首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Protein phosphatase inhibitor-1 was purified from bovine adipose tissue. The protein had an apparent molecular mass of 32 kDa by SDS/PAGE and a Stokes' radius of 3.4 nm. It was phosphorylated by cAMP-dependent protein kinase on a threonyl residue; this phosphorylation was necessary for inhibition of protein phosphatase-1. Bovine adipose tissue inhibitor-1 was compared directly with rabbit skeletal muscle inhibitor-1 and with a 32000-Mr, dopamine- and cAMP-regulated phosphoprotein from bovine brain (DARPP-32), also an inhibitor of protein phosphatase-1. By the following biochemical and immunochemical criteria, bovine adipose tissue inhibitor-1 was found to be very similar and possibly identical to DARPP-32 and was clearly distinct from skeletal muscle inhibitor-1: molecular mass by SDS/PAGE; Stokes' radii; phosphorylation on threonine residues; Staphylococcus-aureus-V8-protease-generated peptide patterns analyzed by SDS/PAGE; tryptic phosphopeptide maps analysed by two-dimensional thin-layer electrophoresis/chromatography; elution on reverse-phase HPLC; chymotryptic peptide maps as analysed by reverse-phase HPLC; amino acid composition; antibody recognition by immunoprecipitation and immunoblotting; effect of cyanogen bromide cleavage on protein phosphatase inhibitor activity. Based on these results we conclude that bovine brain and adipose tissue contain an identical phosphoprotein inhibitor of protein phosphatase-1 (DARPP-32), which is distinct from that of skeletal muscle (inhibitor-1).  相似文献   

2.
DARPP-32 (dopamine- and cAMP-regulated phosphorprotein, Mr = 32,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is an inhibitor of protein phosphatase-1 and is enriched in dopaminoceptive neurons possessing the D1 dopamine receptor. Purified bovine DARPP-32 was phosphorylated in vitro by casein kinase II to a stoichiometry greater than 2 mol of phosphate/mol of protein whereas two structurally and functionally related proteins, protein phosphatase inhibitor-1 and G-substrate, were poor substrates for this enzyme. Sequencing of chymotryptic and thermolytic phosphopeptides from bovine DARPP-32 phosphorylated by casein kinase II suggested that the main phosphorylated residues were Ser45 and Ser102. In the case of rat DARPP-32, the identification of these phosphorylation sites was confirmed by manual Edman degradation. The phosphorylated residues are located NH2-terminal to acidic amino acid residues, a characteristic of casein kinase II phosphorylation sites. Casein kinase II phosphorylated DARPP-32 with an apparent Km value of 3.4 microM and a kcat value of 0.32 s-1. The kcat value for phosphorylation of Ser102 was 5-6 times greater than that for Ser45. Studies employing synthetic peptides encompassing each phosphorylation site confirmed this difference between the kcat values for phosphorylation of the two sites. In slices of rat caudate-putamen prelabeled with [32P]phosphate, DARPP-32 was phosphorylated on seryl residues under basal conditions. Comparison of thermolytic phosphopeptide maps and determination of the phosphorylated residue by manual Edman degradation identified the main phosphorylation site in intact cells as Ser102. In vitro, DARPP-32 phosphorylated by casein kinase II was dephosphorylated by protein phosphatases-1 and -2A. Phosphorylation by casein kinase II did not affect the potency of DARPP-32 as an inhibitor of protein phosphatase-1, which depended only on phosphorylation of Thr34 by cAMP-dependent protein kinase. However, phosphorylation of DARPP-32 by casein kinase II facilitated phosphorylation of Thr34 by cAMP-dependent protein kinase with a 2.2-fold increase in the Vmax and a 1.4-fold increase in the apparent Km. Phosphorylation of DARPP-32 by casein kinase II in intact cells may therefore modulate its phosphorylation in response to increased levels of cAMP.  相似文献   

3.
DARPP-32, a dopamine- and cyclic AMP-regulated phosphoprotein of Mr 32 kDa, is phosphorylated on Thr34 by cyclic AMP-dependent protein kinase, resulting in its conversion to a potent inhibitor of protein phosphatase-1 (PP-1). Conversely, Thr34-phosphorylated DARPP-32 is dephosphorylated and inactivated in vitro by calcineurin and protein phosphatase-2A (PP-2A). We have investigated the relative contributions of these protein phosphatases to the regulation of DARPP-32 dephosphorylation in mouse neostriatal slices. Cyclosporin A (5 microM), a calcineurin inhibitor, maximally increased the level of phosphorylated DARPP-32 by 17+/-2-fold. Okadaic acid (1 microM), an inhibitor of PP-1 and PP-2A, had a smaller effect, increasing phospho-DARPP-32 by 5.1+/-1.3-fold. The effect of okadaic acid on DARPP-32 phosphorylation was shown to be due to inhibition of PP-2A activity. Incubation of slices in the presence of cyclosporin A plus either okadaic acid or calyculin A, another PP-1/PP-2A inhibitor, caused a synergistic increase in the level of phosphorylated DARPP-32. The use of Ca2(+)-free/EGTA medium mimicked the effects of cyclosporin A on DARPP-32 phosphorylation, supporting the conclusion that the action of cyclosporin on DARPP-32 phosphorylation was attributable to blockade of the Ca2(+)-dependent activation of calcineurin. The results indicate that calcineurin and PP-2A, but not PP-1, act synergistically to maintain a low level of phosphorylated DARPP-32 in neostriatal slices.  相似文献   

4.
Synthetic peptides based on the threonine phosphorylation site and proposed inhibitory site of DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, Mr = 32,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) were prepared and analyzed as substrates for cAMP-dependent protein kinase and protein phosphatases-1c, -2Ac (the catalytic subunits of protein phosphatase-1 and 2A, respectively) and -2B, and as inhibitors of protein phosphatase-1c. Studies of the kinetics of phosphorylation of the peptides by cAMP-dependent protein kinase indicated an important role in facilitating phosphorylation for the region COOH-terminal to the phosphorylatable threonyl residue. Studies of the dephosphorylation of the phosphopeptides demonstrated that they were effectively dephosphorylated by protein phosphatase-2A and -2B and poorly dephosphorylated by protein phosphatase-1. The active inhibitory region of phospho-DARPP-32 was analyzed by determining the effects of synthetic phosphopeptides on the activity of protein phosphatase-1c. Phospho-D32-(8-48) and phospho-D32-(8-38) inhibited protein phosphatase-1c with IC50 values of 2 x 10(-8) and 4 x 10(-8) M, respectively, compared with an IC50 of 8 x 10(-9) M for intact phospho-DARPP-32. Phospho-D32-(9-38) was equipotent with phospho-D32-(8-38); however, further NH2-terminal deletions resulted in marked reductions in IC50 values. An analog of an active DARPP-32 phosphopeptide containing a phosphoseryl residue in place of the phosphothreonyl residue also exhibited a much reduced IC50. These data identify the essential inhibitory region of phospho-DARPP-32 as residues 9-38, which contains the phosphorylation site (Thr34). This region exhibits extensive amino acid sequence identity with phosphatase inhibitor-1, a distinct inhibitor of protein phosphatase-1. Kinetic studies of the inhibition of protein phosphatase-1c by phospho-D32-(9-38), a potent inhibitor, as well as by phospho-D32-(10-38), a weak inhibitor, indicated a mixed competitive/noncompetitive mechanism of inhibition, as has been previously found for both intact phospho-DARPP-32 and intact phospho-inhibitor-1. These findings support the hypothesis that a 30-amino acid domain in the NH2-terminal region of phospho-DARPP-32 is sufficient for the inhibition of protein phosphatase-1.  相似文献   

5.
In simple epithelia, the distribution of ion transporting proteins between the apical or basal-lateral domains of the plasma membrane is important for determining directions of vectorial ion transport across the epithelium. In the choroid plexus, Na+,K(+)-ATPase is localized to the apical plasma membrane domain where it regulates sodium secretion and production of cerebrospinal fluid; in contrast, Na+,K(+)-ATPase is localized to the basal-lateral membrane of cells in the kidney nephron where it regulates ion and solute reabsorption. The mechanisms involved in restricting Na+,K(+)-ATPase distribution to different membrane domains in these simple epithelia are poorly understood. Previous studies have indicated a role for E-cadherin mediated cell-cell adhesion and membrane-cytoskeleton (ankyrin and fodrin) assembly in regulating Na+,K(+)-ATPase distribution in absorptive kidney epithelial cells. Confocal immunofluorescence microscopy reveals that in chicken and rat choroid plexus epithelium, fodrin, and ankyrin colocalize with Na+,K(+)-ATPase at the apical plasma membrane, but fodrin, ankyrin, and adducin also localize at the lateral plasma membrane where Na+,K(+)- ATPase is absent. Biochemical analysis shows that fodrin, ankyrin, and Na+,K(+)-ATPase are relatively resistant to extraction from cells in buffers containing Triton X-100. The fractions of Na+,K(+)-ATPase, fodrin, and ankyrin that are extracted from cells cosediment in sucrose gradients at approximately 10.5 S. Further separation of the 10.5 S peak of proteins by electrophoresis in nondenaturing polyacrylamide gels revealed that fodrin, ankyrin, and Na+,K(+)-ATPase comigrate, indicating that these proteins are in a high molecular weight complex similar to that found previously in kidney epithelial cells. In contrast, the anion exchanger (AE2), a marker protein of the basal- lateral plasma membrane in the choroid plexus, did not cosediment in sucrose gradients or comigrate in nondenaturing polyacrylamide gels with the complex of Na+,K(+)-ATPase, ankyrin, and fodrin. Ca(++)- dependent cell adhesion molecules (cadherins) were detected at lateral membranes of the choroid plexus epithelium and colocalized with a distinct fraction of ankyrin, fodrin, and adducin. Cadherins did not colocalize with Na+,K(+)-ATPase and were absent from the apical membrane. The fraction of cadherins that was extracted with buffers containing Triton X-100 cosedimented with ankyrin and fodrin in sucrose gradients and comigrated in nondenaturing gels with ankyrin and fodrin in a high molecular weight complex. Since a previous study showed that E-cadherin is an instructive inducer of Na+,K(+)-ATPase distribution, we examined protein distributions in fibroblasts transfected with B- cadherin, a prominent cadherin expressed in the choroid plexus epithelium.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Phosphorylation was shown to lead to a change in the conformational equilibrium toward E1 form associated with a decrease in apparent affinity for the K+ in alpha-1 subunit of the rat kidney Na+, K(+)-ATPase. Rate of transition from E2 to E1 was apparently unaffected by phosphorylation. ATP hydrolysis by the protein kinase C-phosphorylated Na+, K(+)-ATPase shows a decrease in the Vmax and Km for K+.  相似文献   

7.
Protein phosphatase inhibitor-1 is a prototypical mediator of cross-talk between protein kinases and protein phosphatases. Activation of cAMP-dependent protein kinase results in phosphorylation of inhibitor-1 at Thr-35, converting it into a potent inhibitor of protein phosphatase-1. Here we report that inhibitor-1 is phosphorylated in vitro at Ser-67 by the proline-directed kinases, Cdk1, Cdk5, and mitogen-activated protein kinase. By using phosphorylation state-specific antibodies and selective protein kinase inhibitors, Cdk5 was found to be the only kinase that phosphorylates inhibitor-1 at Ser-67 in intact striatal brain tissue. In vitro and in vivo studies indicated that phospho-Ser-67 inhibitor-1 was dephosphorylated by protein phosphatases-2A and -2B. The state of phosphorylation of inhibitor-1 at Ser-67 was dynamically regulated in striatal tissue by glutamate-dependent regulation of N-methyl-d-aspartic acid-type channels. Phosphorylation of Ser-67 did not convert inhibitor-1 into an inhibitor of protein phosphatase-1. However, inhibitor-1 phosphorylated at Ser-67 was a less efficient substrate for cAMP-dependent protein kinase. These results demonstrate regulation of a Cdk5-dependent phosphorylation site in inhibitor-1 and suggest a role for this site in modulating the amplitude of signal transduction events that involve cAMP-dependent protein kinase activation.  相似文献   

8.
Phosphorylation of voltage-sensitive Na+ channels in neurons by protein kinase C slows Na+ channel inactivation and reduces peak Na+ currents. Na+ channels purified from rat brain and reconstituted into phospholipid vesicles under conditions that restore Na+ channel function were rapidly phosphorylated by protein kinase C on their 260-kDa alpha subunit. The phosphorylation reaction required Ca2+, diolein, and phosphatidylserine for activation of protein kinase C, and the rate of phosphorylation of reconstituted Na+ channels was 3- to 4-fold faster than for Na+ channels in detergent solution. Phosphorylation was on serine residues in three distinct tryptic phosphopeptides designated A, B, and C. Up to 2.5 mol of phosphate were incorporated per mol of Na+ channel. Following maximum phosphorylation by protein kinase C, cAMP-dependent protein kinase was able to incorporate more than 2.25 mol of phosphate per mol of Na+ channel indicating that these two kinases phosphorylate distinct sites. However, prior phosphorylation by cAMP-dependent protein kinase prevented phosphorylation of phosphopeptide B indicating that both kinases phosphorylate the site in this peptide. Phosphopeptide B shown here to be phosphorylated by protein kinase C and phosphopeptide 7 previously shown to be phosphorylated by cAMP-dependent protein kinase co-migrate on two-dimensional phosphopeptide maps and evidently are identical. The reduction in peak Na+ currents caused by both protein kinase C and cAMP-dependent protein kinase may result from phosphorylation of this single common site.  相似文献   

9.
The Na/K/2Cl cotransport system in the avian erythrocyte can be activated by agents that raise intracellular cAMP suggesting the involvement of cAMP-dependent protein kinase (cAMP-PK) in its regulation. Another group of stimuli including fluoride and hypertonicity stimulate cotransport via cAMP-independent means. To further investigate the role of phosphorylation in these processes, we examined the effects of protein kinase inhibitors of 8 (p-Cl-phenylthio)-cAMP (cpt-cAMP), fluoride and hypertonic activation of cotransport in duck red cells, and [3H]bumetanide binding to isolated membranes. Preincubation of cells with the kinase inhibitors K-252a (Ki approximately 1.6 microM) and H-9 (Ki approximately 100 microM) blocked cpt-cAMP activation of bumetanide-sensitive 86Rb influx and bumetanide binding. These inhibitors also led to a rapid deactivation of cotransport and decrease in bumetanide binding when added to cells maximally stimulated by cpt-cAMP. K-252a and H-9 inhibited cotransport activation by cAMP-independent stimuli, but 10-fold higher concentrations were required, implying the involvement of a cAMP-independent phosphorylation process in the mechanism of action of these agents. Removal of stimuli that elevate cAMP leads to a rapid reversal of cotransport indicating the presence of active protein phosphatases in these cells. The protein phosphatase inhibitor okadaic acid (OA, EC50: 630 nM) stimulated both Na/K/2Cl cotransport and bumetanide binding to membranes. As with fluoride and hypertonic stimulation, the OA effect was inhibited only at relatively high concentrations of K-252a. Phosphorylation of the membrane skeletal protein goblin (Mr 230,000) at specific cAMP-dependent sites was used as an in situ marker for the state of activation of cAMP-PK. Goblin phosphorylation at these sites was increased by norepinephrine and cpt-cAMP and rapidly reversed by K-252a and H-9, confirming that both inhibitors do block cAMP-PK activity. While OA markedly increased overall phosphorylation of many erythrocyte membrane proteins, including goblin, it did not affect goblin phosphorylation at specific cAMP-dependent sites. These results implicate a cAMP-independent protein kinase in the mediation of the OA effect on cotransport and bumetanide binding. The bumetanide-binding component of the avian erythrocyte cotransporter, an Mr approximately 150,000 protein that can be photolabeled with the bumetanide analog [3H]4-benzoyl-5-sulfamoyl-3-(3-thenyloxy)-benzoic acid was found to be a phosphoprotein. These results strongly support the hypothesis that phosphorylation and dephosphorylation, possibly of the Na/K/2Cl cotransporter itself, regulates the activity of  相似文献   

10.
Insulin stimulates Na(+),K(+)-ATPase activity and induces translocation of Na(+),K(+)-ATPase molecules to the plasma membrane in skeletal muscle. We determined the molecular mechanism by which insulin regulates Na(+),K(+)-ATPase in differentiated primary human skeletal muscle cells (HSMCs). Insulin action on Na(+),K(+)-ATPase was dependent on ERK1/2 in HSMCs. Sequence analysis of Na(+),K(+)-ATPase alpha-subunits revealed several potential ERK phosphorylation sites. Insulin increased ouabain-sensitive (86)Rb(+) uptake and [(3)H]ouabain binding in intact cells. Insulin also increased phosphorylation and plasma membrane content of the Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunits. Insulin-stimulated Na(+),K(+)-ATPase activation, phosphorylation, and translocation of alpha-subunits to the plasma membrane were abolished by 20 microm PD98059, which is an inhibitor of MEK1/2, an upstream kinase of ERK1/2. Furthermore, inhibitors of phosphatidylinositol 3-kinase (100 nm wortmannin) and protein kinase C (10 microm GF109203X) had similar effects. Notably, insulin-stimulated ERK1/2 phosphorylation was abolished by wortmannin and GF109203X in HSMCs. Insulin also stimulated phosphorylation of alpha(1)- and alpha(2)-subunits on Thr-Pro amino acid motifs, which form specific ERK substrates. Furthermore, recombinant ERK1 and -2 kinases were able to phosphorylate alpha-subunit of purified human Na(+),K(+)-ATPase in vitro. In conclusion, insulin stimulates Na(+),K(+)-ATPase activity and translocation to plasma membrane in HSMCs via phosphorylation of the alpha-subunits by ERK1/2 mitogen-activated protein kinase.  相似文献   

11.
Glutamatergic inputs from corticostriatal and thalamostriatal pathways have been shown to modulate dopaminergic signaling in neostriatal neurons. DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of M (r) 32 kDa) is a signal transduction molecule that regulates the efficacy of dopamine signaling in neostriatal neurons. Dopamine signaling is mediated in part through phosphorylation of DARPP-32 at Thr34 by cAMP-dependent protein kinase, and antagonized by phosphorylation of DARPP-32 at Thr75 by cyclin-dependent protein kinase 5. We have now investigated the effects of the ionotropic glutamate NMDA and AMPA receptors on DARPP-32 phosphorylation in neostriatal slices. Activation of NMDA and AMPA receptors decreased the state of phosphorylation of DARPP-32 at Thr34 and Thr75. The decrease in Thr34 phosphorylation was mediated through Ca(2+) -dependent activation of the Ca(2+) -/calmodulin-dependent phosphatase, calcineurin. In contrast, the decrease in Thr75 phosphorylation was mediated through Ca(2+) -dependent activation of dephosphorylation by protein phosphatase-2A. The results provide support for a complex effect of glutamate on dopaminergic signaling through the regulation of dephosphorylation of different sites of DARPP-32 by different protein phosphatases.  相似文献   

12.
Our previous studies showed that dopamine inhibits Na+,K+-ATPase activity in acutely dissociated neurons from striatum. In the present study, we have found that in this preparation, dopamine inhibited significantly (by approximately 25%) the activity of the alpha3 and/or alpha2 isoforms, but not the alpha1 isoform, of Na+,K+-ATPase. Dopamine, via D1 receptors, activates cyclic AMP-dependent protein kinase (PKA) in striatal neurons. Dopamine is also known to activate the calcium- and phospholipid-dependent protein kinase (PKC) in a number of different cell types. The PKC activator phorbol 12,13-dibutyrate reduced the activity of Na+,K+-ATPase alpha3 and/or alpha2 isoforms (by approximately 30%) as well as the alpha1 isoform (by approximately 15%). However, dopamine-mediated inhibition of Na+,K+-ATPase activity was unaffected by calphostin C, a PKC inhibitor. Dopamine did not affect the phosphorylation of Na+,K+-ATPase isoforms at the PKA-dependent phosphorylation site. Phorbol ester treatment did not alter the phosphorylation of alpha2 or alpha3 isoforms of Na+,K+-ATPase in neostriatal neurons but did increase the phosphorylation of the alpha1 isoform. Thus, in rat neostriatal neurons, treatment with either dopamine or PKC activators results in inhibition of the activity of specific (alpha3 and/or alpha2) isoforms of Na+,K+-ATPase, but this is not apparently mediated through direct phosphorylation of the enzyme. In addition, PKC is unlikely to mediate inhibition of rat Na+,K+-ATPase activity by dopamine in neostriatal neurons.  相似文献   

13.
Autonomic regulation of type 1 protein phosphatase in cardiac muscle   总被引:8,自引:0,他引:8  
Muscarinic cholinergic agonists such as acetylcholine attenuate phosphorylation of phospholamban induced by agents that activate cAMP-dependent protein kinase. However, cAMP accumulation is variably affected or only slightly reduced; thus, the choline ester might produce effects in addition to inhibition of adenylate cyclase. We hypothesized that acetylcholine might regulate a phosphatase in mammalina myocardium. Exposure of Langendoff-perfused guinea pig ventricles to isoproterenol (10 nM) for 45 s increased phosphatase inhibitor-1 activity 2-fold. Co-administration of acetylcholine (100 nM) antagonized the effect of isoproterenol, and atropine (1 microM) blocked the effect of acetylcholine. Forskolin (1 microM) caused a 3-fold increase in inhibitor-1 activity, and acetylcholine markedly attenuated the effect of forskolin. However, acetylcholine did not lower cAMP levels in the same tissues. Both isoproterenol and forskolin reduced the type 1 phosphatase activity intrinsic to sarcoplasmic reticulum by 25-50%, using [32P]phosphorylase a or 32P-labeled membrane vesicles as a substrate for the phosphatase. Co-administration of acetylcholine markedly attenuated these effects of isoproterenol and forskolin. Acetylcholine alone caused a 50% increase in type 1 phosphatase activity. We concluded that inhibitor-1 and type 1 phosphatase can be regulated in intact cardiac muscle by agents that increase intracellular cAMP and by acetylcholine.  相似文献   

14.
Neurotensin modulates dopaminergic transmission in the nigrostriatal system. DARPP-32, a dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa, is phosphorylated on Thr34 by cAMP-dependent protein kinase, resulting in its conversion into a potent inhibitor of protein phosphatase-1 (PP 1). Here, we examined the effect of neurotensin on DARPP-32 Thr34 phosphorylation using mouse neostriatal slices. Neurotensin stimulated DARPP-32 Thr34 phosphorylation by 4-7-fold with a K(0.5) of approximately 50 nM. The effect of neurotensin was antagonized by a combined neurotensin receptor type-1 (NTR1)/type-2 (NTR2) antagonist, SR142948. It was not antagonized by a NTR1 antagonist, SR48692 or by a NTR2 antagonist, levocabastine; neither was it antagonized by the two combined. Pretreatment with TTX or cobalt abolished the effect of neurotensin. The effect of neurotensin was antagonized by a dopamine D1 antagonist, SCH23390, and by ionotropic glutamate receptor antagonists, MK801 and CNQX. These results indicate that neurotensin stimulates the release of dopamine from nigrostriatal presynaptic terminals in an NMDA receptor- and AMPA receptor-dependent manner, leading to the increase in DARPP-32 Thr34 phosphorylation. Neurotensin stimulated the phosphorylation of Ser845 of the AMPA receptor GluR1 subunit in wild-type mice but not in DARPP-32 knockout mice. Thus, neurotensin, by stimulating the release of dopamine, activates the dopamine D1-receptor/cAMP/PKA/DARPP-32/PP 1 cascade.  相似文献   

15.
DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein of Mr = 32,000) and phosphatase inhibitor-1, two previously characterized inhibitors of protein phosphatase-1, were identified in both the neostriatum and the substantia nigra. Phosphatase inhibitor-1 was partially purified from bovine caudate nucleus and found to be distinct from DARPP-32 in some of its biochemical properties. The neuronal localization of DARPP-32 and phosphatase inhibitor-1 within the rat neostriatum and substantia nigra was investigated by studying the effects of kainic acid. Injection into the neostriatum of kainic acid, which destroys striatonigral neurons and striatonigral fibers, decreased the amounts of DARPP-32 and phosphatase inhibitor-1 to the same extent, both in the lesioned neostriatum and in the ipsilateral substantia nigra. The specific activity of protein phosphatase-1 in the neostriatum was unaffected by kainic acid. The results indicate that, in rat brain, DARPP-32 and phosphatase inhibitor-1 are both present in striatal neurons and in striatonigral fibers, and that they probably coexist in at least a subpopulation of striatonigral neurons. In contrast, protein phosphatase-1 does not appear to be enriched in any specific neuronal subpopulation in the neostriatum.  相似文献   

16.
Na+, K+-ATPase activity of homogenates prepared from cauda epididymal golden hamster sperm increased after the addition of cGMP (50 microM), monobutyryl cGMP (0.5 microM) or cGMP-dependent protein kinase (0.94 micrograms/ml). Addition of monobutyryl cAMP (0.5 microM) or purified catalytic subunit of cAMP-dependent protein kinase (1.26 micrograms/ml) inhibited the activity of the Na+, K+-ATPase. Preincubation with a partially purified preparation of cAMP-dependent protein kinase inhibitor (75 micrograms/ml) stimulated the activity of the Na+, K+-ATPase, and this stimulation was decreased by the addition of 5 microM monobutyryl cAMP. It is not yet known whether direct and/or indirect mechanisms are involved, but these results are the first to describe such opposing effects by cyclic nucleotide-mediated processes on a Na+, K+-ATPase activity.  相似文献   

17.
Urokinase-type plasminogen activator (uPA) gene expression in LLC-PK1 cells is induced by activation of cAMP-dependent protein kinase (cAMP-PK) or protein kinase C (PK-C). To determine whether protein phosphatases can also modulate uPA gene expression, we tested okadaic acid, a potent specific inhibitor of protein phosphatases 1 and 2A, in the presence and absence of cAMP-PK and PK-C activators. Okadaic acid by itself induced uPA mRNA accumulation. This induction was strongly attenuated by the inhibition of protein synthesis. In contrast, the inhibition of protein synthesis enhanced induction by 8-bromo-cAMP and only delayed induction by 12-O-tetradecanoylphorbol-13-acetate (TPA). In addition, down-regulation of PK-C by chronic treatment with TPA did not abrogate the okadaic acid-dependent induction. These results provide evidence for a novel signal transduction pathway leading to gene regulation that involves protein phosphorylation but is independent of both cAMP-PK and PK-C.  相似文献   

18.
Abstract: In the medium-sized spiny neurons of the striatonigral pathway, a cascade of events involving the activation of dopamine D1 receptors, an increase in cyclic AMP, and activation of cyclic AMP-dependent protein kinase causes the phosphorylation of DARPP-32 on Thr34, converting DARPP-32 into a powerful inhibitor of protein phosphatase-1. In the present study, the incubation of striatal or substantia nigra slices with GABA also increased the phosphorylation of DARPP-32 on Thr34. GABA did not significantly increase cyclic AMP levels in slices. The phosphorylation of DARPP-32 by GABA was blocked in both brain regions by pretreatment of slices with the GABAA receptor antagonist, bicuculline, but not with the GABAB receptor antagonist, phaclofen. Moreover, the threonine phosphorylation of DARPP-32 produced by maximally effective doses of either forskolin (in striatum) or l -3,4-dihydroxyphenylalanine (in substantia nigra) was increased further by GABA. The data are consistent with a model in which GABA increases the phosphorylation state of DARPP-32 by inhibiting dephosphorylation of the protein by the calcium/calmodulin-dependent protein phosphatase, calcineurin.  相似文献   

19.
In this study we have evaluated the specificity of different PKC isozymes for the phosphorylation of the catalytic alpha1 subunit of rat renal Na+,K+-ATPase (alpha1 Na+,K+-ATPase). Using in vitro phosphotransferase assays we found that classical PKCs (cPKCs) alpha, betaI, and gamma efficiently phosphorylate alpha1 Na+,K+-ATPase. However, alpha1 Na+,K+-ATPase was a poor substrate for the novel PKCs (nPKCs) delta and epsilon. Two-dimensional phosphopeptide mapping revealed a similar pattern of phosphorylation by all cPKCs. The functional significance of this finding was evaluated by measuring Na+,K+-ATPase activity (assessed by 86Rb+ uptake) in COS-7 cells expressing the rat alpha1 Na+,K+-ATPase. 1-oleoyl-2-acetoyl-sn-glycerol (OAG), a nonselective PKC activator, inhibited Na+,K+-ATPase activity in this system. On the other hand, 12-deoxyphorbol-13-phenylacetate (DPP), which preferentially activates nPKCepsilon, did not affect 86Rb+ uptake. These results indicate a differential pattern of phosphorylation and regulation of rat renal Na+,K+-ATPase activity by PKC isoforms and suggest an important role for cPKCs in the physiological regulation of the pump.  相似文献   

20.
We have tested if inhibition of protein kinase C is able to prevent and/or to restore the decrease of Na+,K(+)-ATPase activity in the sciatic nerve of alloxan-induced diabetic mice. Mice were made diabetic by subcutaneous injection of 200 mg of alloxan/kg of body weight. The activity of Na+,K(+)-ATPase decreased rapidly (43% after 3 days) and slightly thereafter (58% at 11 days). We show that intraperitoneal injection of 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), an inhibitor of protein kinase C, prevents completely the loss of Na+,K(+)-ATPase activity produced by alloxan. Also, H7 injected into diabetic mice, 4-9 days after the injection of alloxan, restores the activity of the enzyme. The amount of activity recovered depends on the dose of H7 administered; complete recovery was reached with injection of 15 mg of H7/kg of body weight. The effect of H7 is transient, with a half-life of approximately 1 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号