首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioremediation, involving bioaugmentation and/or biostimulation, being an economical and eco-friendly approach, has emerged as the most advantageous soil and water clean-up technique for contaminated sites containing heavy metals and/or organic pollutants. Addition of pre-grown microbial cultures to enhance the degradation of unwanted compounds (bioaugmentation) and/or injection of nutrients and other supplementary components to the native microbial population to induce propagation at a hastened rate (biostimulation), are the most common approaches for in situ bioremediation of accidental spills and chronically contaminated sites worldwide. However, many factors like strain selection, microbial ecology, type of contaminant, environmental constraints, as well as procedures of culture introduction, may lead to their failure. These drawbacks, along with fragmented literature, have opened a gap between laboratory trials and on-field application. The present review discusses the effectiveness as well as the limitations of bioaugmentation and biostimulation processes. A summary of experimental studies both in confined systems under controlled conditions and of real case studies in the field is presented. A comparative account between the two techniques and also the current scenario worldwide for in situ biotreatment using bioaugmentation and biostimulation, are addressed.  相似文献   

2.
Hexachlorocyclohexane (HCH) contaminated soils were treated for a period of up to 64 days in situ (HCH dumpsite, Lucknow) and ex situ (University of Delhi) in line with three bioremediation approaches. The first approach, biostimulation, involved addition of ammonium phosphate and molasses, while the second approach, bioaugmentation, involved addition of a microbial consortium consisting of a group of HCH-degrading sphingomonads that were isolated from HCH contaminated sites. The third approach involved a combination of biostimulation and bioaugmentation. The efficiency of the consortium was investigated in laboratory scale experiments, in a pot scale study, and in a full-scale field trial. It turned out that the approach of combining biostimulation and bioaugmentation was most effective in achieving reduction in the levels of α- and β-HCH and that the application of a bacterial consortium as compared to the action of a single HCH-degrading bacterial strain was more successful. Although further degradation of β- and δ-tetrachlorocyclohexane-1,4-diol, the terminal metabolites of β- and δ-HCH, respectively, did not occur by the strains comprising the consortium, these metabolites turned out to be less toxic than the parental HCH isomers.  相似文献   

3.
4.
由于难降解有机污染物和外界环境对水处理系统的冲击干扰,污水水质常出现不达标现象。引入外源含有相关功能基因并且具有基因水平转移能力的工程菌株进行生物强化处理是提高污水处理效能的有效措施。污水处理系统中存在能够分泌信号分子的菌体,菌间具有群体感应现象,当种群密度达到感应阈值时,菌体会通过释放信号分子来触发一些群体行为,从而激活相关基因的表达(如生物膜形成、生物发光、抗生素合成和毒力因子表达等)。早期的群体感应技术研究主要集中在信号传递学、微生物社会行为学和医学微生物领域,近年来,在水处理领域也开始有相继报道,研究表明群体感应在污水生物处理中发挥重要作用,并且影响生物强化菌株的定殖和污染物降解,因此群体感应行为调控是生物强化技术成效显著与否的关键因素。本文综述了群体感应及信号分子的作用机制、信号分子释放及存在的影响因素以及群体感应对菌株定殖、微生物群落结构和污染物去除的影响,并对从群体感应角度出发研究生物强化过程进行了展望,旨在为生物强化技术的有效实施及提升污水处理效能提供一种新思路,为深入理解生物强化过程中群体感应调控行为提供理论参考。  相似文献   

5.
Biogeochemistry is at the dawn of an era in which molecular advances enable the discovery of novel microorganisms having unforeseen metabolic capabilities, revealing new insight into the underlying processes regulating elemental cycles at local to global scales. Traditionally, biogeochemical inquiry began by studying a process of interest, and then focusing downward to uncover the microorganisms and metabolic pathways mediating that process. With the ability to sequence functional genes from the environment, molecular approaches now enable the flow of inquiry in the opposite direction. Here, we argue that a focus on functional genes, the microorganisms in which they reside, and the interaction of those organisms with the broader microbial community could transform our understanding of many globally important biogeochemical processes.  相似文献   

6.
The process of ethanol fermentation has a long history in the production of alcoholic drinks, but much larger scale production of ethanol is now required to enable its use as a substituent of gasoline fuels at 3%, 10%, or 85% (referred to as E3, E10, and E85, respectively). Compared with fossil fuels, the production costs are a major issue for the production of fuel ethanol. There are a number of possible approaches to delivering cost-effective fuel ethanol production from different biomass sources, but we focus in our current report on high-temperature fermentation using a newly isolated thermotolerant strain of the yeast Kluyveromyces marxianus. We demonstrate that a 5°C increase only in the fermentation temperature can greatly affect the fuel ethanol production costs. We contend that this approach may also be applicable to the other microbial fermentations systems and propose that thermotolerant mesophilic microorganisms have considerable potential for the development of future fermentation technologies.  相似文献   

7.
Pseudomonas sp. strain WBC-3 utilizes methyl parathion (MP) and para-nitrophenol as the sole source of carbon, nitrogen and energy. In this study, strain WBC-3 was inoculated into lab-scale MP-contaminated soil for bioaugmentation. Accelerated removal of MP was achieved in bioaugmentation treatment compared to non-bioaugmentation treatment, with complete removal of 0.536 mg g−1 dry soil in bioaugmentation treatment within 15 days and without accumulation of toxic intermediates. The analysis of denaturing gradient gel electrophoresis and real-time PCR showed that strain WBC-3 existed stably during the entire bioaugmentation period. Simultaneously, redundancy analysis for evaluating the relationships between the environmental factors and microbial community structure indicated that the indigenous bacterial community structure was significantly influenced by strain WBC-3 inoculation (P = 0.002).  相似文献   

8.
The last 20 years have seen a staggering growth in the practice of off‐shoring clinical research to low‐and middle‐income countries (LICs and MICs), a growth that has been matched by the neoliberal policies adopted by host countries towards attracting trials to their shores. A recurring concern in this context is the charge of exploitation, linked to various aspects of off‐shoring. In this paper, I examine Alan Wertheimer's approach and offer an alternative view of understanding exploitation in this context. I will suggest that the justification for the enterprise of research is largely dependent on its integration within a health system from which participants regularly benefit and I argue that an attention to a principle of reciprocity will enable us to better recognize and address exploitation in international research.  相似文献   

9.
In this study, the possibility of establishing a dual-species biofilm from a bacterium with a high biofilm-forming capability and a 3,5-dinitrobenzoic acid (3,5-DNBA)-degrading bacterium, Comamonas testosteroni A3, was investigated. Our results showed that the combinations of strain A3 with each of five strains with a high biofilm-forming capability (Pseudomonas sp. M8, Pseudomonas putida M9, Bacillus cereus M19, Pseudomonas plecoglossicida M21 and Aeromonas hydrophila M22) presented different levels of enhancement regarding biofilm-forming capability. Among these culture combinations, the 24-h dual-species biofilms established by C. testosteroni A3 with P. putida M9 and A. hydrophila M22 showed the strongest resistance to 3,5-DNBA shock loading, as demonstrated by six successive replacements with DMM2 synthetic wastewater. The degradation rates of 3,5-DNBA by these two culture combinations reached 63.3-91.6% and 70.7-89.4%, respectively, within 6 h of every replacement. Using the gfp-tagged strain M22 and confocal laser scanning microscopy, the immobilization of A3 cells in the dual-species biofilm was confirmed. We thus demonstrated that, during wastewater treatment processes, it is possible to immobilize degrader bacteria with bacteria with a high biofilm-forming capability and to enable them to develop into the mixed microbial flora. This may be a simple and economical method that represents a novel strategy for effective bioaugmentation.  相似文献   

10.
Perspectives and vision for strain selection in bioaugmentation   总被引:1,自引:0,他引:1  
Notwithstanding the phenomenally large and ever-increasing resource of pollutant-degrading microbial isolates in laboratories around the globe, inoculum survival remains the 'Achilles' heel' for bioaugmentation of contaminated land. Considerable effort has been invested into inoculum strain selection to facilitate pollutant biodegradation, ranging from the isolation of 'superbugs,' which are microorganisms highly resilient to environmental stresses, harboring catabolically superior pollutant-degrading enzymes, to the other extreme in 'priming', where pollutant degradation is carried out through the addition of soil enriched with an undefined consortium of pollutant-degrading microorganisms.  相似文献   

11.
Understanding the mechanics of adaptive evolution requires not only knowing the quantitative genetic bases of the traits of interest but also obtaining accurate measures of the strengths and modes of selection acting on these traits. Most recent empirical studies of multivariate selection have employed multiple linear regression to obtain estimates of the strength of selection. We reconsider the motivation for this approach, paying special attention to the effects of nonnormal traits and fitness measures. We apply an alternative statistical method, logistic regression, to estimate the strength of selection on multiple phenotypic traits. First, we argue that the logistic regression model is more suitable than linear regression for analyzing data from selection studies with dichotomous fitness outcomes. Subsequently, we show that estimates of selection obtained from the logistic regression analyses can be transformed easily to values that directly plug into equations describing adaptive microevolutionary change. Finally, we apply this methodology to two published datasets to demonstrate its utility. Because most statistical packages now provide options to conduct logistic regression analyses, we suggest that this approach should be widely adopted as an analytical tool for empirical studies of multivariate selection.  相似文献   

12.
生物强化技术通过为特定的生物过程"设计"微生物,进而作为一种提升反应系统活力和性能的手段被应用于生物质沼气制备过程,以便加快发酵系统启动时间、增加原料利用率、缩短酸败系统的恢复时间、降低高有机负荷的抑制作用等。本文针对以木质纤维素为原料的沼气制备中的生物强化技术,从生物强化菌剂的构建及标准、生物强化作用的影响因素、生物强化作用机制的探究等几个方面来阐述目前国内外生物强化技术在生物质沼气制备过程中的应用与研究进展,以及存在的问题和解决方案。  相似文献   

13.
土壤宏基因组学技术及其应用   总被引:17,自引:0,他引:17  
传统的基于培养的研究方法只能反映土壤中少数(0.1%~10 %)微生物的信息,而大部分微生物目前还不能培养,因而这部分微生物资源尚难以被有效地开发利用.宏基因组学是分子生物学技术应用于环境微生物生态学研究而形成的一个新概念,主要技术包括土壤DNA的提取、文库的构建和目标基因克隆的筛选.它可为揭示微生物生态功能及其分子基础提供更全面的遗传信息,并已在微生物新功能基因筛选、活性物质开发和微生物多样性研究等方面取得了显著成果.本文对土壤宏基因组学技术的方法和应用作了详细介绍.  相似文献   

14.
Aims: The objective of this study was to apply the knowledge‐based approach to the selection of an inoculum to be used in bioaugmentation processes to facilitate phenanthrene degradation in phenanthrene‐ and Cr(VI)‐co‐contaminated soils. Methods and Results: The bacterial community composition of phenanthrene and phenanthrene‐ and Cr(VI)‐co‐contaminated microcosms, determined by denaturing gradient gel electrophoresis analysis, showed that members of the Sphingomonadaceae family were the predominant micro‐organisms. However, the Cr(VI) contamination produced a selective change of predominant Sphingomonas species, and in co‐contaminated soil microcosms, a population closely related to Sphingomonas paucimobilis was naturally selected. The bioaugmentation process was carried out using the phenanthrene‐degrading strain S. paucimobilis 20006FA, isolated and characterized in our laboratory. Although the strain showed a low Cr(VI) resistance (0·250 mmol l?1); in liquid culture, it was capable of reducing chromate and degrading phenanthrene simultaneously. Conclusion: The inoculation of this strain managed to moderate the effect of the presence of Cr(VI), increasing the biological activity and phenanthrene degradation rate in co‐contaminated microcosm. Significance and Impact of the Study: In this study, we have applied a novel approach to the selection of the adequate inoculum to enhance the phenanthrene degradation in phenanthrene‐ and Cr(VI)‐co‐contaminated soils.  相似文献   

15.
The approach to yeast identification has significantly changed in just a few decades due to the rapid increase in basic biological knowledge, increased interest in the practical applications and biodiversity of this important microbial group, and enormous technological advances. While some conventional methods can still be validly applied, many molecular techniques have been developed that allow for strain classification on all taxonomic levels. A critical evaluation of the actual scope of each identification procedure will in the end determine the most appropriate use of the many protocols now available. Nonetheless, the oldest tool of microbiology, the microscope, is still a fundamental accessory for studies involving yeast biology, biodiversity and taxonomy.  相似文献   

16.
The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches – based on the data collected with high throughput technologies – to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.  相似文献   

17.
The gasoline oxygenate methyl tert-butyl ether (MTBE) has become a widespread contaminant in groundwater throughout the United States. Bioaugmentation of aquifers with MTBE-degrading cultures may be necessary to enhance degradation of the oxygenate in some locations. However, poor cell transport has sometimes limited bioaugmentation efforts in the past. The objective of this study was to evaluate the transport characteristics of Hydrogenophaga flava ENV735, a pure culture capable of growth on MTBE, and to improve movement of the strain through aquifer solids. The wild-type culture moved only a few centimeters in columns of aquifer sediment. An adhesion-deficient variant (H. flava ENV735:24) of the wild-type strain that moved more readily through sediments was obtained by sequential passage of cells through columns of sterile sediment. Hydrophobic and electrostatic interaction chromatography revealed that the wild-type strain is much more hydrophobic than the adhesion-deficient variant. Electrophoretic mobility assays and transmission electron microscopy showed that the wild-type bacterium contains two distinct subpopulations, whereas the adhesion-deficient strain has only a single, homogeneous population. Both the wild-type strain and adhesion-deficient variant degraded MTBE, and both were identified by 16S rRNA analysis as pure cultures of H. flava. The effectiveness of surfactants for enhancing transport of the wild-type strain was also evaluated. Many of the surfactants tested were toxic to ENV735; however, one nonionic surfactant, Tween 20, enhanced cell transport in sand columns. Improving microbial transport may lead to a more effective bioaugmentation strategy for MTBE-contaminated sites where indigenous oxygenate degraders are absent.  相似文献   

18.

Background

Selecting a subset of relevant properties from a large set of features that describe a dataset is a challenging machine learning task. In biology, for instance, the advances in the available technologies enable the generation of a very large number of biomarkers that describe the data. Choosing the more informative markers along with performing a high-accuracy classification over the data can be a daunting task, particularly if the data are high dimensional. An often adopted approach is to formulate the feature selection problem as a biobjective optimization problem, with the aim of maximizing the performance of the data analysis model (the quality of the data training fitting) while minimizing the number of features used.

Results

We propose an optimization approach for the feature selection problem that considers a “chaotic” version of the antlion optimizer method, a nature-inspired algorithm that mimics the hunting mechanism of antlions in nature. The balance between exploration of the search space and exploitation of the best solutions is a challenge in multi-objective optimization. The exploration/exploitation rate is controlled by the parameter I that limits the random walk range of the ants/prey. This variable is increased iteratively in a quasi-linear manner to decrease the exploration rate as the optimization progresses. The quasi-linear decrease in the variable I may lead to immature convergence in some cases and trapping in local minima in other cases. The chaotic system proposed here attempts to improve the tradeoff between exploration and exploitation. The methodology is evaluated using different chaotic maps on a number of feature selection datasets. To ensure generality, we used ten biological datasets, but we also used other types of data from various sources. The results are compared with the particle swarm optimizer and with genetic algorithm variants for feature selection using a set of quality metrics.  相似文献   

19.
A pilot-scale landfarming investigation of the effects of biostimulation and bioaugmentation on a creosote-contaminated (258.3 g kg–1) mispah form (FAO: lithosol) soil, with a view to developing a cost-effective bioremediation methodology for creosote-contaminated soils was conducted in nine duplicate reactors, including two controls (Treatments 1 and 2). Treatments 3–9 were watered and aerated daily and Treatment 4–9 were monthly amended with mono-ammonium phosphate. Treatment 5–9 received further amendments as follows: Treatment 5, hydrogen peroxide; Treatment 6, indigenous microbial biosupplement; Treatment 7, sewage sludge; Treatment 8, cow manure; Treatment 9, poultry manure. Residual concentrations of creosote ranged between 29 and 215 g kg–1 after sixteen weeks. The phenolics and the 2- and 3-ringed polyaromatic hydrocarbons (PAHs) were removed below detectable levels or to very low levels. The 4- and 5-ringed PAHs were removed by between 68 and 83%. Indigenous microbial biosupplement and sewage sludge were the most effective in creosote removal. Hydrogen peroxide did not significantly enhance microbial population and creosote removal. There was no significant difference between the results obtained from the treatments amended with organic manures. However, there was a significant difference between the effects of the organic manures and the indigenous microbial biosupplement. Results from this study suggests that a combination of the two treatment techniques (biostimulation and bioaugmentation) would be a better approach to treating soil contaminated with very high concentrations of creosote.  相似文献   

20.
The gasoline oxygenate methyl tert-butyl ether (MTBE) has become a widespread contaminant in groundwater throughout the United States. Bioaugmentation of aquifers with MTBE-degrading cultures may be necessary to enhance degradation of the oxygenate in some locations. However, poor cell transport has sometimes limited bioaugmentation efforts in the past. The objective of this study was to evaluate the transport characteristics of Hydrogenophaga flava ENV735, a pure culture capable of growth on MTBE, and to improve movement of the strain through aquifer solids. The wild-type culture moved only a few centimeters in columns of aquifer sediment. An adhesion-deficient variant (H. flava ENV735:24) of the wild-type strain that moved more readily through sediments was obtained by sequential passage of cells through columns of sterile sediment. Hydrophobic and electrostatic interaction chromatography revealed that the wild-type strain is much more hydrophobic than the adhesion-deficient variant. Electrophoretic mobility assays and transmission electron microscopy showed that the wild-type bacterium contains two distinct subpopulations, whereas the adhesion-deficient strain has only a single, homogeneous population. Both the wild-type strain and adhesion-deficient variant degraded MTBE, and both were identified by 16S rRNA analysis as pure cultures of H. flava. The effectiveness of surfactants for enhancing transport of the wild-type strain was also evaluated. Many of the surfactants tested were toxic to ENV735; however, one nonionic surfactant, Tween 20, enhanced cell transport in sand columns. Improving microbial transport may lead to a more effective bioaugmentation strategy for MTBE-contaminated sites where indigenous oxygenate degraders are absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号