首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Bone is a complex biological tissue and natural heterogeneous object. The main objective of this study is to simulate quasi-static loading of bio-objects like human femur with B-spline based modeling and its 3D finite element analysis with graded element. B-spline surface representation method is extended to represent material composition to develop heterogeneous solid model of proximal femur. Lagrangian graded element is used to assign inhomogeneous isotropic elastic properties in finite element model to improve the performance. Convergence study is carried out with finite element model in single leg stance load condition. To test the feasibility of the model, sensitivity of simulation is investigated. To validate the model, numerical results are compared with those of an experimental work for the same specimen in simple stance load condition obtained from one of the reference paper. Good agreement is achieved for vertical displacement and strains in most of the locations.  相似文献   

3.
The algorithm for the arrangement of hydrogen atoms in twist-hexacycle parametric structures of bound water is developed. The calculation of energetic properties is carried out using the TIP3P and Poltev-Malenkov potentials. Optimization of energy for these structures is fulfilled.  相似文献   

4.
Little is known about the relationship between the function and structure of materials. Materials (solids with a function) are complex entities and a better knowledge of the parameters that contribute to function is desirable. Here, we present modeling approaches that correlate chemical composition with function of heterogeneous catalysts. The complete composition space of the mixed oxides of Ni–Cr–Mn and of Ni–Co–Mo–Mn (10% spacing) have been measured for the oxidation of propene to acroleine. The data have been collected, visualized and modeled. Different mathematical approaches such as Support Vector Machines, multilevel B-splines approximation and Kriging have been applied to model this relationship. High-throughput screening data of ternary and quaternary composition spreads are approximated to locate catalysts of high activity within the search space. For quaternary systems, slice plots offer a good tool for visualization of the results. Using these approximation techniques, the composition of the most active catalysts can be predicted. The study documents that distinct relationships between chemical composition and catalytic function exist and can be described by mathematical models. Visualization of a ternary catalyst system and its approximation using slice plots  相似文献   

5.
Glucoamylase (GA) was immobilized by adsorption on carbon support: on Sibunit, on bulk catalytic filamentous carbon (bulk CFC) and on activated carbon (AC). This was used to prepare heterogeneous biocatalysts for the hydrolysis of starch dextrin. The effect of the texture characteristics and chemical properties of the support surface on the enhancement of the thermal stability of the immobilized enzyme was studied, and the rates of the biocatalyst's thermal inactivation at 65-80 degrees C were determined. The thermal stability of glucoamylase immobilized on different carbon supports was found to increase by 2-3 orders of magnitude in comparison with the soluble enzyme, and decrease in the following order: GA on Sibunit>GA on bulk CFC>GA on AC. The presence of the substrate (dextrin) was found to have a significant stabilizing effect. The thermal stability of the immobilized enzyme was found to increase linearly when the concentration of dextrin was increased from 10 wt/vol % to 50 wt/vol %. The total stabilization effect for glucoamylase immobilized on Sibunit in concentrated dextrin solutions was about 10(5) in comparison with the enzyme in a buffer solution. The developed biocatalyst, 'Glucoamylase on Sibunit' was found to have high operational stability during the continuous hydrolysis of 30-35 wt/vol % dextrin at 60 degrees C, its inactivation half-time (t1/2) exceeding 350 h. To improve the starch saccharification productivity, an immersed vortex reactor (IVR) was designed and tested in the heterogeneous process with the biocatalyst 'Glucoamylase on Sibunit'. The dextrin hydrolysis rate, as well as the process productivity in the vortex reactor, was found to increase by a factor of 1.2-1.5 in comparison with the packed-bed reactor.  相似文献   

6.
The ability of Kraft lignin, a waste product of paper production, for removing copper, zinc, cadmium and chromium ions from water was investigated. The studies were conducted by a batch method to determine equilibrium parameters. The adsorbed heavy metal ions followed the order: Cr(VI) ? Cd(II) > Cu(II) > Zn(II). The influence of other ions such as Ni(II), Cd(II) and Pb(II), on Cu(II) adsorption by Kraft lignin was evaluated. Obtained results support the idea that adsorption behaviour of heavy metal ions have to be perceived from the aspect of possible influence of interfering ion species.  相似文献   

7.
8.
A microporous coordination polymer formulated as {[Cu(L)2] · (DMF)2}n (1) has been prepared by the direct reaction of copper nitrate with 6-quinolinecarboxylic acid (HL) in DMF. X-ray single crystal diffraction of 1 reveals that the [Cu2(COO)4] secondary building units are interconnected by the bridging L ligands to generate a layered framework with the terminal L ligands as lateral pendants at both sides. Furthermore, the unusual inserted integration of the coordination layers, regulated and fixed by interlayer aromatic stacking interactions between the terminal ligands, leads to the formation of a novel 3-D microporous crystalline lattice with different 1-D channels along three directions. The gas adsorption and magnetic character of this crystalline material have also been investigated.  相似文献   

9.
"A recent model for heterogeneous mortality by Vaupel et al....is shown to be based on incorrect definitions. An alternative formulation is presented. The results indicate that current methods for computing the survivorship and life expectation functions underestimate the true values. A method is given for determining the possible magnitude of this underestimation. The method is illustrated by a numerical example using U.S. data."  相似文献   

10.
Summary Procedures for ranking candidates for selection and for estimating genetic and environmental parameters when variances are heterogeneous are discussed. The best linear unbiased predictor (BLUP) accounts automatically for heterogeneous variance provided that the covariance structure is known and that the assumptions of the model hold. Under multivariate normality BLUP allowing for heterogeneous variance maximizes expected genetic progress. Examples of application of BLUP to selection when residual or genetic variances are heterogeneous are given. Restricted maximum likelihood estimation of heterogeneous variances and covariances via the expectation-maximization algorithm is presented.  相似文献   

11.
The augmentation of categorical outcomes with underlying Gaussian variables in bivariate generalized mixed effects models has facilitated the joint modeling of continuous and binary response variables. These models typically assume that random effects and residual effects (co)variances are homogeneous across all clusters and subjects, respectively. Motivated by conflicting evidence about the association between performance outcomes in dairy production systems, we consider the situation where these (co)variance parameters may themselves be functions of systematic and/or random effects. We present a hierarchical Bayesian extension of bivariate generalized linear models whereby functions of the (co)variance matrices are specified as linear combinations of fixed and random effects following a square‐root‐free Cholesky reparameterization that ensures necessary positive semidefinite constraints. We test the proposed model by simulation and apply it to the analysis of a dairy cattle data set in which the random herd‐level and residual cow‐level effects (co)variances between a continuous production trait and binary reproduction trait are modeled as functions of fixed management effects and random cluster effects.  相似文献   

12.
13.
In this work we have used the extension of the Gibbs ensemble simulation technique to inhomogeneous fluids [Panagiotopoulos, A.Z. (1987) "Adsorption and capillary condensation of fluid in cylindrical pores by Monte Carlo simulation in the Gibbs ensemble", Mol. Phys. , 62 (3), 701-719], which has been applied to adsorption phenomena of confined fluids. Fluid molecules are described by spherical particles interacting via a square-well potential. The fluid is confined in two types of walls: symmetrical (two hard walls) and non-symmetrical (one square-well wall and one hard wall). In order to analyze the behavior of the confined fluid by varying the potential parameters, we evaluated the bulk and confined densities, the internal energies and the density profiles for different supercritical temperatures. A variety of adsorption profiles can be obtained by using this model. The simulation data reported here complements the available simulation data for this system and can be useful in the development of inhomogeneous fluid theories. Since the square-well parameters can be related to real molecules this system can also be used to understand real adsorption systems.  相似文献   

14.
Maximization of the basic reproduction ratio or R(0) is widely believed to drive the emergence of novel pathogens. The presence of exploitable heterogeneities in a population, such as high variance in the number of potentially infectious contacts, increases R(0) and thus pathogens that can exploit heterogeneities in the contact structure have an advantage over those that do not. However, exploitation of heterogeneities results in a more rapid depletion of the potentially susceptible neighbourhood for an infected host. Here a simple model of pathogen evolution in a heterogeneous environment is developed and placed in the context of HIV transmission. In this model, it is shown that pathogens may evolve towards lower R(0), even if this results in pathogen extinction. For sufficiently high transmissibility, two locally stable strategies exist for an evolving pathogen, one that exploits heterogeneities and results in higher R(0), and one that does not, and results in lower R(0). While the low R(0) strategy is never evolutionarily stable, invading strains with higher R(0) will also converge to the low R(0) strategy if not sufficiently different from the resident strain. Heterogenous transmission is increasingly recognized as fundamental to epidemiological dynamics and the evolution of pathogens; here, it is shown that the ability to exploit heterogeneity is a strategy that can itself evolve.  相似文献   

15.
This study reports a general strategy for the encapsulation of various enzymes in amphiphilic hollow carbonaceous microspheres (CMs). We found that enzymes could be spontaneously encapsulated in the interior cavity of the CMs via hydrophobic interactions. Due to strong hydrophobic interactions and robust confinement, leaching of the physically adsorbed enzymes is substantially restricted. As a novel immobilization matrix, the CMs display many significant advantages. They are capable of encapsulating a wide range of proteins/enzymes of different sizes, which can then be used in both aqueous and organic media and retain high activity, stability, and excellent reusability. Moreover, CMs could be considered as efficient microreactors that provide a favorable microaqueous environment for enzymes in organic systems. Therefore, this doubly effective and simple immobilization approach can be easily expanded to many other enzymes and has great potential in a variety of enzyme applications.  相似文献   

16.
The biosorption of food dyes FD&C red no. 40 and acid blue 9 onto Spirulina platensis nanoparticles was studied at different conditions of pH and temperature. Four isotherm models were used to evaluate the biosorption equilibrium and the thermodynamic parameters were estimated. Infra red analysis (FT-IR) and energy dispersive X-ray spectroscopy (EDS) were used to verify the biosorption behavior. The maximum biosorption capacities of FD&C red no. 40 and acid blue 9 were found at pH 4 and 298 K, and the values were 468.7 mg g−1 and 1619.4 mg g−1, respectively. The Sips model was more adequate to fit the equilibrium experimental data (R2 > 0.99 and ARE < 5%). Thermodynamic study showed that the biosorption was exothermic, spontaneous and favorable. FT-IR and EDS analysis suggested that at pH 4 and 298 K, the biosorption of both dyes onto nanoparticles occurred by chemisorption.  相似文献   

17.
During an epidemic outbreak in a human population, susceptibility to infection can be reduced by raising awareness of the disease. In this paper, we investigate the effects of three forms of awareness (i.e., contact, local, and global) on the spread of a disease in a random network. Connectivity-correlated transmission rates are assumed. By using the mean-field theory and numerical simulation, we show that both local and contact awareness can raise the epidemic thresholds while the global awareness cannot, which mirrors the recent results of Wu et al. The obtained results point out that individual behaviors in the presence of an infectious disease has a great influence on the epidemic dynamics. Our method enriches mean-field analysis in epidemic models.  相似文献   

18.
It is well known that the rate of aging is constant for populations described by the Gompertz law of mortality. However, this is true only when a population is homogeneous. In this note, we consider the multiplicative frailty model with the baseline distribution that follows the Gompertz law and study the impact of heterogeneity on the rate of aging in this population. We show that the rate of aging in this case is a function of age and that it increases in (calendar) time when the baseline mortality rate decreases.  相似文献   

19.
Heterogeneity is an important property of any population experiencing a disease. Here we apply general methods of the theory of heterogeneous populations to the simplest mathematical models in epidemiology. In particular, an SIR (susceptible-infective-removed) model is formulated and analyzed when susceptibility to or infectivity of a particular disease is distributed. It is shown that a heterogeneous model can be reduced to a homogeneous model with a nonlinear transmission function, which is given in explicit form. The widely used power transmission function is deduced from the model with distributed susceptibility and infectivity with the initial gamma-distribution of the disease parameters. Therefore, a mechanistic derivation of the phenomenological model, which is believed to mimic reality with high accuracy, is provided. The equation for the final size of an epidemic for an arbitrary initial distribution of susceptibility is found. The implications of population heterogeneity are discussed, in particular, it is pointed out that usual moment-closure methods can lead to erroneous conclusions if applied for the study of the long-term behavior of the models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号