosine-1021 of the PDGF receptor to phenylalanine, which impairs its association with PLCgamma, abrogated PDGF-induced activation of sphingosine kinase. In contrast, PDGF was still able to stimulate sphingosine kinase in cells expressing the PDGF receptor mutated at tyrosines 740/751 and 1009, responsible for binding of phosphatidylinositol 3-kinase and SHP-2, respectively. In agreement, PDGF did not stimulate sphingosine kinase activity in F5 receptor 'add-back' mutants in which association with the Ras GTPase-activating protein, phosphatidylinositol 3-kinase, or SHP-2 was individually restored. However, a mutant PDGF receptor that was able to bind PLCgamma (tyrosine-1021), but not other signaling proteins, restored sphingosine kinase sensitivity to PDGF. These data indicate that the tyrosine residue responsible for binding of PLCgamma is required for PDGF-induced activation of sphingosine kinase. Moreover, calcium mobilization downstream of PLCgamma, but not protein kinase C activation, appears to be required for stimulation of sphingosine kinase by PDGF.-Olivera, A., Edsall, J., Poulton, S., Kazlauskas, A., Spiegel, S. Platelet-derived growth factor-induced activation of sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLCgamma.  相似文献   

9.
Keratinocyte growth factor (KGF) is an unusual fibroblast growth factor (FGF) family member in that its activity is largely restricted to epithelial cells, and added heparin/heparan sulfate inhibits its activity in most cell types. The effects of heparan sulfate proteoglycan (HSPG) on binding and signaling by acidic FGF (aFGF) and KGF via the KGFR were studied using surface-bound and soluble receptor isoforms expressed in wild type and mutant Chinese hamster ovary (CHO) cells lacking HSPG. Low concentrations of added heparin (1 microgram/mL) enhanced the affinity of ligand binding to surface-bound KGFR in CHO mutants, as well as ligand-stimulated MAP kinase activation and c-fos induction, but had little effect on binding or signaling in wild type CHO cells. Higher heparin concentrations inhibited KGF, but not aFGF, binding and signaling. In addition to the known interaction between HSPG and KGF, we found that the KGFR also bound heparin. The biphasic effect of heparin on KGF, but not aFGF, binding and signaling suggests that occupancy of the HSPG binding site on the KGFR may specifically inhibit KGF signaling. In contrast to events on the cell surface, added heparin was not required for high-affinity soluble KGF-KGFR interaction. These results suggest that high-affinity ligand binding is an intrinsic property of the receptor, and that the difference between the HSPG-dependent ligand binding to receptor on cell surfaces and the HSPG-independent binding to soluble receptor may be due to other molecule(s) present on cell surfaces.  相似文献   

10.
Nature of the interaction of growth factors with suramin.   总被引:5,自引:0,他引:5  
Suramin inhibits the binding of a variety of growth factors to their cell surface receptors. The direct interaction of suramin with acidic fibroblast growth factor has been detected by the enhancement of the drug's fluorescence in the presence of the protein with the maximum effect occurring at a molar ratio of suramin to aFGF of 2:1. This interaction stabilizes aFGF to thermal denaturation and partially protects a free thiol in its polyanion binding site from oxidation. The binding of suramin to aFGF also induces aggregation of the growth factor to at least a hexameric state as detected by static and dynamic light scattering as well as by gel filtration studies. Both CD and amide I' FTIR spectra of aFGF in the presence and absence of suramin suggest that the drug may also be causing a small conformational change in the growth factor. Suramin produces an even greater aggregation of bFGF and PDGF but not of EGF or IGF-1. Evidence for a suramin-induced conformational change in IGF-1 but not EGF is found by CD, however. It is concluded that suramin binds to many growth factors and that this induces microaggregation and, in some cases, conformational changes. In the case of aFGF, suramin interacts at or near its heparin binding site. The relationship between these phenomena and the anti-growth factor activity of suramin remains to be clearly elucidated.  相似文献   

11.
The ability of several animal, plant, and bacterial derived polyanions (PAs) as well as synthetic PAs to compete with heparin for the binding of acidic fibroblast growth factor (aFGF) was correlated with their ability to potentiate the mitogenic and neurotrophic actions of this factor. Dextran sulphate, K-carrageenan, pentosan sulphate, polyanethole sulfonate, heparin, and fucoidin competed for the heparin binding site on aFGF at relatively low concentrations (≤50 μg/ml). λ-carrageenan, ι-carrageenan, and polyvinyl sulphate exhibited lower affinity for aFGF, whereas hyaluronic acid, dermatan sulphate, chondroitin-6-sulphate, chondroitin-4-sulphate, and uncharged dextran displayed very low or no demonstrable affinity. Potentiation of the mitogenic action of aFGF for Balb/c 3T3 fibroblasts tended to be in general agreement with the aFGF binding affinity of the PAs. However, polyanethole sulfonate, the carrageenans, polyvinyl sulphate, fucoidin, and pentosan sulphate exerted a mitogenic action on the 3T3 cells that was independent of, and in addition to, the ability of these GAGs to potentiate the action of aFGF. The ability to potentiate the neurotrophic action of aFGF for E8 chick ciliary neurons was a general property of those PA with low or no activity in the mitogen assay. Thus hyaluronic acid, dermatan sulphate, chondroitin-4-sulphate, chondroitin-6-sulphate, and even uncharged dextran all potentiated aFGF induced neuronal survival. The differential effects of these PA in potentiating the biological activities of aFGF are discussed in relation to their ability to compete for the heparin-binding site of aFGF. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Acidic fibroblast growth factor (aFGF) is a potent mitogen for many cells. Exogenous aFGF is able to enter the cytosol and nucleus of sensitive cells. There are indications that both activation of the receptor tyrosine kinase and translocation of aFGF to the nucleus are of importance for mitogenesis. However, the mechanism of transport of aFGF from the cell surface to the nucleus is poorly understood. In this work we demonstrate that inhibition of phosphatidylinositol (PI) 3-kinase by chemical inhibitors and by expression of a dominant negative mutant of PI 3-kinase blocks translocation of aFGF to the cytosol and nucleus. Translocation to the cytosol and nucleus was monitored by cell fractionation, by farnesylation of aFGF modified to contain a farnesylation signal, and by phosphorylation by protein kinase C of aFGF added externally to cells. If aFGF is fused to diphtheria toxin A-fragment, it can be artificially translocated from the cell surface to the cytoplasm by the diphtheria toxin pathway. Upon further incubation, the fusion protein enters the nucleus due to a nuclear localization sequence in aFGF. We demonstrate here that upon inhibition of PI 3-kinase the fusion protein remains in the cytosol. We also provide evidence that the phosphorylation status of the fusion protein does not regulate its nucleocytoplasmic distribution.  相似文献   

13.
Two independent gain-of-function point mutations (S252W and P253R) in the extracellular region of the FGFR2 (fibroblast growth factor receptor 2) increase the binding affinity for the growth factor. The effect of this enhanced growth factor binding by these mutants is expected to be an increase in activation of regular signalling pathways from FGFR2 as a result of more receptors being engaged by ligand at any given time. Using PC12 (pheochromocytoma) cells as a model cell system we investigated the effect of these mutations on protein phosphorylation including the receptor, the activation of downstream signalling pathways and cell differentiation. Our results show that the effects of both of these extracellular mutations have unexpected intracellular phenotypes and cellular responses. Receptor phosphorylation was altered in both the ligand-stimulated and unstimulated states. The mutants also resulted in differential phosphorylation of a number of intracellular proteins. Both mutations resulted in enhanced ERK1/2 (extracellular-signalregulated kinase1/2) activation. Although ERK1/2 activation is believed to transduce signals resulting in cell differentiation, this response was abrogated in the cells expressing the mutant receptors. The results of the present study demonstrate that single extracellular point mutations in the FGFR2 have a profound effect on intracellular signalling and ultimately on cell fate.  相似文献   

14.
Polyclonal antibodies were prepared against recombinant basic fibroblast growth factor (bFGF) that reacted only with bFGF but not acidic FGF. These antibodies were able to inhibit various biological activities of bFGF such as the ability of bFGF to stimulate DNA synthesis in 3T3 cells, proliferation and migration of bovine capillary endothelial cells (BCEC), and neurite extension in pheochromocytoma (PC12) cells. The anti-bFGF antibodies also inhibited the mitogenic activity of subendothelial cell extracellular matrix for BCEC, demonstrating that the growth factor component in extracellular matrix required for supporting BCEC proliferation was bFGF. Anti-bFGF antibodies inhibited the cross-linking of bFGF to its high affinity receptor on BCEC cells. However, these antibodies did not inhibit the binding of bFGF to heparin-Sepharose or to the low affinity receptors of BCEC which have been demonstrated to be heparin-like molecules. These results suggest that bFGF has distinct domains for binding to high affinity cellular receptors and for binding to heparin.  相似文献   

15.
Acidic and basic fibroblast growth factors (aFGF and bFGF) have been isolated and purified from rod outer segments (ROS). aFGF is tightly bound to ROS membranes and can be specifically released by ATP. We show that this mechanism is dependent on the phosphorylation of aFGF itself. Phorbol 12-myristate 13-acetate (PMA) enhances this phenomenon independently of rhodopsin phosphorylation. This demonstrates that aFGF release from ROS membranes is dependent on its phosphorylation by endogenous kinase C. In addition specific binding sites for exogenous FGFs have been identified on ROS and disc membranes. A single high affinity site with a Kd of 40 pM was present in intact ROS while an additional low affinity site with a Kd of 300-600 pM was present in leaky ROS or in disc membranes. Light or ATP modified neither these Kd nor the apparent number of sites. The presence of specific receptors for FGFs and the kinase C dependent release of endogenous membrane bound aFGF suggest an autocrine mechanism which may be involved in photoreceptor cell biology.  相似文献   

16.
Acidic fibroblast growth factor (aFGF) stimulated DNA synthesis in primary rat hepatocyte cultures in a dose-dependent manner with maximal effect at 10-50 ng ml-1. This activity was dependent on the presence of heparin at a concentration of 10-50 micrograms.ml-1. Insulin interacted synergistically with aFGF, as it did with epidermal growth factor (EGF). The response to aFGF was only 50% that found with EGF. The disparity was not due to different kinetics of DNA synthesis, since the peak response for both growth factors occurred at 36-72 hr after plating of the hepatocytes. The potential relevance of this novel hepatocyte mitogen to normal and pathological liver growth is discussed.  相似文献   

17.
Keratinocytes and fibroblasts isolated from human neonatal foreskin can be plated and grown through multiple rounds of division in vitro under defined serum-free conditions. We utilized these growth conditions to examine the mitogenic potential of acidic and basic fibroblast growth factor (aFGF and bFGF) on these cells. Our results demonstrate that both aFGF and bFGF can stimulate the proliferation of keratinocytes and fibroblasts. aFGF is a more potent mitogen than bFGF for keratinocytes. In contrast, bFGF appears to be more potent than aFGF in stimulating the growth of fibroblast cultures. Heparin sulfate (10 micrograms/ml) dramatically inhibited the ability of bFGF to stimulate the proliferation of keratinocytes. In comparison, heparin slightly inhibited the stimulatory effect of aFGF and had no effect on epidermal growth factor (EGF) stimulation in keratinocyte cultures. In fibroblast cultures the addition of heparin enhanced the mitogenic effect of aFGF, had a minimal stimulatory effect on the mitogenic activity of bFGF, and had no effect on EGF-stimulated growth. Our results demonstrate that the proliferation in vitro of two normal cell types found in the skin can be influenced by aFGF and bFGF and demonstrate cell-type specific differences in the responsiveness of fibroblasts and keratinocytes to these growth factors and heparin.  相似文献   

18.
19.
The longer splice isoforms of vascular endothelial growth factor-A (VEGF-A), including mouse VEGF164, contain a highly basic heparin-binding domain (HBD), which imparts the ability of these isoforms to be deposited in the heparan sulfate-rich extracellular matrix and to interact with the prototype sulfated glycosaminoglycan, heparin. The shortest isoform, VEGF120, lacks this highly basic domain and is freely diffusible upon secretion. Although the HBD has been attributed significant relevance to VEGF-A biology, the molecular determinants of the heparin-binding site are unknown. We used site-directed mutagenesis to identify amino acid residues that are critical for heparin binding activity of the VEGF164 HBD. We focused on basic residues and found Arg-13, Arg-14, and Arg-49 to be critical for heparin binding and interaction with extracellular matrix in tissue samples. We also examined the cellular and biochemical consequences of abolishing heparin-binding function, measuring the ability of the mutants to interact with VEGF receptors, induce endothelial cell gene expression, and trigger microvessel outgrowth. Induction of tissue factor expression, vessel outgrowth, and binding to VEGFR2 were unaffected by the HBD mutations. In contrast, the HBD mutants showed slightly decreased binding to the NRP1 (neuropilin-1) receptor, and analyses suggested the heparin and NRP1 binding sites to be distinct but overlapping. Finally, mutations that affect the heparin binding activity also led to an unexpected reduction in the affinity of VEGF164 binding specifically to VEGFR1. This finding provides a potential basis for previous observations suggesting enhanced potency of VEGF164 versus VEGF120 in VEGFR1-mediated signaling in inflammatory cells.  相似文献   

20.
The aggregation factor from the sponge Geodia cydonium functions also as a growth factor after binding to the aggregation receptor (= growth factor receptor) on the plasma membrane of homologous cells. We have recently shown that protein kinase C is involved in the pathway transducing the growth factor signal. Here we report that the aggregation receptor (a polypeptide with an Mr of 43,500) is phosphorylated by protein kinase C. Using a plasma membrane fraction only this phosphoprotein (pp) 43.5 became phosphorylated by kinase C. The phosphorylation of pp43.5 in intact cells in response to the binding of the aggregation factor to this polypeptide was a late event and occurred 10 to 15 h after addition of the aggregation factor. Based on studies with phorbol esters it appears to be very likely that protein kinase C also phosphorylates pp43.5 in vitro. The degree of phosphorylation of pp43.5 paralleled with both the extent of DNA synthesis and ras oncogene expression. The latter process resulted in a switch of the responsiveness of the cells to growth factors signals: 10 to 15 h after addition of the aggregation factor to dissociated cells, this factor lost its growth factor function while the homologous lectin gained the ability to stimulate cell proliferation (to be published). These results support the idea that phosphorylation of pp43.5 (= aggregation receptor) results in an inhibition of its function, i.e., the transduction of the growth factor (= aggregation factor) signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号