首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Mapping wintering waterfowl distributions using weather surveillance radar   总被引:1,自引:0,他引:1  
The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998-1999 and 1999-2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of -5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998-1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents.  相似文献   

2.
Corn earworm (Lepidoptera: Noctuidae) (CEW) populations infesting one crop production area may rapidly migrate and infest distant crop production areas. Although entomological radars have detected corn earworm moth migrations, the spatial extent of the radar coverage has been limited to a small horizontal view above crop production areas. The Weather Service Radar (version 88D) (WSR-88D) continuously monitors the radar-transmitted energy reflected by, and radial speed of, biota as well as by precipitation over areas that may encompass crop production areas. We analyzed data from the WSR-88D radar (S-band) at Brownsville, Texas, and related these data to aerial concentrations of CEW estimated by a scanning entomological radar (X-band) and wind velocity measurements from rawinsonde and pilot balloon ascents. The WSR-88D radar reflectivity was positively correlated (r 2?=?0.21) with the aerial concentration of corn earworm-size insects measured by a scanning X-band radar. WSR-88D radar constant altitude plan position indicator estimates of wind velocity were positively correlated with wind speed (r 2?=?0.56) and wind direction (r 2?=?0.63) measured by pilot balloons and rawinsondes. The results reveal that WSR-88D radar measurements of insect concentration and displacement speed and direction can be used to estimate the migratory flux of corn earworms and other nocturnal insects, information that could benefit areawide pest management programs. In turn, identification of the effects of spatiotemporal patterns of migratory flights of corn earworm-size insects on WSR-88D radar measurements may lead to the development of algorithms that increase the accuracy of WSR-88D radar measurements of reflectivity and wind velocity for operational meteorology.  相似文献   

3.
ABSTRACT Local and migratory movements aloft have important implications for the ecology and conservation of birds, but are difficult to quantify. Weather surveillance radar (WSR) offers a unique tool for observing movements of birds, but until now has been used primarily to address broad taxonomic questions. Herein, we demonstrate how natural history information and ground‐truthing can be used to answer quantitative and taxon‐specific questions regarding bird movements on WSR. We found that super‐resolution Level II data from the National Oceanic and Atmospheric Administration's mass storage system was the most effective format and source of WSR data, and that several software packages were needed for thorough analysis of WSR data. Using WSR, we identified potential movements of birds emigrating from a waterfowl stopover area in Illinois in fall (1 September–31 December) 2006 and 2007. We compared spatial and temporal patterns of these movements to the natural history of taxa occupying the source habitat and classified these radar targets as dabbling ducks (tribe Anatini). A portable X‐band radar measured the cruising heights of ducks at 400–600 m. During fall 2008, we conducted ground‐truthing with a thermal infrared camera to enumerate birds passing over our field site during nocturnal migration events. This estimate of bird density, paired with an associated sample of WSR echo strength, provided a mean radar cross section the same as dabbling ducks (112.5 cm2) and supported our natural‐history‐based classification. Thermal infrared‐estimated duck densities explained most of the variation (R2= 0.91) in WSR echo strength across seven migration events of varying intensities, suggesting that radar cross sections of dabbling ducks and WSR reflectivity can be used to estimate duck numbers in other comparable contexts. Our results suggest that careful investigation of the spatial and temporal patterns of movements on radar, along with field‐based ground‐truthing, can be used to study and quantify the movements of specific bird taxa.  相似文献   

4.
Understanding the characteristics and drivers of dispersal is crucial for predicting population dynamics, particularly in range-shifting species. Studying long-distance dispersal in insects is challenging, but recent advances in entomological radar offer unique insights. We analysed 10 years of radar data collected at Rothamsted Research, U.K., to investigate characteristics (altitude, speed, seasonal and annual trends) and drivers (aphid abundance, air temperature, wind speed and rainfall) of high-altitude flight of the two most abundant U.K. ladybird species (native Coccinella septempunctata and invasive Harmonia axyridis). These species cannot be distinguished in the radar data since their reflectivity signals overlap, and they were therefore analysed together. However, their signals do not overlap with other, abundant insects so we are confident they constitute the overwhelming majority of the analysed data. The target species were detected up to ∼1100 m above ground level, where displacement speeds of up to ∼60 km/h were recorded, however most ladybirds were found between ∼150 and 500 m, and had a mean displacement of 30 km/h. Average flight time was estimated, using tethered flight experiments, to be 36.5 minutes, but flights of up to two hours were observed. Ladybirds are therefore potentially able to travel 18 km in a “typical” high-altitude flight, but up to 120 km if flying at higher altitudes, indicating a high capacity for long-distance dispersal. There were strong seasonal trends in ladybird abundance, with peaks corresponding to the highest temperatures of mid-summer, and warm air temperature was the key driver of ladybird flight. Climatic warming may therefore increase the potential for long-distance dispersal in these species. Low aphid abundance was a second significant factor, highlighting the important role of aphid population dynamics in ladybird dispersal. This research illustrates the utility of radar for studying high-altitude insect flight and has important implications for predicting long-distance dispersal.  相似文献   

5.
Although radar has been used in studies of bird migration for 60 years, there is still no network in Europe for comprehensive monitoring of bird migration. Europe has a dense network of military air surveillance radars but most systems are not directly suitable for reliable bird monitoring. Since the early 1990s, Doppler radars and wind profilers have been introduced in meteorology to measure wind. These wind measurements are known to be contaminated with insect and bird echoes. The aim of the present research is to assess how bird migration information can be deduced from meteorological Doppler radar output. We compare the observations on migrating birds using a dedicated X‐band bird radar with those using a C‐band Doppler weather radar. The observations were collected in the Netherlands, from 1 March to 22 May 2003. In this period, the bird radar showed that densities of more than one bird per km3 are present in 20% of all measurements. Among these measurements, the weather radar correctly recognized 86% of the cases when birds were present; in 38% of the cases with no birds detected by the bird radar, the weather radar claimed bird presence (false positive). The comparison showed that in this study reliable altitudinal density profiles of birds cannot be obtained from the weather radar. However, when integrated over altitude, weather radar reflectivity is correlated with bird radar density. Moreover, bird flight speeds from both radars show good agreement in 78% of cases, and flight direction in 73% of cases. The usefulness of the existing network of weather radars for deducing information on bird migration offers a great opportunity for a European‐wide monitoring network of bird migration.  相似文献   

6.
Vast numbers of insects and passerines achieve long-distance migrations between summer and winter locations by undertaking high-altitude nocturnal flights. Insects such as noctuid moths fly relatively slowly in relation to the surrounding air, with airspeeds approximately one-third of that of passerines. Thus, it has been widely assumed that windborne insect migrants will have comparatively little control over their migration speed and direction compared with migrant birds. We used radar to carry out the first comparative analyses of the flight behaviour and migratory strategies of insects and birds under nearly equivalent natural conditions. Contrary to expectations, noctuid moths attained almost identical ground speeds and travel directions compared with passerines, despite their very different flight powers and sensory capacities. Moths achieved fast travel speeds in seasonally appropriate migration directions by exploiting favourably directed winds and selecting flight altitudes that coincided with the fastest air streams. By contrast, passerines were less selective of wind conditions, relying on self-powered flight in their seasonally preferred direction, often with little or no tailwind assistance. Our results demonstrate that noctuid moths and passerines show contrasting risk-prone and risk-averse migratory strategies in relation to wind. Comparative studies of the flight behaviours of distantly related taxa are critically important for understanding the evolution of animal migration strategies.  相似文献   

7.
Birds: blowin’ by the wind?   总被引:1,自引:0,他引:1  
Migration is a task that implies a route, a goal and a period of time. To achieve this task, it requires orientation abilities to find the goal and energy to cover the distance. Completing such a journey by flying through a moving airspace makes this relatively simple task rather complex. On the one hand birds have to avoid wind drift or have to compensate for displacements to reach the expected goal. On the other hand flight costs make up a large proportion of energy expenditure during migration and, consequently, have a decisive impact on the refuelling requirements and the time needed for migration. As wind speeds are of the same order of magnitude as birds’ air speeds, flight costs can easily be doubled or, conversely, halved by wind effects. Many studies have investigated how birds should or actually do react to winds aloft, how they avoid additional costs or how they profit from the winds for their journeys. This review brings together numerous theoretical and empirical studies investigating the flight behaviour of migratory birds in relation to the wind. The results of these studies corroborate that birds select for favourable wind conditions both at departure and aloft to save energy and that for some long-distance migrants a tail-wind is an indispensable support to cover large barriers. Compensation of lateral wind drift seems to vary between age classes, depending on their orientation capacities, and probably between species or populations, due to the variety of winds they face en route. In addition, it is discussed how birds might measure winds aloft, and how flight behaviour with respect to wind shall be tested with field data.  相似文献   

8.
Radar is at the forefront for the study of broad‐scale aerial movements of birds, bats and insects and related issues in biological conservation. Radar techniques are especially useful for investigating species which fly at high altitudes, in darkness, or which are too small for applying electronic tags. Here, we present an overview of radar applications in biological conservation and highlight its future possibilities. Depending on the type of radar, information can be gathered on local‐ to continental‐scale movements of airborne organisms and their behaviour. Such data can quantify flyway usage, biomass and nutrient transport (bioflow), population sizes, dynamics and distributions, times and dimensions of movements, areas and times of mass emergence and swarming, habitat use and activity ranges. Radar also captures behavioural responses to anthropogenic disturbances, artificial light and man‐made structures. Weather surveillance and other long‐range radar networks allow spatially broad overviews of important stopover areas, songbird mass roosts and emergences from bat caves. Mobile radars, including repurposed marine radars and commercially dedicated ‘bird radars’, offer the ability to track and monitor the local movements of individuals or groups of flying animals. Harmonic radar techniques have been used for tracking short‐range movements of insects and other small animals of conservation interest. However, a major challenge in aeroecology is determining the taxonomic identity of the targets, which often requires ancillary data obtained from other methods. Radar data have become a global source of information on ecosystem structure, composition, services and function and will play an increasing role in the monitoring and conservation of flying animals and threatened habitats worldwide.  相似文献   

9.
Microwave radar detection of stored-product insects   总被引:3,自引:0,他引:3  
A microwave radar system that senses motion was tested for capability to detect hidden insects of different sizes and activity levels in stored products. In initial studies, movements of individual adults or groups of Lasioderma serricorne (F.), Oryzaephilus surinamensis (L.), Attagenus unicolor (Brahm), and Tribolium castaneum (Herbst) were easily detected over distances up to 30 cm in air. Boxes of corn meal mix and flour mix were artificially infested with 5-100 insects to estimate the reliability of detection. The likelihood that a box was infested was rated by the radar system on a quantitative scale. The ratings were significantly correlated with the numbers of infesting insects. The radar system has potential applications in management programs where rapid, nondestructive targeting of incipient insect infestations would be of benefit to the producers and consumers of packaged foods.  相似文献   

10.
Swifts, Apus apus, spend the night aloft and this offers an opportunity to test the degree of adaptability of bird orientation and flight to different ecological situations. We predicted the swifts' behaviour by assuming that they are adapted to minimize energy expenditure during the nocturnal flight and during a compensatory homing flight if they become displaced by wind. We tested the predictions by recording the swifts' altitudes, speeds and directions under different wind conditions with tracking radar; we found an agreement between predictions and observations for orientation behaviour, but not for altitude and speed regulation. The swifts orientated consistently into the head wind, with angular concentration increasing with increasing wind speed. However, contrary to our predictions, they did not select altitudes with slow or moderate winds, nor did they increase their airspeed distinctly when flying into strong head winds. A possible explanation is that their head-wind orientation is sufficient to keep nocturnal displacement from their home area within tolerable limits, leaving flight altitude to be determined by other factors (correlated with temperature), and airspeed to show only a marginal increase in strong winds. The swifts were often moving "backwards", heading straight into the wind but being overpowered by wind speeds exceeding their airspeed. The regular occurrence of such flights is probably uniquely associated with the swifts' remarkable habit of roosting on the wing.  相似文献   

11.
It is often reported in the early literature that insects walk with the legs protacting in diagonal pairs rather than the triplet of three legs associated with the tripod step pattern. The diagonal pattern implies that legs of the same segment have a phase relationship significantly different from 0.5. Such a pattern of leg recovery has been demonstrated quantitatively for the stick insect (Graham, 1972). Such patterns occur in several insects and systematic asymmetry can even be detected in the earliest quantitative study on cockroaches (Hughes, 1957) when the animals are walking slowly. More recently Spirito and Mushrush (1979) have reported systematic deviations from a phase of 0.5 similar to those observed in stick insects. Asymmetry has also been quantitatively demonstrated in Katydids (Graham, 1978) and has recently been observed in Mantid walking (Thomson, personal communication). This phenomenon seems to be a general characteristic of slow walking coordination in insects. In stick insects asymmetry only becomes obvious in gait II at slow speeds although there can be systematic differences in ipsilateral coordination on right and left sides even at the highest speeds in this gait (Graham, 1972).  相似文献   

12.
Our objective was to detect mass migrations of insects of economic significance by insect traps and a Doppler weather radar. Migrants were sampled by suction traps, tow nets and light traps in the Helsinki region. We used radar to observe the migrating insects, and trajectories to backtrack mass migrations of aphids (Homoptera, Aphididae) in spring 1988. The aphid migrations were clearly observed in trap catches and by radar. The first migration, mainly involving Euceraphis betulae, occurred on 18 May and was tracked back to northern Poland. The second migration, mainly of Rhopalosiphum padi (a serious pest of small-grain cereals), occurred 3 days later and was tracked back to a large area covering Latvia and western Russia south of St Petersburg. The third migration included both E. betulae and R. padi, and took place on 30 May. It originated from Estonia. Neither trap nor radar data provide exact quantitative information on migrations. Trapping efficiency depends strongly on wind speed and insect size. Radar echo intensity is very strongly related to the sizes of insects in the large volume of air measured, and the sizes are not known accurately. Weather data, especially temperature, can be used in predicting the development of aphids, and air-parcel trajectories in estimating the source areas of migrants. These methods for forecasting aphid migrations, combined with radar observations, are useful for warning purposes and to intensify insect trapping. This would contribute to more efficient agricultural pest management. Received: 11 March 2000 / Revised: 24 April 2000 / Accepted: 26 April 2000  相似文献   

13.
The Newcastle/Moore and El Reno tornadoes of May 2013 are recent reminders of the destructive power of tornadoes. A direct estimate of a tornado''s power is difficult and dangerous to get. An indirect estimate on a categorical scale is available from a post-storm survery of the damage. Wind speed bounds are attached to the scale, but the scale is not adequate for analyzing trends in tornado intensity separate from trends in tornado frequency. Here tornado intensity on a continuum is estimated from damage path length and width, which are measured on continuous scales and correlated to the EF rating. The wind speeds on the EF scale are treated as interval censored data and regressed onto the path dimensions and fatalities. The regression model indicates a 25% increase in expected intensity over a threshold intensity of 29 m s−1 for a 100 km increase in path length and a 17% increase in expected intensity for a one km increase in path width. The model shows a 43% increase in the expected intensity when fatalities are observed controlling for path dimensions. The estimated wind speeds correlate at a level of .77 (.34, .93) [95% confidence interval] with a small sample of wind speeds estimated independently from a doppler radar calibration. The estimated wind speeds allow analyses to be done on the tornado database that are not possible with the categorical scale. The modeled intensities can be used in climatology and in environmental and engineering applications. Research is needed to understand the upward trends in path length and width.  相似文献   

14.
食性分析结果表明,白腰雨燕Apus P.pacificus的食物概为昆虫,隶属于9个目。雷达的测定证实它们在巢区的活动和气候、昆虫有着密切的联系。对它们活动规律的研究,必将有助于探索空中昆虫的迁移、扩散生态学特性以及昆虫在分布区内的动态规律。  相似文献   

15.
Orb‐weaving spiders depend upon the sticky capture spirals of webs to retain insects long enough to be captured. However, insects often escape from orb webs before the spiders can attack them. Therefore, the architectures of orb webs likely reflect strong selective pressure to increase retention times of insects. We experimentally increased the mesh width of one side of an orb web while maintaining the original mesh width on the other side as a control, and then tested the effect of this manipulation on the retention times of four different taxa of insects. We found evidence that increased mesh width of Argiope aurantia orb webs resulted in a general reduction in the retention times of insects. However, retention times for different taxa of insects were not predicted by any one specific morphological or flight characteristic. The influence of mesh width on the retention times of insects is very complex, but our results suggest that mesh width can act to selectively favor the capture of certain taxa of insect prey over others. This effect may help to explain both species level differences in web‐building behaviors and variation in the architectures of webs spun by individual spiders on different days.  相似文献   

16.
Large numbers of bats are killed by collisions with wind turbines and there is at present no accepted method of reducing or preventing this mortality. Following our demonstration that bat activity is reduced in the vicinity of large air traffic control and weather radars, we tested the hypothesis that an electromagnetic signal from a small portable radar can act as a deterrent to foraging bats. From June to September 2007 bat activity was compared at 20 foraging sites in northeast Scotland during experimental trials (radar switched on) and control trials (no radar signal). Starting 45 minutes after sunset, bat activity was recorded for a period of 30 minutes during each trial and the order of trials were alternated between nights. From July to September 2008 aerial insects at 16 of these sites were sampled using two miniature light-suction traps. At each site one of the traps was exposed to a radar signal and the other functioned as a control. Bat activity and foraging effort per unit time were significantly reduced during experimental trials when the radar antenna was fixed to produce a unidirectional signal therefore maximising exposure of foraging bats to the radar beam. However, although bat activity was significantly reduced during such trials, the radar had no significant effect on the abundance of insects captured by the traps.  相似文献   

17.
The effects of a mud snail, Cipangopaludina chinensis laeta (Martens) (Architaenioglossa: Viviparidae), on terrestrial arthropods through rice plant development in a paddy field were investigated in 2013 and 2014 by a field experiment. There were no significant differences between treatments in the abundance of aquatic organisms, which comprised several functional feeding groups in both years. The presence of mud snails did not significantly affect plant height and soil plant analysis development values, either, except in June 2014, when tiller number and biomass of the rice plants tended to be larger in plots with snails versus those without. Significantly higher abundances of terrestrial organisms, including phytophagous pest insects and other insects, but not natural enemies of the pest insects, occurred in plots with snails. As shown by principal component analysis, the community structure of the terrestrial organisms was significantly different between the two treatments in both years. The results of this study indicate that mud snails play an important role in the paddy field ecosystem, in which they influence the biomass production of rice plants and the abundance of organisms in terrestrial ecosystems through direct and indirect interactions at different trophic levels.  相似文献   

18.
Besides the scientific interest in the quantification of bird migration, there is an increasing need to quantify bird movements for the assessment of bird collision risk with artificial structures. In many environmental impact studies, the radar method is used in an inappropriate manner. The processing of echoes consists often of counting blips within defined screen fields, and the surveyed volume is estimated without reference to the detection probabilities of different 'target sizes' (radar cross-sections). The aim of this paper is to present a procedure to quantify bird migration reliably using radar by stating the theoretical requirements of every single step of this procedure and presenting methodological solutions using our own radar data from extensive field studies. Our methodological solutions can be applied to various radar systems, including widely used ship radar. The procedure presented involves discriminating the echoes of birds and insects and estimating the different detection probabilities of differently 'sized' birds (radar cross-sections). By ignoring the different detection probabilities, density estimations may be wrong by as much as 400%. We fear that quantification of bird migration and predicted bird numbers affected by collisions with artificial structures are in many cases based on unreliable estimates.  相似文献   

19.
Predictable risk to native plants in weed biological control   总被引:6,自引:0,他引:6  
Data on field host use of 112 insects, 3 fungi, 1 mite, and 1 nematode established for biological control of weeds in Hawaii, the continental United States, and the Caribbean indicate that the risk to native flora can be judged reliably before introduction. Virtually all risk is borne by native plant species that are closely related to target weeds. Fifteen species of insects introduced for biological control use 41 native plant species; 36 of which are congeneric with target weeds, while 4 others belong to two closely allied genera. Only 1 of 117 established biological organisms uses a native plant unrelated to the target weed. Thus the elements of protection for the native flora are the selection of weed targets that have few or no native congeners and the introduction of biological control organisms with suitably narrow diets.  相似文献   

20.
The evolution and development of complex phenotypes in social insect colonies, such as queen-worker dimorphism or division of labor, can, in our opinion, only be fully understood within an expanded mechanistic framework of Developmental Evolution. Conversely, social insects offer a fertile research area in which fundamental questions of Developmental Evolution can be addressed empirically. We review the concept of gene regulatory networks (GRNs) that aims to fully describe the battery of interacting genomic modules that are differentially expressed during the development of individual organisms. We discuss how distinct types of network models have been used to study different levels of biological organization in social insects, from GRNs to social networks. We propose that these hierarchical networks spanning different organizational levels from genes to societies should be integrated and incorporated into full GRN models to elucidate the evolutionary and developmental mechanisms underlying social insect phenotypes. Finally, we discuss prospects and approaches to achieve such an integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号