首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retrotransposon markers have been demonstrated to be powerful tools for investigating linkage, evolution and genetics diversity in plants. In the present study, we identified and cloned three full-size TRIM (terminal-repeat retrotransposon in miniature) group retrotransposon elements from apple (Malus domestica) cv. ‘Antonovka’, the first from the Rosaceae. To investigate their utility as markers, we designed primers to match the long terminal repeats (LTRs) of the apple TRIM sequences. We found that PCR reactions with even a single primer produced multiple bands, suggesting that the copy number of these TRIM elements is relatively high, and that they may be locally clustered or nested in the genome. Furthermore, the apple TRIM primers employed in IRAP (inter-retrotransposon amplified polymorphism) or REMAP (retrotransposon-microsatellite amplified polymorphism) analyses produced unique, reproducible profiles for 12 standard apple cultivars. On the other hand, all seven of the sport mutations in this study were identical to their mother cultivar. Genetic similarity values calculated from the IRAP/REMAP analyses or the STMS (sequence tagged microsatellite sites) analysis were generally comparable. PAUP cluster analysis based on IRAP and REMAP markers in apple and Japanese quince generated an NJ tree that is in good accordance with both a tree based on SMTS markers and the origin of the studied samples. Our results demonstrate that, although they do not encode the proteins necessary to carry out a life cycle and are thereby non-autonomous, TRIMs are at least as polymorphic in their insertion patterns as conventional complete retrotransposons. Kristiina Antonius-Klemola, Ruslan Kalendar are the first two authors contributed equally to this work  相似文献   

2.
 To obtain homozygous genotypes of apple, we have induced haploid development of either the female or the male gametes by parthenogenesis in situ and anther culture, respectively. Of the shoots obtained, which were mainly of a non-haploid nature, some could be derived from fertilised egg cells or from sporophytic anther tissue. In order to select the shoots having a true haploid origin, and thus homozygotes, we decided to use the single multi-allelic self-incompatibility gene as a molecular marker to discriminate homozygous from heterozygous individuals. The rationale behind this approach was that diploid apple cultivars contain 2 different alleles of the S-gene and therefore the haploid induced shoots obtained from them should have only one of the alleles of the single parent. The parental cultivars used were ‘Idared’ (parthenogenesis in situ) and ‘Braeburn’ (androgenesis), and their S-genotypes were known, except for 1 of the ‘Braeburn’S-alleles. To stimulate parthenogenetic development ‘Idared’ styles were pollinated with irradiated ‘Baskatong’ pollen, the S-alleles of the latter (2n) cultivar were also unknown. The cloning and sequence analysis of these 3 unidentified S-alleles, 1 from ‘Braeburn’ and 2 from ‘Baskatong’ is described, and we show that they correspond to the S 24 -, S 26 - and S 27 -alleles. We have optimised a method for analysis of the S-alleles of ‘Idared/Baskatong’- or ‘Braeburn’-derived in vitro plant tissues and have shown that this approach can be applied for the screening of the in vitro shoots for their haploid origin. Received: 18 August 1997 / Accepted: 10 September 1997  相似文献   

3.
Jurka J  Kapitonov VV 《Genetica》1999,107(1-3):239-248
Transposable elements (TEs) generate insertions and cause other mutations in the genomic DNA. It is proposed that during co-evolution between TEs and eukaryotic genomes, an optimal path of the insertion mutagenesis is determined by the surviving TEs. These TEs can become semi-permanently established, chromatin-regulated ‘source’ or ‘mutator genes’, responsible for targeting insertion mutations to specific chromosomal regions. Such mutations can manifest themselves in non-random distribution patterns of interspersed repeats in eukaryotic chromosomes. In this paper we discuss specific models, examples and implications of optimized mutagenesis in eukaryotes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
5.
6.
The rosy apple aphid (Dysaphis plantaginea), the leaf-curling aphid (Dysaphis cf. devecta) and the green apple aphid (Aphis pomi) are widespread pest insects that reduce growth of leaves, fruits and shoots in apple (Malus × domestica). Aphid control in apple orchards is generally achieved by insecticides, but alternative management options like growing resistant cultivars are needed for a more sustainable integrated pest management (IPM). A linkage map available for a segregating F1-cross of the apple cultivars ‘Fiesta’ and ‘Discovery’ was used to investigate the genetic basis of resistance to aphids. Aphid infestation and plant growth characteristics were repeatedly assessed for the same 160 apple genotypes in three different environments and 2 consecutive years. We identified amplified fragment length polymorphism (AFLP) markers linked to quantitative trait loci (QTLs) for resistance to D. plantaginea (‘Fiesta’ linkage group 17, locus 57.7, marker E33M35–0269; heritability: 28.3%), and to D. cf. devecta (‘Fiesta’ linkage group 7, locus 4.5, marker E32M39–0195; heritability: 50.2%). Interactions between aphid species, differences in climatic conditions and the spatial distribution of aphid infestation were identified as possible factors impeding the detection of QTLs. A pedigree analysis of simple sequence repeat (SSR) marker alleles closely associated with the QTL markers revealed the presence of the alleles in other apple cultivars with reported aphid resistance (‘Wagener’, ‘Cox’s Orange Pippin’), highlighting the genetic basis and also the potential for gene pyramiding of aphid resistance in apple. Finally, significant QTLs for shoot length and stem diameter were identified, while there was no relationship between aphid resistance and plant trait QTLs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Marker-assisted selection (MAS) offers quick and reliable prediction of the phenotypes of seedlings in large populations and thus opens new approaches for selection to breeders of apple (Malus x domestica Borkh.). The development of framework maps enables the discovery of genetic markers linked to desired traits. Although genetic maps have been reported for apple scion cultivars, none has previously been constructed for apple rootstocks. We report the construction of framework genetic maps in a cross between ‘M.9’ (‘Malling 9’) and ‘R.5’ (‘Robusta 5’) apple rootstocks. The maps comprise 224 simple sequence repeat (SSR) markers, 18 sequence-characterised amplified regions, 14 single nucleotide polymorphisms and 42 random amplified polymorphic DNAs. A new set of 47 polymorphic SSRs was developed from apple EST sequences and used for construction of this rootstock map. All 17 linkage groups have been identified and aligned to existing apple genetic maps. The maps span 1,175.7 cM (‘M.9’) and 1,086.7 cM (‘R.5’). To improve the efficiency of mapping markers to this framework map, we developed a bin mapping set. Applications of these new genetic maps include the elucidation of the genetic basis of the dwarfing effect of the apple rootstock ‘M.9’ and the analysis of disease and insect resistance traits such as fire blight (Erwinia amylovora), apple scab (Venturia inaequalis) and woolly apple aphid (Eriosoma lanigerum). Markers for traits mapped in this population will be of direct use to apple breeders for MAS and for identification of causative genes by map-based cloning.  相似文献   

8.
While most risk assessments contrast a transgenic resistant to its isogenic line, an additional comparison between the transgenic line and a classically bred cultivar with the same resistance gene would be highly desirable. Our approach was to compare headspace volatiles of transgenic scab resistant apple plants with two representative cultivars (the isogenic ‘Gala’ and the scab resistance gene-containing ‘Florina’). As modifications in volatile profiles have been shown to alter plant relationships with non-target insects, we analysed headspace volatiles from apple plants subjected to different infection types by gas chromatography-mass spectrometry. Marked differences were found between healthy and leafminer (Phyllonorycter blancardella) infested genotypes, where emissions between the transgenic scab resistant line and the two cultivars differed quantitatively in four terpenes and an aromatic compound. However, these modified odour emissions were in the range of variability of the emissions recorded for the two standard cultivars that proved to be crucial references.  相似文献   

9.
 Previous studies have established that chloroplasts are inherited paternally in Actinidia interspecific crosses. However, fertilisation problems in interspecific crosses may affect the transmission of organelles. Six female clones, i.e. ‘Abbott’, ‘Bruno’, ‘Greensill’, ‘Hayward’, ‘Jones’, ‘Monty’, and four male clones were used to identify cpDNA polymorphisms within the cultivated kiwifruit species A. deliciosa. The restriction patterns by HpaII of a chloroplast fragment amplified by PCR with a pair of universal primers revealed a polymorphism at the intraspecific level. The inheritance of cpDNA in 143 seedlings from three intraspecific crosses in kiwifruit (Actinidia deliciosa) was studied. All offspring displayed the restriction pattern of the paternal parent, indicating that maternal inheritance of cpDNA in kiwifruit is rare at best. Strict maternal inheritance of mtDNA was confirmed in the same crosses used to investigate cpDNA transmission. Studies of cytoplasmic inheritance in the Actinidia genus represent to date the best documented report of differential organelle inheritance of cpDNA and mtDNA in angiosperms. Received: 10 November 1998 / Accepted: 14 December 1998  相似文献   

10.
Insecticidal proteins are a potential resource to enhance resistance to insect pests in transgenic plants. Here, we describe the generation and analysis of the apple cultivar ‘Royal Gala’ transgenic for Nicotiana alata (N. alata) proteinase inhibitor (PI) and the impact of this PI on the growth and development of the Epiphyas postvittiana (light-brown apple moth). A cDNA clone encoding a proteinase inhibitor precursor from N. alata (Na-PI) under the control of either a double 35S promoter or a promoter from a ribulose-1,5-bisphosphate carboxylase small sub-unit gene (rbcS-E9 promoter) was stably incorporated into ‘Royal Gala’ apple using Agrobacterium-mediated transformation. A 40.3 kDa Na-PI precursor protein was expressed and correctly processed into 6-kDa proteinase inhibitors in the leaves of transgenic apple lines. The 6-kDa polypeptides accumulated to levels of 0.05 and 0.1% of the total soluble protein under the control of the rbc-E9 promoter and the double 35S promoter, respectively. Light-brown apple moth larvae fed with apple leaves expressing Na-PI had significantly reduced body weight after 7 days of feeding and female pupae were 19–28% smaller than controls. In addition, morphological changes such as pupal cases attached to the wing, deformed wings, deformed body shape, and pupal cases and curled wings attached to a deformed body were observed in adults that developed from larvae fed with apple leaves expressing Na-PI, when compared to larvae fed with the non-transformed apple leaves.  相似文献   

11.
A study was conducted to determine which bud (terminal or lateral) breaks first, and thereby exerts primigenic dominance, on ‘Granny Smith’ and ‘Golden Delicious’, 1-year-old apple (Malus × domestica Borkh.) shoots grown in two locations in the Western Cape, South Africa, with differing degrees of chilling. Primigenic dominance of laterals was more common in a warm area than a cool area, and more common in ‘Granny Smith’ than ‘Golden Delicious’. Laterals rarely broke before the terminal in ‘Golden Delicious’, and so differences in lateral development due to position of first bud to break were only analyzed in ‘Granny Smith’ shoots from this point on in the study. In ‘Granny Smith’, lateral budbreak and growth was influenced by the position of the first bud to break on the shoot, but did not differ between locations. On ‘Granny Smith’ shoots with primigenic dominance of the terminal, lateral budbreak and growth was suppressed, in accordance with the typical ‘delayed foliation’ commonly observed in warm winter climates. However, when at least one lateral broke before the terminal, lateral budbreak and growth were similar to previous observations in cold winter areas.  相似文献   

12.
13.
The Sequence-Specific Amplification Polymorphism (S-SAP) method, and the related molecular marker techniques IRAP (inter-retrotransposon amplified polymorphism) and REMAP (retrotransposon-microsatellite amplified polymorphism), are based on retrotransposon activity, and are increasingly widely used. However, there have been no systematic analyses of the parameters of these methods or of the utility of different retrotransposon families in producing polymorphic, scorable fingerprints. We have generated S-SAP, IRAP, and REMAP data for three barley (Hordeum vulgare L.) varieties using primers based on sequences from six retrotransposon families (BARE-1, BAGY-1, BAGY-2, Sabrina, Nikita and Sukkula). The effect of the number of selective bases on the S-SAP profiles has been examined and the profiles obtained with eight MseI+3 selective primers compared for all the elements. Polymorphisms detected in the insertion pattern of all the families show that each can be used for S-SAP. The uniqueness of each transposition event and differences in the historic activity of each family suggest that the use of multiple retrotransposon families for genetic analysis will find applications in mapping, fingerprinting, and marker-assisted selection and evolutionary studies, not only in barley and other Hordeum species and related taxa, but also more generally.  相似文献   

14.
Introduction of sustainable scab resistance in elite apple cultivars is of high importance for apple cultivation when aiming at reducing the use of chemical crop protectants. Genetic modification (GM) allows the rapid introduction of resistance genes directly into high quality apple cultivars. Resistance genes can be derived from apple itself but genetic modification also opens up the possibility to use other, non-host resistance genes. A prerequisite for application is the long-term performance and stability of the gene annex trait in the field. For this study, we produced and selected a series of transgenic apple lines of two cultivars, i.e. ‘Elstar’ and ‘Gala’ in which the barley hordothionin gene (hth) was introduced. After multiplication, the GM hth-lines, non-GM susceptible and resistant controls and GM non-hth controls were planted in a random block design in a field trial in 40 replicates. Scab resistance was monitored after artificial inoculation (first year) and after natural infection (subsequent years). After the trial period, the level of expression of the hth gene was checked by quantitative RT-PCR. Four of the six GM hth apple lines proved to be significantly less susceptible to apple scab and this trait was found to be stable for the entire 4-year period. Hth expression at the mRNA level was also stable.  相似文献   

15.
A high copy number of retrotransposon sequences are present and widely dispersed in plant genomes. Their activity generates a considerable degree of sequence polymorphism. Here, we report the cloning of CYRE-5, a long-terminal repeat carrying retrotransposon-like sequence in Cynara cardunculus L., and its exploitation to develop a DNA fingerprinting assay across 22 accessions, including both cultivated (globe artichoke and cultivated cardoon) and wild (wild cardoon) types. The effectiveness of the sequence-specific amplified polymorphism (S-SAP) platform is compared with that of amplified fragment length polymorphism (AFLP). A genetic linkage analysis, based on a hybrid population between 2 globe artichoke varietal types, resulted in the inclusion of 29 S-SAP loci in the core genetic map, confirming their dispersed distribution across the globe artichoke genome.  相似文献   

16.
17.
Woolly apple aphid (WAA; Eriosoma lanigerum Hausm.) can be a major economic problem to apple growers in most parts of the world, and resistance breeding provides a sustainable means to control this pest. We report molecular markers for three genes conferring WAA resistance and placing them on two linkage groups (LG) on the genetic map of apple. The Er1 and Er2 genes derived from ‘Northern Spy’ and ‘Robusta 5,’ respectively, are the two major genes that breeders have used to date to improve the resistance of apple rootstocks to this pest. The gene Er3, from ‘Aotea 1’ (an accession classified as Malus sieboldii), is a new major gene for WAA resistance. Genetic markers linked to the Er1 and Er3 genes were identified by screening random amplification of polymorphic deoxyribonucleic acid (DNA; RAPD) markers across DNA bulks from resistant and susceptible plants from populations segregating for these genes. The closest RAPD markers were converted into sequence-characterized amplified region markers and the genome location of these two genes was assigned to LG 08 by aligning the maps around the genes with a reference map of ‘Discovery’ using microsatellite markers. The Er2 gene was located on LG 17 of ‘Robusta 5’ using a genetic map developed in a M.9 × ‘Robusta 5’ progeny. Markers for each of the genes were validated for their usefulness for marker-assisted selection in separate populations. The potential use of the genetic markers for these genes in the breeding of apple cultivars with durable resistance to WAA is discussed.  相似文献   

18.
Summary DNA shuffling is a technique being utilized for in vitro recombination of a single gene or pools of homologous genes. The genes are fragmented into randomly sized pieces, and polymerase chain reaction (PCR) reassembly of full-length genes from the fragments, via self-priming, yields recombination due to PCR template switching. After these PCR products are screened and the interesting products sequenced, improved clones are reshuffled to recombine useful mutations in additive or synergistic ways, in effect mimicking the process of natural sexual recombination. Proteins can be ‘bred’ with the appropriate individual properties and then their ‘progeny’ screened for the desired combination of traits. DNA shuffling is a powerful tool enabling rapid and directed evolution of new genes, operons and whole viral genomes.  相似文献   

19.
This study analyzed genetic differences of 19 cultivars selected from somaclonal variants of Syngonium podophyllum Schott along with their parents as well as seven additional Syngonium species and six other aroids using amplified fragment length polymorphism (AFLP) markers generated by 12 primer sets. Among the 19 somaclonal cultivars, ‘Pink Allusion’ was selected from ‘White Butterfly’. Tissue culture of ‘Pink Allusion’ through organogenesis resulted in the development of 13 additional cultivars. Self-pollination of ‘Pink Allusion’ obtained a cultivar, ‘Regina Red Allusion’, and tissue culture propagation of ‘Regina Red Allusion’ led to the release of five other cultivars. The 12 primer sets generated a total of 1,583 scorable fragments from all accessions, of which 1,284 were polymorphic (81.9%). The percentages of polymorphic fragments within ‘White Butterfly’ and ‘Regina Red Allusion’ groups, however, were only 1.2% and 0.4%, respectively. Jaccard's similarity coefficients among somaclonal cultivars derived from ‘White Butterfly’ and ‘Regina Red Allusion’, on average, were 0.98 and 0.99, respectively. Seven out of the 15 cultivars from the ‘White Butterfly’ group and three out of six from the ‘Regina Red Allusion’ group were clearly distinguished by AFLP analysis as unique fragments were associated with respective cultivars. The unsuccessful attempt to distinguish the remaining eight cultivars from the ‘White Butterfly’ group and three from the ‘Regina Red Allusion’ group was not attributed to experimental errors or the number of primer sets used; rather it is hypothesized to be caused by DNA methylation and/or some rare mutations. This study also calls for increased genetic diversity of cultivated Syngonium as they are largely derived from somaclonal variants.  相似文献   

20.
Most of the 24 viruses which infect globe artichoke are detrimental to the crop’s performance and hamper the development of a nursery activity in the respect of current EU legislation. We describe a procedure to sanitize globe artichoke “Brindisino” from Artichoke Italian latent virus (AILV) and Artichoke latent virus (ArLV), while preserving its valuable early flowering trait. ArLV was successfully eliminated by meristem-tip culture, while AILV was removed when two rounds of meristem-tip culture were spaced out with in vitro thermotherapy. In vivo thermotherapy, followed by meristem-tip culture, was also successful in producing virus-free material but was less efficient in terms of the number of plants recovered post treatment. Due to the multi-clonal composition of the populations at present in cultivation, the selected and sanitised clones were fingerprinted by applying microsatellite and AFLP (amplified fragment length polymorphism) markers. One AFLP primer combination produced 28 informative fragments used to evaluate genetic relatedness among the clones in study. Our results demonstrates that AFLP-based molecular fingerprinting enables to verify the true to clone correspondence in nurseries, ensure the effective correspondence between the real and the declared identity of a clone, so that to avoid commercial frauds, and might represents a valuable tool for assessing somaclonal variation occuring during ‘in vitro’ propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号