首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
CDPK-mediated abiotic stress signaling   总被引:2,自引:0,他引:2  
Calcium-dependent protein kinases (CDPKs) constitute a large multigene family in various plant species. CDPKs have been shown to have important roles in various physiological processes, including plant growth and development and abiotic and biotic stress responses in plants. Functional analysis using gain-of-function and loss-of-function mutants has revealed the biological function of CDPKs in planta. Several CDPKs have been shown to be essential factors in abiotic stress tolerance, positively or negatively regulating stress tolerance by modulating ABA signaling and reducing the accumulation of reactive oxygen species (ROS). This review summarizes recent results describing the biological function of CDPKs that are involved in abiotic stress tolerance.  相似文献   

3.
Activation sequence-1 (as-1) cognate promoter elements are widespread in the promoters of plant defense-related genes as well as in plant pathogen promoters, and may play important roles in the activation of defense-related genes. The as-1-type elements are highly responsive to multiple stress stimuli such as jasmonic acid (JA), salicylic acid (SA), H(2)O(2), xenobiotics and heavy metals, and therefore provide a unique opportunity for identifying additional signaling components and cross-talk points in the various signaling networks. A single as-1-type cis-element-driven GUS reporter Arabidopsis line responsive to JA, SA, H(2)O(2), xenobiotics and heavy metals was constructed for mutagenesis. A large-scale T-DNA mutagenesis has been conducted in the reporter background, and an efficient high-throughput mutant screen was established for isolating mutants with altered responses to the stress chemicals. A number of mutants with altered stress responses were obtained, some of which appear to identify new components in the as-1-based signal transduction pathways. We characterized a mutant (Delta8L4) with a T-DNA insertion in the coding sequence of the gene At4g24275. The as-1-regulated gene expression and GUS reporter gene expression were altered in the Delta8L4 mutant, but there was no change in the expression of genes lacking as-1 elements in their promoters. The phenotype observed with the Delta8L4 mutant was further verified using RNAi plants for At4g24275 (8L4-RNAi), suggesting the feasibility of use of this high-throughput mutant screening in isolating stress-signaling mutants.  相似文献   

4.
Plant cold acclimation is correlated to expression of low-temperature-induced (lti) genes. By using a previously characterized lti cDNA clone as a probe we isolated a genomic fragment that carried two closely located lti genes of Arabidopsis thaliana. The genes were structurally related with the coding regions interrupted by three similarly located short introns and were transcribed in the same direction. The nucleotide sequences of the two genes, lti78 and lti65, predict novel hydrophilic polypeptides with molecular weights of 77856 and 64510, respectively, lti78 corresponding to the cDNA probe. Of the 710 amino acids of LTI78 and 600 amino acids of LTI65, 346 amino acids were identical between the polypeptides, which suggests that the genes may have a common origin.Both lti78 and lti65 were induced by low temperature, exogenous abscisic acid (ABA) and drought, but the responsiveness of the genes to these stimuli was markedly different. Both the levels and the temporal pattern of expression differed between the genes. Expression of lti78 was mainly responsive to low temperature, that of lti65 to drought and ABA. In contrast to the induction of lti78, which follows separate signal pathways during low-temperature, ABA and drought treatment, the drought induction of lti65 is ABA-dependent and the low-temperature induction appears to be coupled to the ABA biosynthetic pathway. This differential expression of two related genes may indicate that they have some-what different roles in the stress response.  相似文献   

5.
A cDNA clone corresponding to a novel low-temperature-induced Arabidopsis thaliana gene, named lti140, was employed for studies of the environmental signals and the signal pathways involved in cold-induced gene expression. The single-copy lti140 gene encodes a 140 kDa cold acclimation-related polypeptide. The lti140 mRNA accumulates rapidly in both leaves and roots when plants are subject to low temperature or water stress or are treated with the plant hormone abscisic acid (ABA), but not by heat-shock treatment. The low-temperature induction of lti140 is not mediated by ABA, as shown by normal induction of the lti140 mRNA in both ABA-deficient and ABA-insensitive mutants and after treatment with the ABA biosynthesis inhibitor fluridone. The effects of low temperature and exogenously added ABA are not cumulative suggesting that these two pathways converge. The induction by ABA is abolished in the ABA-insensitive mutant abi-1 indicating that the abi-1 mutation defines a component in the ABA response pathway. Accumulation of the lti140 mRNA in plants exposed to water stress was somewhat reduced by treatment with fluridone and in the ABA-insensitive mutant abi-1 suggesting that the water stress induction of lti140 could be partly mediated by ABA. It is concluded that three separate but converging signal pathways regulate the expression of the lti140 gene.  相似文献   

6.
7.
8.
9.
Variation in dynamics of phytochrome A in Arabidopsis ecotypes and mutants   总被引:2,自引:0,他引:2  
Phytochromes are photoreceptors in plants which can exist in two different conformations: the red light‐absorbing form (Pr) and the far‐red light‐absorbing form (Pfr), depending on the light quality. The Pfr form is the physiologically active conformation. To attenuate the Pfr signal for phytochrome A (phyA), at least two different mechanisms exist: destruction of the molecule and dark reversion. Destruction is an active process leading to the degradation of Pfr. Dark reversion is the light‐independent conversion of physiologically active Pfr into inactive Pr. Here, we show that dark reversion is not only an intrinsic property of the phytochrome molecule but is modulated by cellular components. Furthermore, we demonstrate that dark reversion of phyA may be observed in Arabidopsis ecotype RLD but not in other Arabidopsis ecotypes. For the first time, we have identified mutants with altered dark reversion and destruction in a set of previously isolated loss of function PHYA alleles (Xu et al. Plant Cell 1995, 7, 1433–1443). Therefore, the dynamics of the phytochrome molecule itself need to be considered during the characterization of signal transduction mutants.  相似文献   

10.
11.
As sessile organisms, plants have developed specific mechanisms that allow them to rapidly perceive and respond to stresses in the environment. Among the evolutionarily conserved pathways, the ABA (abscisic acid) signaling pathway has been identified as a central regulator of abiotic stress response in plants, triggering major changes in gene expression and adaptive physiological responses. ABA induces protein kinases of the SnRK family to mediate a number of its responses. Recently, MAPK (mitogen activated protein kinase) cascades have also been shown to be implicated in ABA signaling. Therefore, besides discussing the role of ABA in abiotic stress signaling, we will also summarize the evidence for a role of MAPKs in the context of abiotic stress and ABA signaling.  相似文献   

12.
13.
Glutathione peroxidases (GPXs) are a group of enzymes that protect cells against oxidative damage generated by reactive oxygen species (ROS). The presence of GPXs in plants has been reported by several groups, but the roles of individual members of this family in a single plant species have not been studied. A family of seven related proteins named AtGPX1- AtGPX7 in Arabidopsis was identified, and the genomic organization of this family was reported. The putative subcellular localizations of the encoded proteins are the cytosol, chloroplast, mitochondria, and endoplasmic reticulum. Expressed sequence tags (ESTs) for all the genes except AtGPX7 were identified. Expression analysis of AtGPX genes in Arabidopsis tissues was performed, and different patterns were detected. Interestingly, several genes were up-regulated coordinately in response to abiotic stresses. AtGPX6, like human phospholipid hydroperoxide GPX (PHGPX), possibly encodes mitochondrial and cytosolic isoforms by alternative initiation. In addition, this gene showed the strongest responses under most abiotic stresses tested. AtGPX6::GUS analysis in transgenic Arabidopsis showed that AtGPX6 is highly expressed throughout development in most tissues, thus supporting an important role for this gene in protection against oxidative damage. The different effects of salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and auxin on the expression of the genes indicate that the AtGPX family is regulated by multiple signaling pathways. Analysis of the upstream region of the AtGPX genes revealed the presence of multiple conserved motifs, and some of them resembled antioxidant-responsive elements found in plant and human promoters. The potential regulatory role of specific sequences is discussed.  相似文献   

14.
We report the cloning of both the cDNA and the corresponding genomic sequence of a new PP2C from Arabidopsis thaliana, named AtP2C-HA (for homology to ABI1/ABI2). The AtP2C-HA cDNA contains an open reading frame of 1536 bp and encodes a putative protein of 511 amino acids with a predicted molecular mass of 55.7 kDa. The AtP2C-HA protein is composed of two domains, a C-terminal PP2C catalytic domain and a N-terminal extension of ca. 180 amino acid residues. The deduced amino acid sequence is 55% and 54% identical to ABI1 and ABI2, respectively. Comparison of the genomic structure of the ABI1, ABI2 and AtP2C-HA genes suggests that they belong to a multigene family. The expression of the AtP2C-HA gene is up-regulated by abscisic acid (ABA) treatment.  相似文献   

15.
We have characterized cDNAs for two new dhn/lea/rab (dehydrin, late embryogenesis-abundant, responsive to ABA)-related genes from Arabidopsis thaliana. The two genes were strongly induced in plants exposed to low temperature (4 °C) and were accordingly designated lti45 and lti30 (low temperature-induced). The lti45 gene product contains the conserved serine stretch and three lysine-rich repeats characteristic of DHN/LEA/RAB proteins and is very similar to another low temperature-responsive protein of A. thaliana, COR47 [17]. Both proteins have the same repeat structure and an overall amino acid identity of 64%. This structural similarity of the proteins and the tandem array of the genes suggest that this gene pair arose through a duplication. The other polypeptide, LTI30, consists of several lysine-rich repeats, a structure found in CAP85, a low temperature-and water stress-responsive protein in spinach [41] and similar proteins found in wheat [20].The expression pattern of the five dhn/lea/rab-related genes (cor47, dhnX, lti30, lti45 and rab18) identified so far in A. thaliana, was characterized in plants exposed to low temperature, drought and abscisic acid (ABA). Expression of both lti30 and lti45 was mainly responsive to low temperature similar to cor47. The lti45 and lti30 genes show only a weak response to ABA in contrast to cor47, which is moderately induced by this hormone. The three genes were also induced in severely water-stressed plants although the expression of lti30 and lti45 was rather low. In contrast to these mainly low temperature-induced genes, the expression of rab18 was strongly induced both in water-stressed and ABA-treated plants but was only slightly responsive to cold. The dhnX gene showed a very different expression pattern. It was not induced with any of the treatments tested but exhibited a significant constitutive expression. The low-temperature induction of the genes in the first group, lti30 and lti45, is ABA-independent, deduced from experiments with the ABA-deficient (aba-1) and ABA-insensitive (abi1) mutants of A. thaliana, whereas the induction of rab18 is ABA-mediated. The expression of dhnX was not significantly affected in the ABA mutants.  相似文献   

16.
HD2 proteins are plant-specific histone deacetylases. Little is known about the function of HD2 proteins in plants. In this paper, we report that an Arabidopsis HD2 protein, AtHD2C, is involved in abscisic acid and abiotic stress responses. Analysis of Arabidopsis plants containing the AtHD2C:beta-glucuronidase fusion gene revealed that AtHD2C was constitutive expressed in plants. Furthermore, expression of AtHD2C was repressed by abscisic acid. Over-expression of 35S:AtHD2C-GFP in transgenic Arabidopsis plants conferred an abscisic acid-insensitive phenotype. In addition, 35S:AtHD2C-GFP transgenic plants displayed reduced transpiration and enhanced tolerance to salt and drought stresses when compared with wild-type plants. The expression of several abscisic acid-responsive genes was affected in the 35S:AtHD2C-GFP plants. Our study provides evidence indicating that AtHD2C can modulate abscisic acid and stress responses.  相似文献   

17.
The aim of this study was to investigate the process of glycerol catabolism in germinating Arabidopsis seed. A genetic screen was performed to isolate glycerol-insensitive (gli) mutant seedlings. Three separate mutant loci were identified (gli1, gli2 and gli3). Of these, only gli1 is unable to utilise glycerol. Following germination, gli1 seedlings transiently accumulate glycerol derived from the breakdown of storage oil and are more resistant to hyperosmotic stress, salt stress, oxidative stress, freezing and desiccation. Enzyme assays revealed that gli1 lacks glycerol kinase activity. GLI1 mapped to chromosome 1 near the putative glycerol kinase gene NHO1. Mutations in this gene were identified in three independent gli1 alleles. A cDNA encoding GLI1 was cloned and its function was proven by complementation of an Escherichia coli glycerol kinase (glpK) deletion strain. Quantitative RT-PCR analysis showed that GLI1 is expressed in all tissues, but is transiently upregulated during early post-germinative growth and leaf senescence. These data show that glycerol kinase is required for glycerol catabolism in Arabidopsis and that the accumulation of glycerol can enhance resistance to a variety of abiotic stresses associated with dehydration.  相似文献   

18.
Membrane-anchored receptor-like protein kinases (RLKs) recognize extracellular signals at the cell surface and activate the downstream signaling pathway by phosphorylating specific target proteins. We analyzed a receptor-like cytosolic kinase (RLCK) gene, ARCK1, whose expression was induced by abiotic stress. ARCK1 belongs to the cysteine-rich repeat (CRR) RLK sub-family and encodes a cytosolic protein kinase. The arck1 mutant showed higher sensitivity than the wild-type to ABA and osmotic stress during the post-germinative growth phase. CRK36, an abiotic stress-inducible RLK belonging to the CRR RLK sub-family, was screened as a potential interacting factor with ARCK1 by co-expression analyses and a yeast two-hybrid system. CRK36 physically interacted with ARCK1 in plant cells, and the kinase domain of CRK36 phosphorylated ARCK1 in vitro. We generated CRK36 RNAi transgenic plants, and found that transgenic plants with suppressed CRK36 expression showed higher sensitivity than arck1-2 to ABA and osmotic stress during the post-germinative growth phase. Microarray analysis using CRK36 RNAi plants revealed that suppression of CRK36 up-regulates several ABA-responsive genes, such as LEA genes, oleosin, ABI4 and ABI5. These results suggest that CRK36 and ARCK1 form a complex and negatively control ABA and osmotic stress signal transduction.  相似文献   

19.
20.
Pan Z  Zhao Y  Zheng Y  Liu J  Jiang X  Guo Y 《遗传学报》2012,39(5):225-235
It is established that different stresses cause signal-specific changes in cellular Ca2+ level,which function as messengers in modulating diverse physiological processes.These calcium signals are important for stress adaptation.Though numbers of downstream components of calcium signal cascades have been identified,upstream events in calcium signal remain elusive,specifically components required for calcium signal generation due to the lack of high-throughput genetic assay.Here,we report the development of an easy and efficient method in a forward genetic screen for Ca2+ signals-deficient mutants in Arabidopsis thaliana.Using this method,121 mutants with disordered NaCl- and H2O2-induced Ca2+ signals are isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号