首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Net K and Cl effluxes induced by valinomycin or by gramicidin have been determined directly at varied external K, denoted by [K]o, in the presence and absence of the anion transport inhibitors DIDS (4,4'-diiso- thiocyano-2,2'-disulfonic acid stilbene), and its less potent analogue SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid). The results confirm that pretreatment with 10 microM DIDS, or 100 microM SITS, for 30 min at 23 degrees C inhibits conductive Cl efflux, measured in the continued presence of the inhibitors at 1 mM [K]o, by only 59-67%. This partial inhibition by 10 microM DIDS at 1 mM [K]o remains constant when the concentration of DIDS, or when the temperature or pH during pretreatment with DIDS, are increased. Observations of such partial inhibition previously prompted the postulation of two Cl conductance pathways in human red blood cells: a DIDS-sensitive pathway mediated by capnophorin (band 3 protein), and a DIDS-insensitive pathway. The present experiments demonstrate that at [K]o corresponding to values of EK between -35 and 0 mV the DIDS- insensitive component of net Cl efflux is negligible, being < or = 0.1 muMol/g Hb/min, both with valinomycin (1 microM) and with gramicidin (0.06 microgram/ml). At lower [K]o, where EK is below approximately -35 mV, the DIDS-insensitive fraction of net Cl efflux increases to 2.6 muMol/g Hb/min with valinomycin (1 microM), and to 4.8 muMol/g Hb/min with gramicidin (0.06 microgram/ml). With net fluxes determined from changes in mean cell volume, and with membrane potentials measured from changes in the external pH of unbuffered red cell suspensions, a current-voltage curve for DIDS-insensitive Cl conductance has been deduced. While specific effects of varied [K]o on net Cl efflux are unlikely but cannot strictly be ruled out, the results are consistent with the hypothesis that DIDS-insensitive Cl conductance turns on at an Em of approximately -40 mV.  相似文献   

2.
Ca2+ channels of isolated sarcoplasmic reticulum were incorporated into a planar lipid bilayer and their pharmacological properties were studied. The results show that the channel is a Ca2+-induced Ca2+ release channel like that observed in skinned muscle fibers and isolated vesicles. (i) The open channel probability was increased by the addition of micromolar amounts of Ca2+ to the cis (myoplasmic) side and further increased by millimolar ATP. (ii) The channel was closed by millimolar Mg2+ and micromolar ruthenium red. We found that two disulfonic stilbene derivatives, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and 4-acetoamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), when added to the cis side open the channel and lock it irreversibly at open without changing the single channel conductance. Ca2+ efflux from SR vesicles was also enhanced by SITS and DIDS, as monitored by a tracer assay. Further, Ag+ activated the channel transiently. These results suggest that certain amino and SH residues play important roles in gating the Ca2+ channel.  相似文献   

3.
A comparison is made of two types of chloride-selective channel in skeletal muscle sarcoplasmic reticulum (SR) vesicles incorporated into lipid bilayers. The I/V relationships of both channels, in 250/50 mM Cl- (cis/trans), were linear between -20 and +60 mV (cis potential,) reversed near Ecl and had slope conductances of approximately 250 pS for the big chloride (BCl) channel and approximately 70 pS for the novel, small chloride (SCl) channel. The protein composition of vesicles indicated that both channels originated from longitudinal SR and terminal cisternae. BCl and SCl channels responded differently to cis SO4(2-) (30-70 mM), 4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid (8-80 microM) and to bilayer potential. The BCl channel open probability was high at all potentials, whereas SCl channels exhibited time-dependent activation and inactivation at negative potentials and deactivation at positive potentials. The duration and frequency of SCl channel openings were minimal at positive potentials and maximal at -40 mV, and were stationary during periods of activity. A substate analysis was performed using the Hidden Markov Model (S. H. Chung, J. B. Moore, L. Xia, L. S. Premkumar, and P. W. Gage, 1990, Phil. Trans. R. Soc. Lond. B., 329:265-285) and the algorithm EVPROC (evaluated here). SCl channels exhibited transitions between 5 and 7 conductance levels. BCl channels had 7-13 predominant levels plus many more short-lived substates. SCl channels have not been described in previous reports of Cl- channels in skeletal muscle SR.  相似文献   

4.
Many intracellular membranes contain ion channels, although their physiological roles are often poorly understood. In this study we incorporated single anion channels colocalized with rat brain endoplasmic reticulum (ER) ryanodine-sensitive Ca(2+)-release channels into planar lipid bilayers. The channels opened in bursts, with more activity at negative (cytoplasm-ER lumen) membrane potentials, and they occupied four open conductance levels with frequencies well described by the binomial equation. The probability of a protomer being open decreased from approximately 0.7 at -40 mV to approximately 0.2 at +40 mV, and the channels selected between different anions in the order PSCN > PNO3 > PBr > PCl > PF. They were also permeant to cations, including the large cation Tris+ (PTris/PCl = 0.16). Their conductance saturated at 170 pS in choline Cl. The channels were inactivated by 15 microM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and blocked with low affinity (KD of 1-100 microM) by anthracene-9-carboxylic acid, ethacrynic acid, frusemide (furosemide), HEPES, the indanyloxyacetic acid derivative IAA-94, 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), and Zn2+. Unlike protein translocation pores, the channels were unaffected by high salt concentrations or puromycin. They may regulate ER Ca2+ release, or be channel components en route to their final cellular destinations. Alternatively, they may contribute to the fusion machinery involved in intracellular membrane trafficking.  相似文献   

5.
The calcium-activated potassium channels of turtle hair cells   总被引:5,自引:0,他引:5       下载免费PDF全文
A major factor determining the electrical resonant frequency of turtle cochlear hair cells is the time course of the Ca-activated K current (Art, J. J., and R. Fettiplace. 1987. Journal of Physiology. 385:207- 242). We have examined the notion that this time course is dictated by the K channel kinetics by recording single Ca-activated K channels in inside-out patches from isolated cells. A hair cell's resonant frequency was estimated from its known correlation with the dimensions of the hair bundle. All cells possess BK channels with a similar unit conductance of approximately 320 pS but with different mean open times of 0.25-12 ms. The time constant of relaxation of the average single- channel current at -50 mV in 4 microM Ca varied between cells from 0.4 to 13 ms and was correlated with the hair bundle height. The magnitude and voltage dependence of the time constant agree with the expected behavior of the macroscopic K(Ca) current, whose speed may thus be limited by the channel kinetics. All BK channels had similar sensitivities to Ca which produced half-maximal activation for a concentration of approximately 2 microM at +50 mV and 12 microM at -50 mV. We estimate from the voltage dependence of the whole-cell K(Ca) current that the BK channels may be fully activated at -35 mV by a rise in intracellular Ca to 50 microM. BK channels were occasionally observed to switch between slow and fast gating modes which raises the possibility that the range of kinetics of BK channels observed in different hair cells reflects a common channel protein whose kinetics are regulated by an unidentified intracellular factor. Membrane patches also contained 30 pS SK channels which were approximately 5 times more Ca-sensitive than BK channels at -50 mV. The SK channels may underlie the inhibitory synaptic potential produced in hair cells by efferent stimulation.  相似文献   

6.
Block of a sarcoplasmic reticulum anion channel (SCl channel) by disulfonic stilbene derivatives [DIDS, dibenzamidostilbene-2,2'-disulfonic acid (DBDS), and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS)] was investigated in planar bilayers using SO4(2-) as the conducting ion. All molecules caused reversible voltage-dependent channel block when applied to either side of the membrane. DIDS also produced nonreversible channel block from both sides within 1-3 min. Reversible inhibition was associated with a decrease in channel open probability and mean open duration but not with any change in channel conductance. The half inhibitory concentration for cis- and trans-inhibition had voltage dependencies with minima of 190 nM and 33 microM for DBDS and 3.4 and 55 microM for DNDS. Our data supports a permeant blocker mechanism, in which stilbenes block SCl channels by lodging in the permeation pathway, where they may dissociate to either side of the membrane and thus permeate the channel. The stilbenes acted as open channel blockers where the binding of a single molecule occludes the channel. DBDS and DNDS, from opposite sides of the membrane, competed for common sites on the channel. Dissociation rates exhibited biphasic voltage dependence, indicative of two dissociation processes associated with ion movement in opposite directions within the trans-membrane electric field. The kinetics of DNDS and DBDS inhibition predict that there are two stilbene sites in the channel that are separated by 14-24 A and that the pore constriction is approximately 10 A in diameter.  相似文献   

7.
Two K(+)-selective channels in neonatal rat atrial cells activated by lipophilic compounds have been characterized in detail. The arachidonic acid-stimulated channel (IK.AA) had a slope conductance of 124 +/- 17 pS at +30 mV in symmetrical 140 mM potassium and a mean open time of approximately 1 ms, and was relatively voltage independent. IK.AA activity was reversibly increased by lowering pH to 6.0. Arachidonic acid was most effective in activating this channel, although a number of lipophilic compounds resulted in activation. Surprisingly, choline, a polar molecule, also activated the channel. A second K+ channel was activated by 10 microM phosphatidylcholine applied to the intracellular surface of inside-out atrial patches. This channel (IK.PC) had a slope conductance of 60 +/- 6 pS at +40 mV and a mean open time of approximately 0.6 ms, and was also relatively voltage independent. Fatty acids are probably monomeric in the membrane under the conditions of our recording; thus detergent effects are unlikely. Since a number of compounds including fatty acids and prostaglandins activated these two channels, an indirect, channel-specific mechanism may account for activation of these two cardiac K+ channels.  相似文献   

8.
Secretion of enzymes and fluid induced by Ca(2+) in pancreatic acini is not completely understood and may involve activation of ion conductive pathways in zymogen granule (ZG) membranes. We hypothesized that a chromanol 293B-sensitive K(+) conductance carried by a KCNQ1 protein is expressed in ZG membranes (ZGM). In suspensions of rat pancreatic ZG, ion flux was determined by ionophore-induced osmotic lysis of ZG suspended in isotonic salts. The KCNQ1 blocker 293B selectively blocked K(+) permeability (IC(50) of approximately 10 microM). After incorporation of ZGM into planar bilayer membranes, cation channels were detected in 645/150 mM potassium gluconate cis/trans solutions. Channels had linear current-voltage relationships, a reversal potential (E(rev)) of -20.9 +/- 0.9 mV, and a single-channel K(+) conductance (g(K)) of 265.8 +/- 44.0 pS (n = 39). Replacement of cis 500 mM K(+) by 500 mM Na(+) shifted E(rev) to -2.4 +/- 3.6 mV (n = 3), indicating K(+) selectivity. Single-channel analysis identified several K(+) channel groups with distinct channel behaviors. K(+) channels with a g(K) of 651.8 +/- 88.0 pS, E(rev) of -22.9 +/- 2.2 mV, and open probability (P(open)) of 0.43 +/- 0.06 at 0 mV (n = 6) and channels with a g(K) of 155.0 +/- 11.4 pS, E(rev) of -18.3 +/- 1.8 mV, and P(open) of 0.80 +/- 0.03 at 0 mV (n = 3) were inhibited by 100 microM 293B or by the more selective inhibitor HMR-1556 but not by the maxi-Ca(2+)-activated K(+) channel (BK channel) inhibitor charybdotoxin (5 nM). KCNQ1 protein was demonstrated by immunoperoxidase labeling of pancreatic tissue, immunogold labeling of ZG, and immunoblotting of ZGM. 293B also inhibited cholecystokinin-induced amylase secretion of permeabilized acini (IC(50) of approximately 10 microM). Thus KCNQ1 may account for ZG K(+) conductance and contribute to pancreatic hormone-stimulated enzyme and fluid secretion.  相似文献   

9.
We recently described a large, multiple-conductance Cl- channel in excised patches from normal T lymphocytes. The properties of this channel in excised patches are similar to maxi-Cl- channels found in a number of cell types. The voltage dependence in excised patches permitted opening only at nonphysiological voltages, and channel activity was rarely seen in cell-attached patches. In the present study, we show that Cl- channels can be activated in intact cells at physiological temperatures and voltages and that channel properties change after patch excision. Maxi-Cl- channels were reversibly activated in 69% of cell-attached patches when the temperature was above 32 degrees C, whereas fewer than 2% of patches showed activity at room temperature. Upon excision, the same patches displayed large, multiple-conductance Cl- channels with characteristics like those we previously reported for excised patches. After patch excision, warm temperatures were not essential to allow channel activity; 37% (114/308) of inside-out patches had active channels at room temperature. The voltage dependence of the channels was markedly different in cell-attached recordings compared with excised patches. In cell-attached patches, Cl- channels could be open at cell resting potentials in the normal range. Channel activation was not related to changes in intracellular Ca2+ since neither ionomycin nor mitogens activated the channels in cell-attached patches, Ca2+ did not rise in response to warming and the Cl- channel was independent of Ca2+ in inside-out patches. Single-channel currents were blocked by internal or external Zn2+ (100-200 microM), 4-acetamido-4' isothiocyanostilbene-2,2'-disulfonate (SITS, 100-500 microM) and 4,4'-diisothiocyanostilbene 2,2'-disulfonate (DIDS, 100 microM). NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) reversibly blocked the channels in inside-out patches.  相似文献   

10.
The Class 1a antiarrhythmic drug disopyramide (DISO) is associated with 'acquired' prolongation of the QT interval of the electrocardiogram (ECG). This potentially proarrhythmic effect is likely to reflect drug actions on ion channels involved in ventricular action potential repolarisation. In this study, we examined the effects of DISO on potassium channels encoded by HERG, as this K channel type has been implicated in both congenital and acquired long-QT syndromes (LQTS). Chinese hamster ovary cells were transiently transfected with HERG cDNA for subsequent whole cell patch clamp recording. HERG tail currents recorded at -40 mV following test pulses to +30 mV were inhibited in a dose-dependent fashion by DISO concentrations within the clinical range (IC50 = 7.23 +/- 0.72 microM; mean +/- SEM). Experiments with 10 microM DISO indicated that the degree of HERG blockade showed some voltage dependence. Further data obtained using an 'envelope of tails' protocol (pulse potential +40 mV) were consistent with a significant role for open-channel blockade at lower drug concentrations. At higher concentrations it is possible that blockade may have involved drug binding to both resting and open channels. Inhibition of the inactivation-deficient mutant HERG-S631A was comparable to that seen for wild-type HERG. Therefore, channel inactivation was not obligatory for DISO to exert its effect. Native delayed rectifier tail currents from rabbit isolated ventricular myocytes were also inhibited by DISO. We conclude (a) that DISO inhibits HERG encoded potassium channels at clinically relevant concentrations and (b) that this action may constitute the molecular basis for acquired LQTS associated with this drug.  相似文献   

11.
Mechanosensitive ion channels have been described in many types of cells. These channels are believed to transduce pressure signals into intracellular biochemical and physiological events. In this study, the patch-clamp technique was used to identify and characterize a mechanosensitive ion channel in rat atrial cells. In cell-attached patches, negative pressure in the pipette activated an ion channel in a pressure-dependent manner. The pressure to induce half-maximal activation was 12 +/- 3 mmHg at +40 mV, and nearly full activation was observed at approximately 20 mmHg. The probability of opening was voltage dependent, with greater channel activity at depolarized potentials. The mechanosensitive channel was identical to the K+ channel previously shown to be activated by arachidonic acid and other lipophilic compounds, as judged by the outwardly rectifying current-voltage relation, single channel amplitude, mean open time (1.4 +/- 0.3 ms), bursty openings, K+ selectivity, insensitivity to any known organic inhibitors of ion channels, and pH sensitivity. In symmetrical 140 mM KCl, the slope conductance was 94 +/- 11 pS at +60 mV and 64 +/- 8 pS at -60 mV. Anions and cations such as Cl-, glutamate, Na+, Cs+, Li+, Ca2+, and Ba2+ were not permeant. Extracellular Ba2+ (1 mM) blocked the inward K+ current completely. GdCl3 (100 microM) or CaCl2 (100 microM) did not alter the K+ channel activity or amplitude. Lowering of intracellular pH increased the pressure sensitivity of the channel. The K+ channel could be activated in the presence of 5 mM intracellular [ATP] or 10 microM glybenclamide in inside-out patches. In the absence of ATP, when the ATP-sensitive K+ channel was active, the mechanosensitive channel could further be activated by pressure, suggesting that they were two separate channels. The ATP-sensitive K+ channel was not mechanosensitive. Pressure activated the K+ channel in the presence of albumin, a fatty acid binding protein, suggesting that pressure and arachidonic acid activate the K+ channel via separate pathways.  相似文献   

12.
The inside-out mode of the patch-clamp method was used to study the effects of internal Mg2+ on single large-conductance (193+/-7 pS) Ca(2+)-activated K+ channels in cultured kidney cells. In the absence of Ca2+, Mg2+ (1 to 10 mM) did not activate the channels but modified the activating effect of Ca2+ ions: it decreased the Hill coefficient (n), reduced the apparent dissociation constant (K0.5), and modified the channel open and closed times. K0.5 was found to be a voltage-dependent parameter. In the absence of Mg2+, it averaged 600 microM at -20 mV and 27 microM at +30 mV (22 degrees C, pH 6.8). Mg2+ at saturating concentrations (5 to 10 mM) decreased K0.5 to 50 microM at -20 mV and to 15 microM at +30 mV. Irrespective of the membrane potential, K0.5 tended to its limit value of about 12.6 microM. Thus, the effects of membrane depolarization and Mg2+ exhibited a non-additive, competitive relationship. Mg2+ perturbed the exponential shape of the voltage dependences of K0.5. The Hill coefficient characterizing the interaction of Ca2+ ions with the channels was found to be voltage-dependent. In the absence of Mg2+, it increased rather sharply from approx. 2 to 3.5 when the membrane potential was raised from -10 to 0 mV. Mg2+ increased n in a dose-dependent manner; however, about a twofold increase of n occurred within a narrow concentration range (2 to 3 mM). The action of Mg2+ on n was, apparently, voltage-independent, and the effects of Mg2+ and voltage on n were seemingly additive.  相似文献   

13.
The purpose of this study was to use whole-cell and cell-attached patches of cultured skeletal muscle myotubes to study the macroscopic and unitary behavior of voltage-dependent calcium channels under similar conditions. With 110 mM BaCl2 as the charge carrier, two types of calcium channels with markedly different single-channel and macroscopic properties were found. One class was DHP-insensitive, had a single-channel conductance of approximately 9 pS, yielded ensembles that displayed an activation threshold near -40 mV, and activated and inactivated rapidly in a voltage-dependent manner (T current). The second class could only be well resolved in the presence of the DHP agonist Bay K 8644 (5 microM) and had a single-channel conductance of approximately 14 pS (L current). The 14-pS channel produced ensembles exhibiting a threshold of approximately -10 mV that activated slowly (tau act approximately 20 ms) and displayed little inactivation. Moreover, the DHP antagonist, (+)-PN 200-110 (10 microM), greatly increased the percentage of null sweeps seen with the 14-pS channel. The open probability versus voltage relationship of the 14-pS channel was fitted by a Boltzmann distribution with a VP0.5 = 6.2 mV and kp = 5.3 mV. L current recorded from whole-cell experiments in the presence of 110 mM BaCl2 + 5 microM Bay K 8644 displayed similar time- and voltage-dependent properties as ensembles of the 14-pS channel. Thus, these data are the first comparison under similar conditions of the single-channel and macroscopic properties of T current and L current in native skeletal muscle, and identify the 9- and 14-pS channels as the single-channel correlates of T current and L current, respectively.  相似文献   

14.
Effects of abscisic acid on K+ channels in Vicia faba guard cell protoplasts   总被引:11,自引:0,他引:11  
Potassium channels were resolved in Vicia faba guard cell protoplasts by patch voltage-clamp. Whole-cell currents and single K+ channels had linear instantaneous current-voltage relations, reversing at the calculated Nernst potential for K+. Whole cell K+ currents activated exponentially during step depolarizations, with half-activation times of 400-450 msec at +80 mV and 90-110 msec at +150 mV. Single K+ channel conductance was 65 +/- 5 pS with a mean open time of 1.25 +/- 0.30 msec at 150 mV. Potassium channels were blocked by internal Cs+ and by external TEA+, but they were insensitive to external 4-aminopyridine. Application of 10 microM abscisic acid increased mean open time and caused long-lasting bursts of channel openings. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology.  相似文献   

15.
Niflumic acid is widely used to inhibit Ca(2+) -activated Cl(-) channels. However, the chemical structure of niflumic acid resembles that of diphenylamine-2-carboxylate, a drug that inhibits the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. To investigate how niflumic acid inhibits CFTR Cl(-) channel, we studied recombinant wild-type human CFTR in excised inside-out membrane patches. When added to the intracellular solution, niflumic acid caused a concentration- and voltage-dependent decrease of CFTR Cl(-) current with half-maximal inhibitory concentration (K(i)) of 253 microM and Hill co-efficient of approximately 1, at -50 mV. Niflumic acid inhibition of single CFTR Cl(-) channels was characterized by a very fast, flickery block that decreased dramatically current amplitude without altering open-probability. Consistent with these data, spectral analysis of CFTR Cl(-) currents suggested that channel block by niflumic acid was described by the closed <--> open <--> blocked kinetic scheme with blocker on rate (k(on)) = 13.9 x 10(6) M(-1)s(-1), off rate (k(off))=3348 s(-1) and dissociation constant (K(d)) = 241 microM, at -50 mV. Based on these data, we tested the effects of niflumic acid on transepithelial Cl(-) secretion and cyst growth using type I MDCK epithelial cells. Niflumic acid (200 microM) inhibited cAMP-stimulated, bumetanide-sensitive short-circuit current by 55%. Moreover, the drug potently retarded cyst growth. We conclude that niflumic acid is an open-channel blocker of CFTR that inhibits Cl(-) permeation by plugging the channel pore. It or related agents might be of value in the development of new therapies for autosomal dominant polycystic kidney disease.  相似文献   

16.
Macroscopic and unitary currents through Ca(2+)-activated Cl- channels were examined in enzymatically isolated guinea-pig hepatocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+]i) was set at 1 microM (pCa = 6), membrane currents were observed under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by approximately 60 mV per 10-fold change in the external Cl- concentration. In addition, the current did not appear when Cl- was omitted from the internal and external solutions, indicating that the current was Cl- selective. The current was activated by increasing [Ca2+]i and was inactivated in Ca(2+)-free, 5 mM EGTA internal solution (pCa > 9). The current was inhibited by bath application of 9- anthracenecarboxylic acid (9-AC) and 4,4'-diisothiocyanatostilbene-2,2'- disulfonic acid (DIDS) in a voltage-dependent manner. In single channel recordings from outside-out patches, unitary current activity was observed, whose averaged slope conductance was 7.4 +/- 0.5 pS (n = 18). The single channel activity responded to extracellular Cl- changes as expected for a Cl- channel current. The open time distribution was best described by a single exponential function with mean open lifetime of 97.6 +/- 10.4 ms (n = 11), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 21.5 +/- 2.8 ms (n = 11) and that for the slow component of 411.9 +/- 52.0 ms (n = 11). In excised inside-out patch recordings, channel open probability was sensitive to [Ca2+]i. The relationship between [Ca2+]i and channel activity was fitted by the Hill equation with a Hill coefficient of 3.4 and the half-maximal activation was 0.48 microM. These results suggest that guinea-pig hepatocytes possess Ca(2+)-activated Cl- channels.  相似文献   

17.
When giant axons of squid, Sepioteuthis, were bathed in a 100 mM Ca-salt solution containing tetrodotoxin (TTX) and internally perfused with a solution of 100 mM tetraethylammonium-salt (TEA-salt) or tetramethylammonium-salt (TMA-salt), the membrane potential was found to become sensitive to anions, especially Cl-. Membrane currents recorded from those axons showed practically no time-dependent properties, but they had a strong voltage-dependent characteristic, i.e., outward rectification. Cl- had a strong effect upon the voltage-dependent membrane currents. The nonlinear property of the currents was almost completely suppressed by some disulfonic stilbene derivatives applied intracellularly, such as 4-acetoamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) and as 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), which are blockers of chloride transport. On the basis of these experimental results, it is concluded that a voltage-dependent chloride-permeable channel exists in the squid axon membrane. The chloride permeability (PCl) is a function of voltage, and its value at the resting membrane (Em = -60 mV) is calculated, using the Goldman-Hodgkin-Katz equation, to be 3.0 X 10(-7) cm/s.  相似文献   

18.
Single K+ channel currents were recorded in excised membrane patches from dispersed chemoreceptor cells of the rabbit carotid body under conditions that abolish current flow through Na+ and Ca2+ channels. We have found three classes of voltage-gated K+ channels that differ in their single-channel conductance (gamma), dependence on internal Ca2+ (Ca2+i), and sensitivity to changes in O2 tension (PO2). Ca(2+)-activated K+ channels (KCa channels) with gamma approximately 210 pS in symmetrical K+ solutions were observed when [Ca2+]i was greater than 0.1 microM. Small conductance channels with gamma = 16 pS were not affected by [Ca2+]i and they exhibited slow activation and inactivation time courses. In these two channel types open probability (P(open)) was unaffected when exposed to normoxic (PO2 = 140 mmHg) or hypoxic (PO2 approximately 5-10 mmHg) external solutions. A third channel type (referred to as KO2 channel), having an intermediate gamma(approximately 40 pS), was the most frequently recorded. KO2 channels are steeply voltage dependent and not affected by [Ca2+]i, they inactivate almost completely in less than 500 ms, and their P(open) reversibly decreases upon exposure to low PO2. The effect of low PO2 is voltage dependent, being more pronounced at moderately depolarized voltages. At 0 mV, for example, P(open) diminishes to approximately 40% of the control value. The time course of ensemble current averages of KO2 channels is remarkably similar to that of the O2-sensitive K+ current. In addition, ensemble average and macroscopic K+ currents are affected similarly by low PO2. These observations strongly suggest that KO2 channels are the main contributors to the macroscopic K+ current of glomus cells. The reversible inhibition of KO2 channel activity by low PO2 does not desensitize and is not related to the presence of F-, ATP, and GTP-gamma-S at the internal face of the membrane. These results indicate that KO2 channels confer upon glomus cells their unique chemoreceptor properties and that the O2-K+ channel interaction occurs either directly or through an O2 sensor intrinsic to the plasma membrane closely associated with the channel molecule.  相似文献   

19.
The amino-reactive reagent, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS),1 considerably reduces the uptake of the sulfhydryl agent, parachloromercuriphenylsulfonic acid (PCMBS), but does not reduce its effects on cation permeability and on cation transport. These data indicate that PCMBS enters the membrane by at least two channels, one sensitive and the other insensitive to SITS, with only the latter leading to the cation-controlling sulfhydryl groups. Substitution of phosphate or sulfate for chloride results in an inhibition of PCMBS uptake via the SITS-insensitive pathway. These and other data lead to the conclusion that the SITS-sensitive pathway is the predominant one for anion permeation, and the insensitive one for cation permeation. Parachloromercuribenzoate (PCMB), an agent that is more lipid-soluble than PCMBS, penetrates faster but has a smaller effect on cation permeability. Its uptake is less sensitive to SITS. These and other observations suggest that the cation permeation path involves an aqueous channel in the membrane.  相似文献   

20.
A novel, small conductance of Cl- channel was characterized by incorporation into planar bilayers from a plasma membrane preparation of lobster walking leg nerves. Under conditions of symmetrical 100 mM NaCl, 10 mM Tris-HCl, pH 7.4, single Cl- channels exhibit rectifying current-voltage (I-V) behavior with a conductance of 19.2 +/- 0.8 pS at positive voltages and 15.1 +/- 1.6 pS in the voltage range of -40 to 0 mV. The channel exhibits a negligible permeability for Na+ compared with Cl- and displays the following sequence of anion permeability relative to Cl- as measured under near bi-ionic conditions: I- (2.7) greater than NO3- (1.8) greater than Br- (1.5) greater than Cl- (1.0) greater than CH3CO2- (0.18) greater than HCO3- (0.10) greater than gluconate (0.06) greater than F- (0.05). The unitary conductance saturates with increasing Cl- concentration in a Michaelis-Menten fashion with a Km of 100 mM and gamma max = 33 pS at positive voltage. The I-V curve is similar in 10 mM Tris or 10 mM HEPES buffer, but substitution of 100 mM NaCl with 100 mM tetraethylammonium chloride on the cis side results in increased rectification with a 40% reduction in current at negative voltages. The gating of the channel is weakly voltage dependent with an open-state probability of 0.23 at -75 mV and 0.64 at +75 mV. Channel gating is sensitive to cis pH with an increased opening probability observed for a pH change of 7.4 to 11 and nearly complete inhibition for a pH change of 7.4 to 6.0. The lobster Cl- channel is reversibly blocked by the anion transport inhibitors, SITS (4-acetamido, 4'-isothiocyanostilbene-2,2'-disulfonic acid) and NPPB (5-nitro-2-(3-phenylpropylamino)benzoic acid). Many of these characteristics are similar to those previously described for small conductance Cl- channels in various vertebrate cells, including epithelia. These functional comparisons suggest that this invertebrate Cl- channel is an evolutionary prototype of a widely distributed class of small conductance anion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号