共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Drosophila testis, germline stem cells (GSCs) and somatic cyst stem cells (CySCs) are arranged around a group of postmitotic somatic cells, termed the hub, which produce a variety of growth factors contributing to the niche microenvironment that regulates both stem cell pools. Here we show that CySC but not GSC maintenance requires Hedgehog (Hh) signalling in addition to Jak/Stat pathway activation. CySC clones unable to transduce the Hh signal are lost by differentiation, whereas pathway overactivation leads to an increase in proliferation. However, unlike cells ectopically overexpressing Jak/Stat targets, the additional cells generated by excessive Hh signalling remain confined to the testis tip and retain the ability to differentiate. Interestingly, Hh signalling also controls somatic cell populations in the fly ovary and the mammalian testis. Our observations might therefore point towards a higher degree of organisational homology between the somatic components of gonads across the sexes and phyla than previously appreciated. 相似文献
2.
3.
4.
5.
6.
Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis 总被引:1,自引:0,他引:1
Drosophila oogenesis starts when a germline stem cell divides asymmetrically to generate a daughter germline stem cell and a cystoblast that will develop into a mature egg. We show that the fs(1)Yb gene is essential for the maintenance of germline stem cells during oogenesis. We delineate fs(1)Yb within a 6.4 kb genomic region by transgenic rescue experiments. fs(1)Yb encodes a 4.1 kb RNA that is present in the third instar larval, pupal and adult stages, consistent with its role in regulating germline stem cells during oogenesis. Germline clonal analysis shows that all fs(1)Yb mutations are soma-dependent. In the adult ovary, fs(1)Yb is specifically expressed in the terminal filament cells, suggesting that fs(1)Yb acts in these signaling cells to maintain germline stem cells. fs(1)Yb encodes a novel hydrophilic protein with no potential signal peptide or transmembrane domains, suggesting that this protein is not itself a signal but a key component of the signaling machinery for germline stem cell maintenance. 相似文献
7.
The mammalian protein Eps15 is phosphorylated by EGF receptor tyrosine kinase and has been shown to interact with several components of the endocytic machinery. We have identified a hypomorphic Eps15 mutant in Drosophila which shows reversible paralysis and an altered physiology at restrictive temperatures. In addition, the temperature-sensitive paralytic defect of shibire mutant is enhanced by this mutant. Eps15 is enriched in the larval neuromuscular junction in endocytic 'hot spots' in a pattern similar to Dynamin. Eps15 mutants show a decrease in the alpha-Adaptin levels at the larval neuromuscular junction synapse. Genetic and biochemical studies of interactions with components of the endocytic machinery suggest that Eps15 has an important role in synaptic vesicle recycling and regulates recruitment of alpha-Adaptin. 相似文献
8.
9.
Stem cells are self-renewing multipotent cells essential for development or homeostasis of many tissues. Stem cell populations can be found in most multicellular plants and animals. The mechanisms by which these populations are maintained are diverse, utilizing both intrinsic and extrinsic factors to regulate cell division and differentiation. The genetic tools of the fruitfly, Drosophila melanogaster, have permitted detailed characterization of two stem cell populations. In this review, we will examine these contrasting stem cell model systems from Drosophila and their relevance to stem cell populations in other organisms. 相似文献
10.
11.
Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery 总被引:2,自引:0,他引:2
Colussi PA Quinn LM Huang DC Coombe M Read SH Richardson H Kumar S 《The Journal of cell biology》2000,148(4):703-714
Bcl-2 family of proteins are key regulators of apoptosis. Both proapoptotic and antiapoptotic members of this family are found in mammalian cells, but no such proteins have been described in insects. Here, we report the identification and characterization of Debcl, the first Bcl-2 homologue in Drosophila melanogaster. Structurally, Debcl is similar to Bax-like proapoptotic Bcl-2 family members. Ectopic expression of Debcl in cultured cells and in transgenic flies causes apoptosis, which is inhibited by coexpression of the baculovirus caspase inhibitor P35, indicating that Debcl is a proapoptotic protein that functions in a caspase-dependent manner. debcl expression correlates with developmental cell death in specific Drosophila tissues. We also show that debcl genetically interacts with diap1 and dark, and that debcl-mediated apoptosis is not affected by gene dosage of rpr, hid, and grim. Biochemically, Debcl can interact with several mammalian and viral prosurvival Bcl-2 family members, but not with the proapoptotic members, suggesting that it may regulate apoptosis by antagonizing prosurvival Bcl-2 proteins. RNA interference studies indicate that Debcl is required for developmental apoptosis in Drosophila embryos. These results suggest that the main components of the mammalian apoptosis machinery are conserved in insects. 相似文献
12.
Much attention has focused on dendritic translational regulation of neuronal signaling and plasticity. For example, long-term memory in adult Drosophila requires Pumilio (Pum), an RNA binding protein that interacts with the RNA binding protein Nanos (Nos) to form a localized translation repression complex essential for anterior-posterior body patterning in early embryogenesis. Whether dendrite morphogenesis requires similar translational regulation is unknown. Here we report that nos and pum control the elaboration of high-order dendritic branches of class III and IV, but not class I and II, dendritic arborization (da) neurons. Analogous to their function in body patterning, nos and pum require each other to control dendrite morphogenesis, a process likely to involve translational regulation of nos itself. The control of dendrite morphogenesis by Nos/Pum, however, does not require hunchback, which is essential for body patterning. Interestingly, Nos protein is localized to RNA granules in the dendrites of da neurons, raising the possibility that the Nos/Pum translation repression complex operates in dendrites. This work serves as an entry point for future studies of dendritic translational control of dendrite morphogenesis. 相似文献
13.
Shirly Becker-Herman Milena Rozenberg Carmit Hillel-Karniel Naama Gil-Yarom Mattias P. Kramer Avital Barak Lital Sever Keren David Lihi Radomir Hadas Lewinsky Michal Levi Gilgi Friedlander Richard Bucala Amnon Peled Idit Shachar 《PLoS biology》2021,19(3)
Hematopoietic stem and progenitor cells (HSPCs) are a small population of undifferentiated cells that have the capacity for self-renewal and differentiate into all blood cell lineages. These cells are the most useful cells for clinical transplantations and for regenerative medicine. So far, it has not been possible to expand adult hematopoietic stem cells (HSCs) without losing their self-renewal properties. CD74 is a cell surface receptor for the cytokine macrophage migration inhibitory factor (MIF), and its mRNA is known to be expressed in HSCs. Here, we demonstrate that mice lacking CD74 exhibit an accumulation of HSCs in the bone marrow (BM) due to their increased potential to repopulate and compete for BM niches. Our results suggest that CD74 regulates the maintenance of the HSCs and CD18 expression. Its absence leads to induced survival of these cells and accumulation of quiescent and proliferating cells. Furthermore, in in vitro experiments, blocking of CD74 elevated the numbers of HSPCs. Thus, we suggest that blocking CD74 could lead to improved clinical insight into BM transplant protocols, enabling improved engraftment.Hematopoietic stem and progenitor cells (HSPCs) can self-renew and differentiate into all blood cell lineages, making them useful for clinical transplantations and regenerative medicine. This study shows that blocking the MIF receptor CD74 increases the accumulation of HSPCs and could improve the efficacy of bone marrow transplantation protocols. 相似文献
14.
Maria Conte 《Developmental biology》2009,334(1):109-109
In adult organisms, stem cells are crucial to homeostasis and regeneration of damaged tissues. In planarians, adult stem cells (neoblasts) are endowed with an extraordinary replicative potential that guarantees unlimited replacement of all differentiated cell types and extraordinary regenerative ability. The molecular mechanisms by which neoblasts combine long-term stability and constant proliferative activity, overcoming the impact of time, remain by far unknown. Here we investigate the role of Djmot, a planarian orthologue that encodes a peculiar member of the HSP70 family, named Mortalin, on the dynamics of stem cells of Dugesia japonica. Planarian stem cells and progenitors constitutively express Djmot. Transient Djmot expression in differentiated tissues is only observed after X-ray irradiation. DjmotRNA interference causes inability to regenerate and death of the animals, as a result of permanent growth arrest of stem cells. These results provide the first evidence that an hsp-related gene is essential for neoblast viability and suggest the possibility that high levels of Djmot serve to keep a p53-like protein signaling under control, thus allowing neoblasts to escape cell death programs. Further studies are needed to unravel the molecular pathways involved in these processes. 相似文献
15.
smedinx-11 is a planarian stem cell gap junction gene required for regeneration and homeostasis 总被引:1,自引:0,他引:1
The largely unknown mechanisms that regulate adult stem cells probably involve signals from neighboring differentiated cells. Gap junction channels providing direct cell-cell communication via small molecules are a crucial component of morphogenesis and normal physiology. However, no specific gap junction protein has yet been functionally linked to adult/somatic stem cell behavior in vivo or to organ regeneration. We report the identification and characterization of smedinx-11--an innexin gap junction channel gene expressed in the adult stem cells (neoblasts) of the planarian Schmidtea mediterranea. smedinx-11 RNAi treatment inhibits regeneration and abrogates neoblast maintenance. Moreover, smedinx-11 expression is enriched in an irradiation-sensitive subpopulation (;X2') and is required for proper expression of other stem cell-specific markers. Analyses of the smedinx-11 downregulation phenotype revealed a striking anterior-posterior neoblast gradient. Our data demonstrate a novel role for gap junction proteins and suggest gap junction-mediated signaling as a new and tractable control point for adult, somatic stem cell regulation. 相似文献
16.
17.
Nakagawa H Ishizu H Chinone A Kobayashi K Matsumoto M 《The International journal of developmental biology》2012,56(1-3):165-171
Homologs of nanos are required for the formation and maintenance of germline stem cell (GSC) systems and for gametogenesis in many metazoans. Planarians can change their reproductive mode seasonally, alternating between asexual and sexual reproduction; they develop and maintain their somatic stem cells (SSCs) and GCSs from pluripotent stem cells known as neoblasts. We isolated a nanos homolog, Dr-nanos, from the expressed sequence tags (ESTs) of the sexualized form of Dugesia ryukyuensis. We examined the expression of Dr-nanos in asexual and sexualized planarians by in situ hybridization and analyzed its function using RNA interference (RNAi) together with a planarian sexualization assay. A nanos homolog, Dr-nanos, was identified in the planarian D. ryukyuensis. Dr-nanos expression was observed in the ovarian primordial cells of the asexual worms. This expression increased in proportion to sexualization and was localized in the early germline cells of the ovaries and testes. In X-ray-irradiated worms, the expression of Dr-nanos decreased to a large extent, indicating that Dr-nanos is expressed in some subpopulations of stem cells, especially in GSCs. During the sexualization process, worms in which Dr-nanos was knocked down by RNAi exhibited decreased numbers of oogonia in the ovaries and failed to develop testes, whereas the somatic sexual organs were not affected. We conclude that Dr-nanos is essential for the development of germ cells in the ovaries and testes and may have a function in the early stages of germ cell specification, but not in the development of somatic sexual organs. 相似文献
18.
Talos F Abraham A Vaseva AV Holembowski L Tsirka SE Scheel A Bode D Dobbelstein M Brück W Moll UM 《Cell death and differentiation》2010,17(12):1816-1829
The p53 family member p73 is essential for brain development, but its precise role and scope remain unclear. Global p73 deficiency determines an overt and highly penetrant brain phenotype marked by cortical hypoplasia with ensuing hydrocephalus and hippocampal dysgenesis. The ΔNp73 isoform is known to function as a prosurvival factor of mature postmitotic neurons. In this study, we define a novel essential role of p73 in the regulation of the neural stem cell compartment. In both embryonic and adult neurogenesis, p73 has a critical role in maintaining an adequate neurogenic pool by promoting self-renewal and proliferation and inhibiting premature senescence of neural stem and early progenitor cells. Thus, products of the p73 gene locus are essential maintenance factors in the central nervous system, whose broad action stretches across the entire differentiation arch from stem cells to mature postmitotic neurons. 相似文献
19.
Regeneration and maintenance of the planarian midline is regulated by a slit orthologue 总被引:4,自引:0,他引:4
Several families of evolutionarily conserved axon guidance cues orchestrate the precise wiring of the nervous system during embryonic development. The remarkable plasticity of freshwater planarians provides the opportunity to study these molecules in the context of neural regeneration and maintenance. Here we characterize a homologue of the Slit family of guidance cues from the planarian Schmidtea mediterranea. Smed-slit is expressed along the planarian midline, in both dorsal and ventral domains. RNA interference (RNAi) targeting Smed-slit results in the collapse of many newly regenerated tissues at the midline; these include the cephalic ganglia, ventral nerve cords, photoreceptors, and the posterior digestive system. Surprisingly, Smed-slit RNAi knockdown animals also develop morphologically distinguishable, ectopic neural structures near the midline in uninjured regions of intact and regenerating planarians. These results suggest that Smed-slit acts not only as a repulsive cue required for proper midline formation during regeneration but that it may also act to regulate the behavior of neural precursors at the midline in intact planarians. 相似文献
20.
A piwi homolog is required for the regulation of stem cells, formation and maintenance of germline stem cells, and gametogenesis in many metazoans. Planarians can change their reproductive mode seasonally, both asexually and sexually, and develop and maintain germ cells and sexual organs. They have many pluripotent stem cells (neoblasts) that can differentiate into both somatic and germline stem cells. Thus, we searched for a piwi subfamily in the planarian Dugesia ryukyuensis. Four piwi homologs, identified as Drpiwi-1, -2, -3, and -4, were expressed in sexually reproductive worms. We then selectively destroyed the neoblasts by irradiating the worms with X-rays. In such worms, Drpiwi-1, -2, and -3 were not expressed at all, whereas Drpiwi-4 was expressed to the same degree as that in non-irradiated controls, indicating that Drpiwi-1, -2, and -3, but not Drpiwi-4, are expressed in neoblasts. During the regeneration process, Drpiwi-2(RNAi) and -3(RNAi) worms failed to regenerate after ablation, but Drpiwi-1 and -4(RNAi) worms regenerated. During the sexualizing process, Drpiwi-1(RNAi) worms failed to develop ovaries and testes, but somatic sexual organs were unaffected. Germ cell development was normal in Drpiwi-4(RNAi) worms. Therefore, Drpiwi-2 and -3 may be related to the regulation of neoblasts important for maintaining homeostasis, and Drpiwi-1 is essential for the development of germ cells but not somatic sexual organs. DrPiwi-1 is localized in the cytoplasm of stem cells and germline cells and may be involved in regulating some gene expression. We suggest that planarian Piwi controls germline formation via RNA silencing mechanisms. 相似文献