首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
This laboratory has previously shown that binding of nuclear proteins to the antioxidant/electrophile response element (ARE/EpRE) participates in deregulation of vascular gene expression by benzo(a)pyrene (BaP), a suspected atherogen. In the present study, oligonucleotides representing ARE/EpREs within the c-Ha-ras and glutathione-S-transferase (GST-Ya) promoters were employed to evaluate the role of flanking sequences in stabilizing protein:DNA interactions in BaP-treated vascular smooth muscle cells (vSMCs). We also wanted to define promoter-specific patterns of protein recognition to ARE/EpREs in this cell system. In electrophoretic mobility shift assays (EMSA), optimal protein binding to a human Ha-ras ARE/EpRE variant sequence fitted to match the extended mouse(m) GST-Ya ARE/EpRE core (5'-TMAnnRTGAYnnnGCR-3') was dependent on 5' nucleic acid sequence. Using immobilized DNA affinity chromatography (IDAC), we identified four nuclear proteins of M(r) 62, 60, 50, and 30 kDa that associated specifically with the mGSTYa ARE/EpRE. Photo crosslinking to a BrdU-substituted hHa-ras or mGST ARE/EpRE probe identified specific proteins of M(r) 80, 60, 55, 25, 23 kDa or 80, 60, 55, 27, 25, 23 kDa, respectively. Protein:DNA complexes detected using IDAC eluate overlapped with those observed in crude nuclear extracts. Chemical treatments known to modulate ARE/EpRE protein binding in vSMCs did not alter overall protein:DNA affinity and/or sequence recognition to either hHa-ras or mGST-Ya elements. We conclude that nucleotide sequences 5' to the core ARE/EpRE influence specific binding of nuclear proteins and that multiple proteins bind to ARE/EpREs in a promoter-specific manner in vSMCs.  相似文献   

3.
The antioxidant/electrophile response element (ARE/EpRE) is a cis-acting element involved in redox regulation of c-Ha-ras gene. Protein binding to the ARE/EpRE may be credited to deoxyribonucleic acid sequence; therefore, studies were conducted to evaluate the influence of internal and flanking regions to the 10-bp human c-Ha-ras ARE/EpRE core (hHaras10) on nuclear protein binding in oxidant-treated vascular smooth muscle cells. A protein doublet bound to an extended oligonucleotide comprising the ARE/EpRE core in genomic context (hHaras27), whereas a single complex bound to hHarasl0. Protein binding involved specific interactions of 25- and 23-kDa proteins with hHarasl0, and binding of 80-, 65-, and 55-kDa proteins to hHaras27. Competition assays with hNQO1 and rGSTA2 confirmed the specificity of deoxyribonucleic acid-protein interactions and indicated preferred binding of p25 and p23 to the c-Ha-ras ARE/EpRE. "NNN" sequences within the core afforded unique protein-binding profiles to the c-Ha-ras ARE/EpRE. In addition, Nrf2 and heat shock protein 90beta (p80) were identified as components of the c-Ha-ras ARE/EpRE heterocomplex. We conclude that both internal bases and flanking sequences regulate nuclear protein recruitment and complex assembly on the c-Ha-ras ARE/EpRE.  相似文献   

4.
5.
6.
7.
8.
9.
Oltipraz, a cancer chemopreventive agent, induces CYP1A1 to a certain extent by transactivation of the gene via the Ah receptor (AhR)-xenobiotic response element (XRE) pathway. Previously, we showed that oltipraz promoted CCAAT/enhancer binding proteinbeta (C/EBPbeta) activation, which leads to the induction of glutathione S-transferase. Given that oltipraz activates C/EBPbeta for gene transactivation and that the putative C/EBP binding site is located in the CYP1A1 promoter region, this study investigated the effect of oltipraz on CYP1A1 induction by 3-methylcholanthrene (3-MC). 3-MC induced CYP1A1 in H4IIE cells in a time- and concentration-dependent manner. Gel shift analysis showed that 3-MC increased the band intensity of protein binding to the XRE. Immunocompetition analysis verified the specificity of AhR-XRE binding. Oltipraz (30 microM) induced CYP1A1 and the CYP1A1 promoter-luciferase gene and increased AhR DNA binding activity, which was 10-20% of those in 3-MC (100 nM)-treated cells. However, AhR-XRE binding was not increased after 10 microM oltipraz treatment. Oltipraz (10 microM) significantly inhibited CYP1A1 and CYP1A1-luciferase gene induction by 3-MC with no increase in AhR DNA binding. Oltipraz enhanced protein binding to the C/EBP binding site in the gene promoter and the binding complex comprised of C/EBPbeta and partly C/EBPdelta. Overexpression of dominant-negative mutant C/EBP significantly abolished the ability of oltipraz to suppress 3-MC-inducible CYP1A1 and the CYP1A1 reporter gene expression. Consistently, C/EBPbeta overexpression blocked CYP1A1 reporter gene induction by 3-MC. These results provide evidence that oltipraz suppresses 3-MC induction of CYP1A1 gene expression and that activation of C/EBPbeta by oltipraz contributes to suppression of 3-MC-inducible AhR-mediated CYP1A1 expression.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号