首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition of human platelet major phospholipids-phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), sphingomyelin (SM), plasmalogenic and diacyl species of phosphatidylethanolamine (PPE and APE, respectively) was quantitatively analyzed by high performance liquid chromatography. Incubation (10 min, 37 degrees C) of washed platelets with lipopolysaccharide B (LPS) of Salmonella typhimurium was found to produce (in the absence of aggregation) marked hydrolysis of PI (ca. 15%) and PPE (ca. 19%) containing the bulk of polyenic fatty acids. PC and APE were less degraded (8-9%), while the amounts of PS and SM were practically unchanged and the level of PA rose by 20%. Addition of thrombin to LPS-pretreated platelets resulted in their more rapid aggregation which was accompanied by a decreased and nearly equal hydrolysis of APE and PPE (7-8%) as compared with control platelets (10 and 12%, respectively). The extent to which PI was degraded (ca. 34%), by the action of thrombin was not affected by preliminary incubation with LPS. It is suggested that thrombin (as well as LPS) activating endogenous phospholipase(s) A2 can liberate from PPE not only arachidonic acid but also other essential polyenic fatty acids present in PPE in relatively high amounts. Besides, the agents studied may activate the intrinsic platelet system of rapid arachidonoyl transfer from diacyl PC and PE to PPE.  相似文献   

2.
The effect of PAF in aggregation of platelets induced by endotoxin was studied in experiments in vitro. It is indicated that in high concentration (1.10(-7)-1.10(-6) M) PAF did not affect the degree of aggregation of platelets induced by lipopolysaccharides (LPS) S. typhimurium and N. meningitidis. Successive addition to PRP LPS and PAF or joint addition of PAF and LPS did not change the degree of aggregation of each inductor or their sum. A lower concentration of PAF (1.10(-11)-1.10(-9) M) and endotoxin caused a more expressive aggregation of platelets than their successive addition. Stimulating activity of PAF on endotoxin-induced aggregation, perhaps, is caused by involvement of metabolism of arachidonic acid during blood platelets activation.  相似文献   

3.
Sepsis severity has been positively correlated with platelet dysfunction, which may be due to elevations in nitric oxide (NO) and cGMP levels. Protein kinase C, Src kinases, PI3K and AKT modulate platelet activity in physiological conditions, but no studies evaluated the role of these enzymes in platelet aggregation in sepsis. In the present study we tested the hypothesis that in sepsis these enzymes positively modulate upstream the NO-cGMP pathway resulting in platelet inhibition. Rats were injected with lipopolysaccharide (LPS, 1 mg/kg, i.p.) and blood was collected after 6 h. Platelet aggregation was induced by ADP (10 μM). Western blotting assays were carried out to analyze c-Src and AKT activation in platelets. Intraplatelet cGMP levels were determined by enzyme immunoassay kit. Phosphorylation of c-SRC at Tyr416 was the same magnitude in platelets of control and LPS group. Incubation of the non-selective Src inhibitor PP2 (10 μM) had no effect on platelet aggregation of LPS-treated rats. LPS increased intraplatelet cGMP levels by 5-fold compared with control group, which was accompanied by 76% of reduction in ADP-induced platelet aggregation. The guanylyl cyclase inhibitor ODQ (25 μM) and the PKG inhibitor Rp-8-Br-PET-cGMPS (25 μM) fully reversed the inhibitory effect of LPS on platelet aggregation. Likewise, the PKC inhibitor GF109203X (10 μM) reversed the inhibition by LPS of platelet aggregation and decreased cGMP levels in platelets. AKT phosphorylation at Thr308 was significantly higher in platelets of LPS compared with control group, which was not reduced by PI3K inhibition. The AKT inhibitor API-1 (20 μM) significantly increased aggregation and reduced cGMP levels in platelets of LPS group. However, the PI3K inhibitor wortmannin and LY29004 had no effect on platelet aggregation of LPS-treated rats. Therefore, inhibition of ADP-induced platelet aggregation after LPS injection is mediated by cGMP/PKG-dependent mechanisms, and PKC and AKT act upstream upregulating this pathway.  相似文献   

4.
In an earlier study (Miwa, M., Hill, C., Kumar, R., Sugatani, J., Olson, M. S., and Hanahan, D. J. (1987) J. Biol. Chem. 262, 527-530) it was shown that an inhibitor of platelet-activating factor (PAF), a powerful endogenous mediator of platelet aggregation, was present in freeze-clamped perfused livers. Subsequently, we determined that this substance was a mixture of unsaturated free fatty acids (FFA). Among these FFA, oleic acid between 10 and 100 microM was found to be a potent inhibitor of PAF-induced platelet aggregation and serotonin secretion. Consequently, in order to understand the molecular mechanism of oleic acid action, we investigated the effects of this FFA on several biochemical events associated with platelet aggregation induced by PAF. The effect of oleic acid and/or PAF on the level of [32P]phosphatidylinositol 4-phosphate (PIP) and [32P]phosphatidylinositol 4,5-bisphosphate (PIP2) was examined by using platelets labeled with [32P]phosphate. Oleic acid induced a dose-dependent decrease in the levels of [32P]PIP and [32P]PIP2; a maximal decrease in [32P]PIP and [32P]PIP2 of approximately 50 and 25%, respectively, was observed within seconds after the addition of 20 microM oleic acid and persisted for at least 15 min. Oleic acid did not induce the formation of [3H]inositol phosphates in platelets prelabeled with [3H]inositol, suggesting that the decrease in [32P]PIP and [32P]PIP2 was not due to a stimulation of phospholipase C. In contrast to oleic acid, PAF induced a dose-dependent increase in the [32P]PIP level, reaching a maximum of approximately 200% 3 min after the addition of 1 nM PAF to the platelets. This increase in [32P]PIP was accompanied by platelet aggregation and secretion, and a close correlation was established between the [32P]PIP level and the degree of aggregation. Oleic acid and PAF, when added together to the platelets, interacted by affecting the level of [32P]PIP and [32P]PIP2 in an opposite way since the decrease in the level of [32P]PIP and [32P] PIP2 induced by oleic acid was partially reversed by an excess of PAF. The decrease in the levels of [32P] PIP and [32P]PIP2 caused by oleic acid was associated with an inhibition of platelet aggregation induced by PAF. Interestingly, oleic acid did not block [3H]PAF binding to platelets but inhibited the PAF-induced phosphorylation of platelet proteins of 20 kDa and 40 kDa. These results suggest that inhibition of the PAF response by oleic acid may be at one of the steps in the signal transduction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Effect of the cardiotropic drugs of the phenothiazine series ethmozine, and its diethylamine analogue (DAAE), on platelet aggregation and formation of arachidonic acid metabolites has been studied. Both drugs inhibit the ADP-induced aggregation in the platelet-rich plasma. Ethmozine inhibits only the second (irreversible) wave of aggregation, while DAAE inhibits both the first (reversible) and the second one. 50% inhibition (ID50) of the second wave of aggregation is observed at the following concentrations of the two agents: 300-500 micrograms/ml (ethmozine) and 20 micrograms/ml (DAAE). DAAE completely inhibits the irreversible aggregation of platelets washed off plasma, induced by arachidonic acid (ID50 approximately 30 micrograms/ml) and Ca2+-ionophore A23187 (ID approximately 55 micrograms/ml); the aggregation, induced by thrombin is inhibited by 80-90% (ID approximately 130 micrograms/ml). Formation of arachidonic acid metabolites in platelets effected by these inducers was measured by the accumulation of malondialdehyde (MDA). DAAE fails to inhibit MDA formation induced by exogenous arachidonic acid, but completely prevents the synthesis of MDA induced by A23187 and thrombin. These data suggest that DAAE inhibits the release of endogenous arachidonic acid from membrane phospholipids catalysed by phospholipase A2, but does not affect its subsequent metabolic transformations. In all probability, ethmozine and DAAE, just as other phenothiazines, affect platelets via the inhibition of Ca2+-calmodulin-dependent reactions and processes.  相似文献   

6.
The calcium-sensitive, fluorescent dye Quin 2 was used to quantitate changes in free intracellular calcium [( Ca2+]i) induced in platelets by the phospholipid platelet-activating factor 1-O-alkyl-2-acetyl-SN-glycero-3-phosphorylcholine (AGEPC). The Ca2+]i of unstimulated platelets was 91 +/- 18 nM (mean +/- SD, n = 8), and treatment with 1 to 16 nM AGEPC increased [Ca2+]i in a dose-related manner, with 16 nM AGEPC increasing [Ca2+]i by 102 +/- 20 nM. [Ca2+]i was not increased by analogs of AGEPC which do not activate platelets including the lysophospholipid precursor of AGEPC, the optical isomer, and a C-2 benzoyl analog. The capacity of AGEPC to increase [Ca2+]i exceeded that required to induce maximal platelet aggregation. In four experiments, 100% platelet aggregation was induced by 4.5 +/- 2.4 nM AGEPC (mean +/- SD) and was associated with a submaximal increase in [Ca2+]i of 56 +/- 22 nM. Pretreatment of platelets with AGEPC rendered the platelets specifically unresponsive to repeat stimulation with AGEPC in terms of both platelet aggregation and increased [Ca2+]i, whereas the platelet response to thrombin was undiminished by pretreatment with AGEPC. In contrast, the platelet response to 0.5 microM calcium ionophore A23187 was undiminished by pretreatment with the same concentration of ionophore, suggesting that AGEPC does not activate platelets by an ionophore-like mechanism. IgG aggregates and AGEPC in combination activate platelets synergistically, as shown by the observation that a 1-min exposure of platelets to 60 micrograms/ml of IgG aggregates increased the platelet aggregation response to 2 nM AGEPC from 44 to 100%. In contrast, sequential exposure of platelets to IgG aggregates and AGEPC increased [Ca2+]i additively, suggesting that increased [Ca2+]i contributes to but does not fully mediate synergistic platelet activation by IgG aggregates and AGEPC. Quantitation of free intracellular calcium with the fluorescent dye Quin 2 is a highly sensitive technique for delineating the role of calcium in mediating platelet activation.  相似文献   

7.
Specific binding of phospholipid platelet-activating factor by human platelets   总被引:11,自引:0,他引:11  
The binding of the phospholipid platelet-activating factor 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphorylcholine (AGEPC) to washed human platelets was more than 80% complete within 2 min, which coincided with the time of initiation of platelet aggregation by AGEPC. Scatchard plot analysis of the binding of [3H]AGEPC to platelets without and with an excess of unlabeled AGEPC revealed two distinct types of binding sites. One platelet site for AGEPC exhibited a high affinity (KD = 37 +/- 13 nM, mean +/- SD), was saturable, and had a low maximal capacity of 1399 +/- 498 (mean +/- SD) molecules of AGEPC/platelet. The other platelet site demonstrated a nearly infinite binding capacity, consistent with nonreceptor uptake of AGEPC into cellular structures. The specificity of the high-affinity binding site for AGEPC was assessed by comparing the capacity of several analogues of AGEPC to inhibit the binding of [3H]AGEPC to platelets and to induce platelet aggregation. An ether linkage in position 1, a short-chain fatty acid in position 2, and a choline moiety in the polar head group proved to be critical both for the binding of [3H]AGEPC to platelets and for the initiation of platelet aggregation. Exposure of platelets to AGEPC for 5 min at 37 degrees C functionally deactivated the exposed platelets to subsequent stimulation by AGEPC, as assessed by diminished aggregation, and concomitantly reduced the specific binding of [3H]AGEPC. Evaluation of the time course of the events of deactivation revealed the loss of an aggregation response to AGEPC after 90 sec at 37 degrees C, despite the retention of up to 50% of the specific binding sites for AGEPC.  相似文献   

8.
It is generally agreed that arachidonic acid (20: 4 omega 6) can stimulate platelet aggregation after conversion to prostaglandin G2 and H2 and thence to thromboxane A2. This action is prevented by cyclooxygenase inhibitors. Washed platelets were isolated on metrizamide gradient and resuspended in a Ca2+-free buffer. Their stimulation by C 20: 4 6 was followed by 14C serotonin (5HT) release, thromboxane (TX) synthesis and an increase of light transmission, not dependent on aggregation, accompanied by slight lysis (14%). The addition of extrinsic Ca2+ suppressed lysis and allowed the formation of aggregates. Under these conditions, cyclooxygenase inhibitors such as acetyl salicylic acid, indomethacin or flurbiprofen totally suppressed TX synthesis without preventing platelet aggregation or [14C]-5HT release. Other C 20 polyunsaturated fatty acids could not substitute for C 20: 4 omega 6 in inducing aggregation, and Ca2+ was found to be a prerequisite for protection of the cell against lysis as well as for aggregation in the absence or TX formation. The use of the lipoxygenase inhibitor BW 755 C did not prevent C 20: 4 omega 6-induced aggregation of aspirin-treated platelets, suggesting that the phenomenon was independent of this pathway also. The total suppression of oxidative metabolism with these inhibitors was verified by the analysis of icosanoids using glass capillary column gas chromatography. It is suggested that under these conditions, C 20: 4 omega 6-induced platelet aggregation might be due to an increased membrane permeability to Ca2+ induced by this fatty acid in the absence of oxidation.  相似文献   

9.
Flurbiprofen has been shown to inhibit cyclo-oxygenase metabolism of arachidonic acid to thromboxane A2 (TxA2), resulting in the inhibition of platelet aggregation. Recently, our laboratory reported that the "irreversible" phase of platelet aggregation and adhesion were regulated, in part, by the lipoxygenase metabolism of arachidonic acid to 12-hydroxy-eicosatetraenoic acid (12-HETE) in platelets, and that selective inhibition of one enzyme i.e. either cyclo-oxygenase or lipoxygenase, resulted in paradoxical effects on the metabolism of arachidonic acid and platelet response related to the other pathway. Therefore, we performed experiments to assess the relative effects of flurbiprofen on TxA2 and 12-HETE synthesis, and on collagen-induced platelet aggregation and platelet adhesion to collagen-coated surfaces. "Irreversible" collagen-induced platelet aggregation was only partially inhibited by pre-incubation with 1 x 10(-6) M flurbiprofen, while TxA2 production was elevated and 12-HETE production was maximally inhibited in these platelets. At this concentration of flurbiprofen (1 x 10(-6)M), collagen-induced platelet adhesion was also reduced by 50%. At higher concentrations of flurbiprofen, both platelet aggregation and adhesion were further reduced, with a corresponding inhibition of TxA2 production. Thus it appears that the lipoxygenase pathway of arachidonic acid metabolism in platelets is not only inhibited by flurbiprofen, but is more sensitive to inhibition by flurbiprofen than the cyclo-oxygenase pathway. This differential effect of flurbiprofen on arachidonic acid metabolism in the platelet is related to differential effects on platelet function.  相似文献   

10.
1. Synthetic analogues of prostaglandins E2 or F2a (monocyclic bisenoic prostaglandins), like the endogenous prostaglandin endoperoxides (prostaglandins G2 and H2) from platelets, and like synthetic analogues of prostaglandin H2 (bicyclic bisenoic prostaglandins), can induce aggregation of human platelets, although prostaglandins E2 and F2a themselves are inactive. 2. All the prostanoid compounds that induce platelet aggregation release 5-hydroxytryptamine from platelet dense bodies, but do not release beta-N-acetylglucosaminidase from lysosomal granules. Arachidonic acid evokes a similar response. 3. All endoperoxide analogues tested (bicyclic compounds) were powerful platelet stimulants, and all active compounds (whether mono- or bi-cyclid) apparently acted via the same receptor as the endogenous prostaglandin endoperoxides. 4. The nature and stereospecificity of substituents at positions 11 and 15 (or 16) on prostaglandin E2 are critical determinants for platelet-stimulating activity: deoxy substitution at position 11 plus methylation at position 15 (or 16) produces a potent stimulant, particularly if the groups around C-15 are in the S configuration. 5. The effects of these structural modifications are apparently due to, at least in part, a change in side-chain conformation.  相似文献   

11.
Anti-12(S)-hydroxyeicosatetraenoic acid (12-HETE)-antibody and anti-thromboxane B2 (TXB2)-antibody were generated and applied to the radioimmunoassay. The detection limit for 12-HETE was 16 pg. The cross-reactivities of anti-12-HETE-antibody were 4.6% for 15-HETE, 0.18% for 5-HETE and below 0.15% for leukotrienes and prostaglandins (PGs). 12-HETE and TXB2 released from guinea pig platelets were measured by radioimmunoassay. Platelet activating factor (PAF) at 10(-9) M induced the aggregation of platelets, the releases of immunoreactive-12-HETE (1.8 +/- 1.2 ng/10(8) platelets, mean +/- S.D.) and immunoreactive-TXB2 (18.5 +/- 17.3 ng/10(8) platelets). Collagen at 1 microgram/ml also evoked platelet aggregation, the releases of immunoreactive-12-HETE (2.7 +/- 1.1 ng/10(8) platelets) and immunoreactive-TXB2 (11.8 +/- 4.6 ng/10(8) platelets). By the stimulation with these compounds, TXB2 was produced in a greater amount than 12-HETE from guinea pig platelets. Although 10(-7) M and 10(-6) M U46619, a TXA2 mimetic, caused platelet aggregation, arachidonic acid metabolites were not released. These data suggest the presence of different mechanisms of platelet activation depending on each stimulus.  相似文献   

12.
《Biorheology》1996,33(3):209-229
Elevated shear stress levels in pathologically stenosed vessels induce platelet activation and aggregation, and may play a role in the pathogenesis of arterial disease. Increased plasma catecholamine concentrations have also been implicated in the onset of acute coronary ischemic syndromes. This study was designed to examine the synergistic interaction of shear stress and epinephrine in the activation of platelets. Platelets (in PRP) sheared at 60 dyn/cm2 showed little or no aggregation unless pretreated with epinephrine. Pretreatment with 250 nM epinephrine followed by shear at 60 dyn/cm2 induced >60% platelet aggregation. The specific α2-adrenergic receptor antagonist yohimbine inhibited the synergistic aggregation, as did the ADP scavenging system phosphocreatine/creatine phosphokinase, indicating a three-way synergism with ADP. Chemical or monoclonal antibody blockade of von Willebrand factor (vWF) interactions with either platelet glycoprotein (Gp) Ib or Gp IIb/IIIa completely inhibited platelet aggregation induced by activating levels of shear stress alone. However, the combination of epinephrine and shear stress induced platelet aggregation that was blocked by 10E5, a monoclonal antibody that inhibits vWF binding to Gp IIb/IIIa, but not by aurin tricarboxylic acid or the monoclonal antibody 6D1, both of which inhibit vWF binding to Gp Ib. Synergistic platelet aggregation in response to epinephrine and shear stress was observed in washed platelets, platelet-rich plasma and whole blood in vitro, and also ex vivo following exercise to elevate endogenous levels of catecholamines. These results indicate that epinephrine synergizes with shear stress to induce platelet aggregation. This synergistic response requires functional Gp IIb/IIIa complexes, but is at least partially independent of vWF-Gp Ib interactions.  相似文献   

13.
This laboratory demonstrated earlier that oleic acid inhibited platelet activating factor (PAF)-induced aggregation and serotonin release of rabbit platelets (M. Miwa, C. Hill, R. Kumar, J. Sugatani, M. S. Olson, and D. J. Hanahan, 1987, J. Biol. Chem. 262, 527-530). More recently, we reported that oleic acid caused a decrease in phosphatidylinositol-4-phosphate (PIP) and phosphatidylinositol-4,5-bisphosphate (PIP2), but did not affect the level of inositol-1,4,5-trisphosphate (IP3), in rabbit platelets (D. Nunez, J. Randon, C. Gandhi, A. Siafaka-Kapadai, M. S. Olson, and D. J. Hanahan, 1990, J. Biol. Chem. 265, 18330-18838). These results suggested that oleic acid did not stimulate phospholipase C. In contrast, PAF induced a decrease in PIP2 and an increase in PIP level and IP3. These effects were shown to be attenuated by oleic acid. In this current study, our experiments show that (a) oleic acid blocked PAF-induced rise in intracellular [Ca2+] (to provide a mechanism in agreement with our previous experiments which showed that oleic acid inhibited PAF-induced IP3 rise in platelets) and (b) oleic acid itself induced a gradual rise in [Ca2+]i, which would provide a mechanism for oleic acid-induced aggregation despite the fact that oleic acid did not cause the production of IP3 (Nunez et al., 1990). Oleic acid, in a dose-dependent manner, was shown to inhibit PAF-induced Ca2+ mobilization from intra- and extracellular sources. The inhibition was closely related to the suppressive effect of oleic acid on PAF-induced aggregation. Furthermore, oleic acid inhibited the PAF-stimulated phosphorylation of the 20- and 40-kDa proteins. At concentrations above 20 microM, oleic acid itself could induce platelet aggregation and Ca2+ mobilization, but the time sequence of these two responses in human platelets was significantly different from those obtained with PAF. Oleic acid alone, at 20 microM, caused a 1.4-fold increase in the cAMP level in platelets which was followed by a decline to a basal value at higher concentrations of this fatty acid. It seemed clear that elevation of adenylate cyclase activity was not associated with free fatty acid inhibition of platelet activation. Interestingly, both PAF and oleic acid added separately to human platelets induced protein-tyrosine phosphorylation, but oleic acid did not cause any inhibition of PAF-induced protein-tyrosine phosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Platelet aggregation by group B streptococci   总被引:1,自引:0,他引:1  
Forty-six strains of group B streptococci (GBS), including various serotypes and non-serotypable strains, were tested for their ability to induce platelet aggregation in human platelet-rich plasma; four strains, all belonging to type III, showed a positive reaction. The characteristics of the reaction were investigated in these four positive strains. Aggregation was dependent on the ratio of bacteria to platelets, being maximal at a ratio of 4.3. Platelet aggregation was inhibited by EDTA (100% inhibition at 3.1 mM), indomethacin (100% inhibition at 10 mM), acetylsalicylic acid (93-100% inhibition at 5.0 mM) and quinacrine (100% inhibition at 0.25 mM). Thus the reaction was cation-dependent and required cyclooxygenase activity. Assays for cytosolic lactate dehydrogenase did not indicate platelet lysis. GBS induced the release of [3H]serotonin, which was maximal (68-78%) at 10 min after the reaction was started. Experiments with gel-filtered platelets suggested that GBS-induced platelet aggregation required both fibrinogen and heat-resistant (56 degrees C, 30 min) serum factors. Type-specific antisera prevented the platelet aggregation activity of heat-killed bacteria, but not of live bacteria. Trypsin digestion of the bacterial cells caused an almost complete loss of the platelet aggregation activity.  相似文献   

15.
Incubation of human platelets (in the form of platelet rich plasma or washed platelet suspension) with sodium merthiolate (ethyl mercuric salicylate inhibiting the arachidonic acid incorporation into phospholipids) induces their irreversible aggregation, which is accompanied by TxB2 synthesis. The merthiolate-induced aggregation has a lag-period of 0.5-10 min, whose magnitude is inversely correlated with the merthiolate concentration. The concentration dependencies of the rate of the merthiolate-induced and arachidonate-induced aggregation are threshold ones; the Hill coefficients are more than 30. The merthiolate-induced aggregation occurs in two phases: a slow phase which is independent of the arachidonic acid cyclooxygenase metabolism and a fast phase which is fully blocked by indomethacin. This aggregation is inhibited by PGE1 and ajoene (an inhibitor of the fibrinogen interaction with the fibrinogen receptor, GPIIb/IIIa). Quantitative and qualitative analyses of the experimental data were performed, using a model which took account of: (a) increase in the concentration of free endogenous arachidonic acid resulting from the inhibition by merthiolate of the arachidonic acid re-incorporation into phospholipids, and (b) existence of a threshold intracellular arachidonic acid concentration needed for the irreversible aggregation of platelets.  相似文献   

16.
Aggregation of calf platelets by platelet activating factor was characterized by a spectrophotometric method. The aggregation kinetics of both platelet-rich plasma and purified platelets showed concave up double-reciprocal plots and linear Hill plots withh > 1 (1.7 ± 02) consistent with positive cooperativity. Comparable values of maximum rates of aggregation(R) were obtained with platelet-rich plasma (0.25 ± 0.08) and purified platelets (0.28 ± 0.18) but the half-maximal saturation concentration (S0.5) differed greatly between platelet-rich plasma (6 ± 3 nM) and purified platelets (0.28 ± 0.18 nM). An Arrhenius activation energy of 21 ±2 kcal/mol was found for aggregation of purified platelets. Diltiazem was inhibitory with half-maximal inhibitory concentration (I0.5) of 4 M but the inhibition was not competitive. Diltiazem inhibited rates but not the extent of shape-change. The receptor-antagonist and sulphydryl reagent N-ethylmaleimide and the platelet antagonistic omega-3-fatty acid, 5,8,11,14,17-eicosa pentaenoic acid, inhibited both rates and extent of shape-change reactions and inhibited aggregation competitively (I0.5 ∼ 5 M). Eicosa pentaenoic acid at > 25 M could abolish shape-change reactions and at 50 M served as an activator of platelets and the activation was enhanced by aspirin (1 mM). Although N-ethylmaleimide at > 20 M could also induce platelet activation it failed to induce aggregation and aspirin had no effect on the shape-change reactions induced by it.  相似文献   

17.
18.
The effects on human platelets of two synthetic analogues of prostaglandin endoperoxides were examined in order to explore the relationship between aggregation and prostaglandin and cyclic nucleotide metabolism, and to help elucidate the role of the natural endoperoxide intermediates in regulating platelet function.Both analogues (Compound I, (15S)-hydroxy-9α,11α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid, and Compound II, (15S)-hydroxy-11α,9α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid) caused platelets to aggregate, an effect which could be inhibited by prostaglandin E1 but not by indomethacin. Compound II produced primary, reversible aggregation at concentrations which did not induce release of 5-hydroxytryptamine. Production of thromboxane B2 and malonyldialdehyde was monitored as an index of endogenous production of prostaglandin endoperoxides and thromboxane A2 and were increased after incubation of human platelets with thrombin, collagen or arachidonic acid. However, neither malonydialdehyde nor thromboxane B2 levels were significantly influenced by the endoperoxide analogues. Both analogues produced a small elevation of adenylate cyclase activity in platelet membranes and of cyclic AMP content in intact platelets, but neither had any modifying effect on the much greater stimulation of adenylate cyclase and cyclic AMP levels by prostaglandin E1. Of all the aggregating agents tested, only arachidonic acid produced any significant increase in platelet cyclic GMP levels.These results suggest that the epoxymethano analogues of prostaglandin endoperoxides induce platelet aggregation independently of thromboxane biosynthesis and without inhibiting adenylate cyclase or lowerin platelet cyclic AMP levels. They therefore differ from better known aggregating agents such as ADP, epinephrine and collagen, which increase thromboxane A2 production and reduce cyclic AMP levels, at least in platelets previously exposed to prostaglandin E1.  相似文献   

19.
Platelet activation is a complex process induced by a variety of stimuli, which act in concert to ensure the rapid formation of a platelet plug at places of vascular injury. We show here that fibrillar collagen, which initiates platelet activation at the damaged vessel wall, activates only a small fraction of platelets in suspension directly, whereas the majority of platelets becomes activated by mediators released from collagen-activated platelets. In Galpha(q)-deficient platelets that do not respond with activation of integrin alpha(IIb)beta(3) to a variety of mediators like thromboxane A2 (TXA2), thrombin, or ADP, collagen at high concentrations was able to induce aggregation, an effect that could be blocked by antagonists of the TXA2 or P2Y12 receptors. The activation of TXA2 or P2Y12 receptors alone, which in Galpha(q)-deficient platelets couple to G12/G13 and Gi, respectively, did not induce platelet integrin activation or aggregation. However, concomitant activation of both receptors resulted in irreversible integrin alpha(IIb)beta3-mediated aggregation of Galpha(q)-deficient platelets. Thus, the activation of G12/G13- and Gi-mediated signaling pathways is sufficient to induce integrin alpha(IIb)beta3 activation. Although G(q)-mediated signaling plays an important role in platelet activation, it is not strictly required for the activation of integrin alpha(IIb)beta3. This indicates that the efficient induction of platelet aggregation through G-protein-coupled receptors is an integrated response mediated by various converging G-protein-mediated signaling pathways involving G(q) and G(i) as well as G12/G13.  相似文献   

20.
Conflicting results have been reported regarding the effect of thiopental on aggregation and cytosolic calcium levels in platelets. The present study attempted to clarify these phenomena. Using platelet-rich plasma or washed suspensions, platelet aggregation, thromboxane (TX) B2 formation, arachidonic acid (AA) release, and cytosolic free calcium concentrations ([Ca2+]i) were measured in the presence or absence of thiopental (30-300 microM). Platelet activation was induced by adenosine diphosphate (ADP, 0.5-15 microM), epinephrine (0.1-20 microM) arachidonic acid (0.5-1.5 mM), or (+)-9,11-epithia-11,12-methano-TXA2 (STA2, 30-500 nM). Measurements of primary aggregation were performed in the presence of indomethacin (10 microM). Low concentrations of ADP and epinephrine, which did not induce secondary aggregation in a control study, induced strong secondary aggregation in the presence of thiopental (> or = 100 microM). Thiopental (> or = 100 microM) also increased the TXB2 formation induced by ADP and epinephrine. Thiopental (300 microM) increased ADP- and epinephrine-induced 3H-AA release. Thiopental (300 microM) also augmented the ADP- and epinephrine-induced increases in [Ca2+]i in the presence of indomethacin. Thiopental appears to enhance ADP- and epinephrine-induced secondary platelet aggregation by increasing AA release during primary aggregation, possibly by the activation of phospholipase A2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号