首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anabaena volzii Lemm. is a rare species of Cyanophyta. It possesses characteristics of prokary0tes. Young filaments of A. volzii consist of only vegetative cells. The filament leng- thens by the increase of its cell number owing to amitosis. A mature filament contains vegetative cells, heterocysts and akinetes; the latter two differentiate from the vegetative cells. Vegetative cells and heterocysts are short-cylindric shaped. An akinete in longitudinal sections of appear to be elliptical. Viewed with a transmission electron microscope, an electron-dense cell wall, plasmolemma, thylakoids (photosynthetic lamellae), nucleo-plasmic region and polyhedral bodies can be seen in the vegetative cell. The nucleo-plasmic region, which lacks a nuclear envelope, is surrounded or dissected, but often connected with the thylakoids. There are also some extremely electron-dense (if samples were post-fixed in osmic acid) cyanophycin granules in its cytoplasm. Heterocyst is larger than vegetative cells. Its remarkable features are a thick envelope, an electron-transparent cell wall and a distinctive plug-like body at both ends of the cell respectively. In the plug-like body is seen an irregular narrow channel. Somewhat dilated thylakoids in the heterocyst appear to be more winding and contorted (than those in vegetative cells), making a dedicate pattern. A long ellipticring-shaped membrane structure is formed in a heterocyst ,composed, of an electron-dense rod core surrounded by 14 concentric layers of lamellae. Akinete forms thick cell wall. A nucleo-plasmic region, fine and contorted thylakoids, many cyanophycin granules, and abundant ribosomes are found in akinetes.  相似文献   

2.
Addition of the arginine analogue, canavanine, to cultures of nitrogen-fixing Anabaena cylindrica at the onset of akinete formation, resulted in the development of akinetes randomly distributed within the filament, in addition to those adjacent to heterocysts. The total frequency of akinetes increased up to five-fold. A feature of akinetes is their increased content of cyanophycin granules (an arginine-aspartic acid polymer) and addition of canavanine to cultures at an earlier stage resulted in entire filaments becoming agranular and containing agranular akinetes. The effects on akinete pattern appeared to be specific for canavanine since other amino acid analogues, although increasing the frequency of akinetes (approximately two-fold), had no effect on their position relative to heterocysts. In ammonia-grown, stationary phase cultures of A. cylindrica, akinetes were observed adjacent to proheterocysts and in positions more than 20 cells from any heterocyst. These observations indicate that nitrogen fixation and heterocysts are not essential for akinete formation in A. cylindrica, although the availability of a source of fixed nitrogen does appear to be a requirement.These results suggest that during exponential growth some aspect of the physiology of vegetative cells suppresses their development into akinetes and that the role of the heterocyst may not be one of direct stimulation of adjacent vegetative cells to form akinetes, but the removal or negation of the inhibition within them. A model for akinete formation and the involvement of canavanine is given.  相似文献   

3.
超声波对铜绿微囊藻超微结构和生理特性的影响   总被引:3,自引:0,他引:3  
为了研究超声波对蓝藻细胞的影响,利用超声波(40W)处理200 mL铜绿微囊藻(Microcystis aeruginosa) 悬浮液20min,之后继续培养并于不同时间取样检测。检测悬浮藻细胞生物量发现其3d降低了97.84%;分别观察1、3、5d时沉降藻细胞超微结构变化,发现13d时细胞内脂质颗粒和藻青素颗粒增多、类囊体片层断裂、藻胆体脱落,5d时拟核区萎缩消失、细胞基础结构解体、胞质出现空洞、胞内结构颗粒降解;检测藻细胞光合放氧速率、叶绿素a (Chl.a)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性、膜透性以及跨膜ATP酶活性,发现光合放氧速率3d下降24.83%,Chl.a含量5d下降23.75%,超声组细胞SOD活性变化幅度比较大,但总体上活性降低,而CAT活性则表现为先增后减,活性始终大于对照组,同时胞内有机物渗出量增大,三种跨膜ATP酶活性(Na+/K+-ATPase、Mg2+-ATPase 和Ca2+-ATPase)均先升后降,并与膜透性变化相关。以上结果表明,超声波使铜绿微囊藻细胞沉降,并对其造成了胁迫,使部分藻细胞光合作用减弱,光合色素遭到损伤,细胞膜透性增大,甚至引起藻细胞程序性死亡。SOD活力的快速降低表明超声波使藻细胞内超氧离子(O2-)过量累积,从而对藻细胞造成氧化损伤,除此之外,超声波使藻细胞基础结构破坏、细胞内结构颗粒降解、细胞膜透性增大,这些都可能是致使部分铜绿微囊藻细胞死亡的重要原因。铜绿微囊藻细胞CAT以及跨膜ATP酶活性增大,表明藻细胞增强抗氧化酶活性以及离子调控和能量活动以抵御超声波的胁迫,而当胁迫随着时间减小后,细胞开始恢复生长和代谢,酶活力开始降低。    相似文献   

4.
Nitrogen starvation, effected by incubating a culture ofAnabaena cylindrica in a medium free from combined nitrogen and under an atmosphere of 1% CO2 in argon, leads to rapid and characteristic changes in the appearance, structure and function of the alga. Change of colour, due apparently to a decrease in the amounts of nitrogenous pigments, is accompanied by a structural transformation of vegetative cells: cyanophycin granules and polyhedral bodies disintegrate, lipid and glycogen accumulate, and large membrane-bound spaces form by means of thylakoid swelling and vesiculation. The rate of heterocyst differentiation and nitrogenase activity is increased. These changes are fully reversed on addition of ammonia to the culture. It appears that thylakoids reform by coalescence of small vesicles assembled in the intrathylakoidal space. Rapid ammonia assimilation is indicated by ample formation of cyanophycin granules in vegetative cells and of “plugs” in the heterocysts.  相似文献   

5.
Assembly of the major light-harvesting complex (LHC II) and development of photosynthetic function were examined during the initial phase of thylakoid biogenesis inChlamydomonas reinhardtii cells at 38°C. Continuous monitoring of LHC II fluorescence showed that these processes were initiated immediately upon exposure of cells to light. However, mature-size apoproteins of LHC II (Lhcb) increased in amount in an alkali-soluble (non-membrane) fraction in parallel with the increase in the membrane fraction. Alkali-soluble Lhcb were not integrated into membranes when protein synthesis was inhibited, suggesting that they were not active intermediates in LHC II assembly, nor were they recovered in a purified chloroplast preparation. Immunocytochemical analysis of greening cells revealed Lhcb inside the chloroplast near the envelope and in clusters deeper in the organelle. Antibody binding also detected Lhcb in granules within vacuoles in the cytosol, and Lhcb were recovered in granules purified from greening cells. Our results suggest that the cytosolic granules serve as receptacles of Lhcb synthesized in excess of the amount that can be accommodated by thylakoid membrane formation within the plastid envelope.  相似文献   

6.
Summary The fine structure of honey-coloured, sessile Endogone spores is described from initiation of the mother spore to dormancy of the resting spore. Three unusual organelles occur viz. pigment granules, large crystals and selfduplicating bacteria-like organisms. The first two are very numerous, and are specifically associated with spore formation. The pigment granules are involved in the deposition of the honey-coloured wall, and change into myelin-like figures when cytoplasm moves from the mother into the resting spore. The crystals, whose function is not known, are most conspicuous just before the resting spore reaches dormancy. The bacteria-like organisms, which may be actinomycete spores living symbiotically in the fungus, multiphy greatly as the spore enters dormancy. The dormant spore contains very little cytoplasm compressed into a fine network between very large polygonal oil globules and large round bodies thought to contain a storage polysaccharide.  相似文献   

7.
Ultrastructural and immunocytochemical investigations gave evidence that cyanophycin (multi-L-arginyl-poly-L-aspartate) granules accumulate in the cyanobacterium Synechocystis sp. strain PCC 6803 under nutrient deficient growth conditions, especially under phosphate limitation. Besides nutrient deficiency, growth of Synechocystis PCC 6803 on L-arginine or L-asparagine as sole N-source also led to high increase of cyanophycin synthesis, while growth on the combination of L-arginine or L-asparagine with nitrate only caused minor cyanophycin accumulation. Growth of Synechocystis PCC 6803 on L-arginine as sole N-source caused substantial morphological and physiological changes, such as severe thylakoid membrane degradation with partial loss of pigments and photosynthetic activity leading to a phenotype almost like that seen under nutrient deficiency. In contrast to the wild type, the PsbO-free Synechocystis PCC 6803 mutant could grow on L-arginine as sole N-source with only minor morphological and physiological changes. Due to its fairly balanced growth, the mutant accumulated only few cyanophycin granules. L-arginine degrading activity (measured as ornithine and ammonium formation) was high in the PsbO-free mutant but not in the wild type when cells were grown on L-arginine as sole N-source. In both cells types the L-arginine degrading activity was high (although in the PsbO-free mutant about twice as high as in wild type), when cells were grown on L-arginine in combination with nitrate, and as expected very low when cells were grown on nitrate as sole N-source. Thus, net cyanophycin accumulation in Synechocystis PCC 6803 is regulated by the relative concentration of L-arginine to the total nitrogen pool, and the intracellular L-arginine concentration is greatly influenced by the activity of the L-arginine degrading enzyme system which in part is regulated by the activity status of photosystem II. These results suggest a complex interrelation between cyanophycin synthesis, L-arginine catabolism, and in addition photosynthesis in Synechocystis PCC 6803.  相似文献   

8.
Induction of spore differentiation is achieved within three days in Nodularia spumigena by incubating the cultures at 35 degrees C in the light. Morphologically detectable sporulation and spore germination could not occur in the presence of chloramphenicol, streptomycin and penicillin. But chloramphenicol-supplemented cultures developed prominent cyanophycin granules. Synthesis of these granules seems to be a non-ribosomal phenomenon.  相似文献   

9.
10.
Carpospore differentiation in Faucheocolax attenuata Setch. can be separated into three developmental stages. Immediately after cleaving from the multinucleate gonimoblast cell, young carpospores are embedded within confluent mucilage produced by gonimoblast cells. These carpospores contain a large nucleus, few starch grains, concentric lamellae, as well as proplastids with a peripheral thylakoid and occasionally some internal (photosynthetic) thylakoids. Proplastids also contain concentric lamellar bodies. Mucilage with a reticulate fibrous substructure is formed within cytoplasmic concentric membranes, thus giving rise to mucilage sacs. Subsequently, these mucilage sacs release their contents, forming an initial reticulate deposition of carpospore wall material. Dictyosome vesicles with large, single dark-staining granules also contribute to wall formation and may create a separating layer between the mucilage and carpospore wall. During the latter stages of young carpospores, starch is polymerized in the perinuclear cytoplasmic area and is in close contact with endoplasmic reticulum. Intermediate-aged carpospores continue their starch polymerization. Dictyosomes deposit more wall material, in addition to forming fibrous vacuoles. Proplastids form thylakoids from concentric lamellar bodies. Mature carpospores are surrounded by a two-layered carpospore wall. Cytoplasmic constituents include large floridean starch granules, peripheral fibrous vacuoles, mature chloroplasts and curved dictyosomes that produce cored vesicles which in turn are transformed into adhesive vesicles. Pit connections remain intact between carpospores but begin to degenerate. This degeneration appears to be mediated by microtubules.  相似文献   

11.
The subcellular localization of calcium in cells of symbiotic partners located within leaf cavities of Azolla was investigated by using chlorotetracycline, ESI and EELS analysis. Loosely membrane-bound calcium was evidenced by using CTC or EGTA and CTC, in cytoplasmic regions of Azolla hair cells and in cytoplasm of the cyanobiont. Tightly membrane-bound calcium revealed by CTC, and ESI and EELS analysis, was observed in cyanophycin granules and carboxysomes of the cyanobiont. A third calcium type, revealed by ESI and EELS analysis, was localized at the level of cell walls of simple and branched Azolla hairs, in the envelope of heterocysts, and in the cell walls of the cyanobiont.  相似文献   

12.
This study was carried out to investigate the genesis of N. spumigena blooms by specifically studying the effects of environmental variables (salinity, nitrogen, phosphorus and light) on the germination of N. spumigena akinetes. Optimal conditions for maximum germination and germling growth were determined by exposing akinetes to a range of salinities and nutrient (nitrogen and phosphorus) concentrations under two different irradiances. At pre-determined time periods, treatments were sampled and the percent germination and length of germlings assessed. The results indicated that akinete germination and germling growth were optimal at salinities from 5 to 25 and significantly reduced outside this range. A positive correlation in germination was observed with increasing nutrient (phosphorus and nitrate) concentration. Similarly, germling growth increased with increasing concentrations of both nutrients. Irradiance significantly influenced both germination and growth during salinity experiments, whereas in nutrient addition experiments, irradiance had no effect on germination; however, growth was significantly influenced during phosphorus addition experiments. Consequently, salinity and light appeared to be most critical in the germination process for N. spumigena akinetes, with phosphorus most important for germling growth. The study showed that N. spumigena may be able to germinate under environmental conditions outside its optimal range, but the growth of the germling is significantly reduced, which in turn suggests that its ability to form a bloom outside its optimal environmental conditions would also be greatly reduced.  相似文献   

13.
Three lines of evidence established conclusively that phosphorus limitation triggered akinetes to differentiate in Anabaena circinalis Rabenhorst. First, akinetes differentiated when phosphorus was limited, but not when nitrogen, inorganic carbon, iron, trace elements, or light were limited, or when dissolved oxygen concentration was increased. In the phosphorus limitation experiment, akinetes appeared first in the 0 mg P-L?1 cultures, and the higher the initial concentration of phosphorus was, the longer it took for akinetes to differentiate. Second, akinete differentiation commenced when Qp fell to the same critical concentration in all cultures. The critical Qp for akinete differentiation in A. circinalis was 0.3-0.45 pg P·cell?1, and there was no significant difference between cultures grown with 0.6, 0.2, 0.06, or 0 mg P · L?1 (F= 5.48, of = 3, P > 0.05). Similarly, there were no significant differences between P cultures in internal cellular soluble reactive phosphorus (SRP) concentration (F= 0.63, df = 3, P > 0.05) or external SRP per cell in the medium (F= 5.16, df= 3, P > 0.05) when akinete differentiation commenced. Both were between 0.01 and 0.07 pg SRP-cell?1. A thorough literature search indicates that this information has not been reported previously. The third line of evidence came from electron micrographs, which illustrated that polyphosphate was present in trichomes prior to akinete differentiation but was absent in trichomes with akinetes indicating that phosphorus reserves were depleted when akinetes differentiated. Lipid globules (carbon reserve) and cyanophycin granules (nitrogen reserve) increased in number in trichomes with akinetes, compared to trichomes without akinetes. Thus, the ratio of internal P:C:N was different in trichomes with akinetes compared to trichomes without akinetes and may be important in activating akinete-differentiating genes.  相似文献   

14.
Summary Trichodesmium is the first described example of a filamentous cyanobacterium without heterocysts that contains cells specialised for nitrogen fixation. The ultrastructure of cells with and without nitrogenase were compared using primarilyTrichodesmium tenue Wille, but alsoT. thiebautii Gomont andT. erythraeum Ehrenberg et Gomont. Immunohistochemistry demonstrated that the cytoplasm of certain cells was densely labelled with antibodies against Fe-protein (dinitrogenase reductase). Comparative TEM-image analysis revealed that these cells were also distinguished by a denser thylakoid network, dividing the vacuole-like space into smaller units. The nitrogenase-containing cells also exhibited less extensive gas vacuoles as well as fewer and smaller cyanophycin granules compared to cells which lacked nitrogenase. Carboxysomes were present in both cell types in equal proportion. Longitudinal sections showed that cells with nitrogenase were arranged adjacent to each other, and that groups of cells with and without nitrogenase may coexist in the same trichome. The correlation between modifications in ultrastructure and the presence of nitrogenase suggests a new type of cyanobacterial cell specialisation related to nitrogen fixation. The results obtained also question the systematic affiliation of the genusTrichodesmium.  相似文献   

15.
Gorelova  O. A.  Kleimenov  S. Yu. 《Microbiology》2003,72(3):318-326
Five different artificial associations of cyanobacterial cells with the cells or tissues of nightshade and rauwolfia were studied. The associations grown on nitrogen-containing media produced heterocysts. Cyanobacterial cells in the associations retained their ability to take up combined nitrogen from the medium, to store it in the form of cyanophycin granules, and to use them in the process of symbiotic growth. The synthesis and degradation of cyanophycin granules in cyanobacterial cells were more active in the associations than in monocultures. In the symbiotic associations of Chlorogloeopsis fritschii ATCC 27193 with Solanum laciniatum cells and of Nostoc muscorum CALU 304 with the Rauwolfia serpentina callus, heterocysts were produced with a 3- to 30-fold higher cyanophycin content than in pure cyanobacterial cultures. In contrast, in the association of N. muscorum CALU 304 with the Solanum dulcamara callus, heterocysts were produced with a lower cyanophycin content than in the N. muscorum CALU 304 pure culture. The degradation of cyanophycin granules in N. muscorum CALU 304 cells grown in associations with plant tissues or cells was subjected to mathematical analysis. The activation of cyanophycin degradation and heterocyst differentiation in the associations N. muscorum CALU 304–R. serpentinaand C.fritschii–S. laciniatum was accompanied by an enhanced synthesis of the nitrogen-containing alkaloids in plant cells. The data obtained suggest that an integrated system of nitrogen homeostasis can be formed in symbiotic associations. Depending on the growth stage of an association, its plant member can either stimulate the accumulation of combined nitrogen in vegetative cyanobacterial cells in the form of cyanophycin granules, activate their degradation, or initiate the formation of heterocysts independently of the cyanobacterial combined nitrogen deprivation sensing-signaling pathway.  相似文献   

16.
Akinetes are spore‐like nonmotile cells that differentiate from vegetative cells of filamentous cyanobacteria from the order Nostocales. They play a key role in the survival and distribution of these species and contribute to their perennial blooms. Various environmental factors were reported to trigger the differentiation of akinetes including light intensity and quality, temperature, and nutrient deficiency. Here, we report that deprivation of potassium ion (K+) triggers akinete development in the cyanobacterium Aphanizomenon ovalisporum. Akinetes formation is initiated 3 d–7 d after an induction by K+ depletion, followed by 2–3 weeks of a maturation process. Akinete formation occurs within a restricted matrix of environmental conditions such as temperature, light intensity or photon flux. Phosphate is essential for akinete maturation and P‐limitation restricts the number of mature akinetes. DNA replication is essential for akinete maturation and akinete development is limited in the presence of Nalidixic acid. While our results unequivocally demonstrated the effect of K+ deficiency on akinete formation in laboratory cultures of A. ovalisporum, this trigger did not cause Cylindrospermopsis raciborskii to produce akinetes. Anabaena crassa however, produced akinetes upon potassium deficiency, but the highest akinete concentration was achieved at conditions that supported vegetative growth. It is speculated that an unknown internal signal is associated with the cellular response to K+ deficiency to induce the differentiation of a certain vegetative cell in a trichome into an akinete. A universal stress protein that functions as mediator in K+ deficiency signal transduction cascade, may communicate between the lack of K+ and akinete induction.  相似文献   

17.
SYNOPSIS. The eyespot of the zoospore of Tetracystis excentrica (a green alga) has been studied by light and electron microscopy. In Tetracystis the eyespot consists of about 110 osmiophilic granules which form a plate in the anterior third of the cell. The granules are about 80 Å in diameter and are found in the outermost portion of the chloroplast; they commonly show hexagonal close packing and a hexagonal shape. The granules are confined positionally by the chloroplast envelope and an inner thylakoid. The plasmalemma over the eyespot is thickened and is separated from the chloroplast envelope by a 50 mμ space. The eyespot of Tetracystis is compared with others reported in the literature and the possible functional significance of these studies is discussed. The possibility that the eyespot plate in Tetracystis serves as a shading device rather than the primary photoreceptor is considered.  相似文献   

18.
Ultrastructural features and immunological properties of some thylakoid proteins were examined in two strains of the prochlorophyte Prochlorococcus and compared to those of other photosynthetic prokaryotes and eukaryotes. Both strains exhibited two or three rows of tightly appressed thylakoidal membranes, located at the cell periphery. However, thylakoids were concentrically arranged in the strain from the Sargasso Sea (SARG) and horseshoe-shaped in the Mediterranean isolate (CCMP 1378). Although lacking phycobilisomes, both cell types shared with cyanobacteria the presence of carboxysome-like structures and glycogen granules as storage compounds. The main thylakoid polypeptides separated by sodium dodecyl sulfate—polyacrylamide gel electrophoresis were characterized by Western blotting using several antibodies. The 30-kDa polypeptide of the light-harvesting complex (LHC) of Prochlorococcus showed a weak positive immunological cross-reaction with an antibody raised against the 32-kDa apoprotein of the LHC of the prochlorophyte Prochlorothrix hollandica. In contrast, it showed no immunological relationships with the chlorophyll a/b (Chl a/b) LHCs of green algae and higher plants. Protein membranes from Prochlorococcus strongly cross-reacted with antibodies raised against reaction center polypeptides of photosystems II and I (PSs II and I) of other photosynthetic organisms, confirming the high degree of conservation of these basic compounds of the photosynthetic machinery during evolution. Immunolocalization of thylakoid proteins showed that the LHC proteins, the major PS II reaction center proteins (CP 43 and D2), and the PS I reaction center proteins were equally distributed within the thylakoid membranes in contrast to the segregation observed in higher plants and green alga thylakoids. We also identified ribulose-1, 5-bisphosphate carboxylase/oxygenase in the carboxysomes. These results suggest that Prochlorococcus is more closely related to cyanobacteria than to green plastids even though it contains Chl b.  相似文献   

19.
The ultrastructure of the cyanobacterium Spirulina platensis was studied in relation to temperature, light intensity and nitrate concentration. The organism was able to grow in media supplied with nitrate in concentrations up to 250mm. High nitrate concentrations increased the yield and growth rate at temperatures above 35°C. Occurrence, distribution and abundance of cyanophycin granules, polyglucan granules, cylindrical bodies, carboxysomes and mesosomes varied widely in relation to the factors studied. At low temperatures (up to 17°C) cyanophycin was the abundant organelle, especially at high nitrate concentrations, whereas in the temperature range 17–20°C polyglucan was found in large quantities particularly at low nitrate concentrations. Special attention was paid to the cylindrical bodies, the ultrastructure of which was dependent on temperature. Three types of ultrastructure were distinguished each with several possible shapes.  相似文献   

20.
The ultrastructure of the blue-green alga Spirulina platensis has been investigated. The appearance of photosynthetic thylakoids, polyphosphate and cyanophycin granules and nucleoplasm was studied. Cells of Spirulina have also been disintegrated and extracted with different concentrations of sodium hydroxide and the amount of extractable and isoelectrically precipitable nitrogen has been determined. High yields were obtained with about 60 % of the nitrogen precipitable after extraction of disintegrated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号