首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high molecular-weight c-type cytochrome was purified from Alcaligenes faecalis ATCC 8750. Its weight was 40,000 daltons by sodium dodecyl sulfate-gel electrophoresis. Heme content was determined to be one heme per 40,000 daltons. Proton nuclear magnetic resonance-NMR-spectroscopy determined that the ferrous form is low spin. The detection of a methyl resonance at -3 ppm in the ferrous form indicated that methionine is a heme ligand in this state. The NMR spectrum of the ferric form at pH 7.2 revealed hyperfine shifted methyl resonances at 67.79, 63.17, 57.71, and 50.46 ppm. The large downfield shifts observed are indicative of high spin character. The ferric spectrum was pH-sensitive, indicating two pH-linked structural transitions with estimated pKs at 6.0 and 10.5. The first is interpreted as due to the ionization of a heme propionate. The second is interpreted as the acquisition of a strong field ligand and the subsequent conversion to a low spin ferric form. The ferricytochrome did not form complexes with cyanide, azide, or fluoride at pH 5.2 or 7.9.  相似文献   

2.
R Timkovich  M S Cork 《Biochemistry》1982,21(21):5119-5123
Proton nuclear magnetic resonance spectra of ferricytochrome cd1 from the denitrifying bacterium Pseudomonas aeruginosa have been obtained. The normal 0-10-ppm chemical shift range shows many overlapping and nonresolvable peaks, as would be expected for a dimeric protein of molecular weight approximately 120,000. In the downfield region between 10 and 50 ppm, and in the upfield region between 0 and -20 ppm, resolvable resonances corresponding to a small number of protons are observed. The temperature and pH behavior of these resonances have been examined. For some of the resolved resonances, the pH behavior of chemical shifts and intensities indicates that the oxidized form of the enzyme undergoes a structural transition with a pK of 5.8 +/- 0.3. On the basis of several lines of evidence, some assignments are proposed in which resolvable resonances are assigned as originating from either the heme c or the heme d1 prosthetic groups of the enzyme.  相似文献   

3.
Oxidation of cytochrome c peroxidase with hydrogen peroxide to form the initial oxidized intermediate, cytochrome c peroxidase compound I, drastically alters the proton hyperfine nmr spectrum. In contrast to studies of horseradish peroxidase, where the spectrum of horseradish peroxidase compound I is similar to that of the native protein, cytochrome c peroxidase compound I exhibits only broad resonances near 17 and 30 ppm from 2,2-dimethyl-2-silapentane-5-sulfonate. No unique resonances attributable to cytochrome c peroxidase compound II could be identified. These results define the molecular conditions for which resolved hyperfine resonances of the iron(IV) states of heme proteins may be observed when the data presented here are compared with the data from horseradish peroxidase. Oxidation of cytochrome c peroxidase while it is complexed to ferricytochrome c reveals that the heme resonances of cytochrome c are not influenced by the oxidation state of cytochrome c peroxidase.  相似文献   

4.
L P Yu  G M Smith 《Biochemistry》1990,29(12):2920-2925
The 15N-enriched ferricytochrome c2 from Rhodospirillum rubrum has been studied by 15N and 1H NMR spectroscopy as a function of pH. The 15N resonances of the heme and ligand tau nitrogen are broadened beyond detection because of paramagnetic relaxation. The 15N resonance of the ligand histidine phi nitrogen was unambiguously identified at 184 ppm (pH 5.6). The 15N resonances of the single nonligand histidine are observed only at low pH, as in the ferrocytochrome because of the severe broadening caused by tautomerization. The dependence of the 15N and 1H spectra of the ferricytochrome on pH indicated that the ligand histidine tau NH does not dissociate in the neutral pH range and is involved in a hydrogen bond, similar to that in the reduced state. Because neither deprotonated nor non-hydrogen-bonded forms of the ligand histidine are observed in the spectra of either oxidation state, the participation of such forms in producing heterogeneous populations having different electronic g tensors is ruled out. Transitions having pKa's of 6.2, 8.6, and 9.2 are observed in the ferricytochrome. The localized conformational change around the omega loops is observed in the neutral pH range, as in the ferrocytochrome. Structural heterogeneity leads to multiple resonances of the heme ring methyl at position 8. The exchange rate between the conformations is temperature dependent. The transition with a pKa of 6.2 is assigned to the His-42 imidazole group. The displacement of the ligand methionine, which occurs with a pKa of 9.2, causes gross conformational change near the heme center.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
R Timkovich  M S Cork  P V Taylor 《Biochemistry》1984,23(15):3526-3533
The 1H NMR spectra of ferri- and ferro-cytochrome c-550 from Paracoccus denitrificans (ATCC 13543) have been investigated at 300 MHz. The ferri-cytochrome c-550 shows hyperfine-shifted heme methyl resonances at 29.90, 29.10, 16.70, and 12.95 ppm and a ligand methionyl methyl resonance at -15.80 ppm (pH 8 and 23 degrees C). Four pH-linked structural transitions were detected in spectra taken as a function of pH. The transitions have been interpreted as loss of the histidine heme ligand (pK less than or equal to 3), ionization of a buried heme propionate (pK = 6.3 +/- 0.2), displacement of the methionine heme ligand by a lysyl amino group (pK congruent to 10.5), and loss of the lysyl ligand (pK greater than or equal to 11.3). The temperature behavior of hyperfine-shifted resonances was determined. Two heme methyl resonances (at 16.70 and 12.95 ppm) showed downfield hyperfine shifts with increasing temperature. The cyanoferricytochrome had methyl resonances at 23.3, 20.1, and 19.4 ppm. NMR spectroscopy did not detect the formation of a complex with azide. The second-order rate constant for electron transfer between ferric and ferrous forms was determined to be 1.6 X 10(4) M-1 s-1. Heme proton resonances were assigned in both oxidation states by cross-saturation and nuclear Overhauser enhancement experiments. Spin-coupling patterns in the aromatic region of the ferro-cytochrome spectrum were investigated.  相似文献   

6.
Tuna ferricytochrome c has been used to demonstrate the potential for completely assigning 1H and 13C strongly hyperfine-shifted resonances in metalloprotein paramagnetic centers. This was done by implementation of standard two-dimensional NMR experiments adapted to take advantage of the enhanced relaxation rates of strongly hyperfine-shifted nuclei. The results show that complete proton assignments of the heme and axial ligands can be achieved, and that assignments of several strongly shifted protons from amino acids located close to the heme can also be made. Virtually all proton-bearing heme 13C resonances have been located, and additional 13C resonances from heme vicinity amino acids are also identified. These results represent an improvement over previous proton resonance assignment efforts that were predicated on the knowledge of specific assignments in the diamagnetic protein and relied on magnetization transfer experiments in heterogeneous solutions composed of mixtures of diamagnetic ferrocytochrome c and paramagnetic ferricytochrome c. Even with that more complicated procedure, complete heme proton assignments for ferricytochrome c have never been demonstrated by a single laboratory. The results presented here were achieved using a more generally applicable strategy with a solution of the uniformly oxidized protein, thereby eliminating the requirement of fast electron self-exchange, which is a condition that is frequently not met.  相似文献   

7.
Magnetic susceptibility measurements on Pseudomonas cytochrome cd1   总被引:1,自引:0,他引:1  
The magnetic susceptibilities of cytochrome cd1 from Pseudomonas aeruginosa (American Type Culture Collection 19429) have been measured by a nuclear magnetic resonance technique. In the oxidized form both heme c and heme d1 are in the low-spin state with an average magnetic moment of 2.6 Bohr magnetons. At 25 degrees C and pH 8.0, the ascorbate-reduced cytochrome contains one low-spin and one high-spin heme per subunit. Based on previous reports in the literature, the high-spin ferrous heme has been assigned to the heme d1 group. At pH 8.0 the ascorbate-reduced heme d1 has a magnetic moment of 5.3 Bohr magnetons. This value decreases to 4.9 at pH 5.5, but is still indicative of a high-spin ferrous system. The paramagnetic susceptibility of the ferricytochrome demonstrated a temperature dependence consistent with Curie's law, but the ferrocytochrome showed an increase in paramagnetic susceptibility with increasing temperature.  相似文献   

8.
The oxidation of yeast cytochrome c peroxidase by hydrogen peroxide produces a unique enzyme intermediate, cytochrome c peroxidase Compound I, in which the ferric heme iron has been oxidized to an oxyferryl state, Fe(IV), and an amino acid residue has been oxidized to a radical state. The reduction of cytochrome c peroxidase Compound I by horse heart ferrocytochrome c is biphasic in the presence of excess ferrocytochrome c as cytochrome c peroxidase Compound I is reduced to the native enzyme via a second enzyme intermediate, cytochrome c peroxidase Compound II. In the first phase of the reaction, the oxyferryl heme iron in Compound I is reduced to the ferric state producing Compound II which retains the amino acid free radical. The pseudo-first order rate constant for reduction of Compound I to Compound II increases with increasing cytochrome c concentration in a hyperbolic fashion. The limiting value at infinite cytochrome c concentration, which is attributed to the intracomplex electron transfer rate from ferrocytochrome c to the heme site in Compound I, is 450 +/- 20 s-1 at pH 7.5 and 25 degrees C. Ferricytochrome c inhibits the reaction in a competitive manner. The reduction of the free radical in Compound II is complex. At low cytochrome c peroxidase concentrations, the reduction rate is 5 +/- 3 s-1, independent of the ferrocytochrome c concentration. At higher peroxidase concentrations, a term proportional to the square of the Compound II concentration is involved in the reduction of the free radical. Reduction of Compound II is not inhibited by ferricytochrome c. The rates and equilibrium constant for the interconversion of the free radical and oxyferryl forms of Compound II have also been determined.  相似文献   

9.
The 1H nuclear magnetic resonance spectrum of tuna ferrocytochrome c has been studied and the resonances of all 49 amino acid methyl groups have been assigned to specific absorption lines. In comparison with resonance assignments in the ferricytochrome c spectrum, the secondary shifts of resonances of ferrocytochrome c are smaller and the identification of characteristic spin-systems from comparison of spectra from homologous proteins more difficult. For this reason, two-dimensional nuclear magnetic resonance exchange correlated spectroscopy has been used to correlate the assigned resonances of tuna ferricytochrome c with previously unassigned resonances of tuna ferrocytochrome c.  相似文献   

10.
L P Yu  G M Smith 《Biochemistry》1990,29(12):2914-2919
The phi NH proton and 15N resonances of the ligand histidine of Rhodospirillum rubrum fericytochrome c2 are found at 14.7 and 184 ppm, respectively, contradicting the proposal that this proton is absent in the R. rubrum ferricytochrome. Substitution of the deuterium atom for this proton causes small upfield shifts of the phi nitrogen in both oxidation states, indicating that the phi NH-peptide carboxyl hydrogen bond is not substantially weakened by the substitution. The proton and 15N resonances of the indolic NH group of the invariant tryptophan-62 and numerous proton resonances of the heme and extraheme ligands in the spectrum of the ferricytochrome are also assigned. An ionization in the ferrocytochrome occurring at neutral pH is assigned to the single nonligand histidine. This attribution is supported by the direct measurement of the ionization by NOE difference spectroscopy and by comparative structural arguments involving closely related cytochromes and chemically modified cytochromes.  相似文献   

11.
R Timkovich 《Biochemistry》1986,25(5):1089-1093
Mixtures of the dissimilatory nitrite reductase cytochrome cd1 from Pseudomonas aeruginosa and potential electron-donating proteins were prepared in both fully oxidized and fully reduced states and examined by 1H NMR spectroscopy. The relatively narrower lines of the donor proteins enabled them to be clearly observed in spectra in the presence of significant amounts of the high molecular weight cd1. Mixtures of the physiological donor (Pseudomonas ferrocytochrome c-551) and ferrocytochrome cd1 showed specific line-broadening effects on the resonances of c-551 that depended on the mole ratio of c-551 to cd1. The experimental broadening fit a model in which c-551 is in intermediate or fast exchange between free solution and a complex with cd1, with an association constant for the complex in excess of 10(4) M-1. The model yields a minimum estimate for the forward bimolecular rate constant of 5 X 10(7) M-1 s-1 and suggests that the actual value may be much larger. The complexation was independent of pH in the range of 6-8, was independent of ionic strength over a salt concentration range of 20-1000 mM, and possessed a low thermal activation barrier. Mixtures of ferricytochrome c-551 and ferricytochrome cd1 showed no observable NMR perturbations, indicating that any hypothetical complex involving the oxidized forms must follow different dynamical and/or equilibrium conditions. No observable NMR perturbations existed in spectra of mixtures of cd1 and mammalian cytochrome c or Pseudomonas azurin in either oxidation state.  相似文献   

12.
The aromatic regions of the nuclear magnetic resonance spectra of horse ferricytochrome c and horse ferrocytochrome c are described. Resonance assignments have been made using NMR double-resonance techniques, spectral comparison of related proteins, the perturbing effects of extrinsic probes, and from knowledge of the X-ray structure of cytochrome c. 33 resonances arising from 39 aroumatic protons of ferrocytochrome c, and 18 resonances arising from 27 aromatic protons of ferricytochrome c have been assigned.  相似文献   

13.
Proton NMR studies of Saccharomyces cerevisiae (bakers yeast) isozyme-1 monomer and dimer ferricytochrome c have been carried out. The dimer is formed via a disulfide bridge between the Cys-102 residues of monomer proteins. Nuclear Overhauser effect (NOE) experiments have led to resonance assignments for many of the heme and axial ligand (Met-80; His-18) protons in both protein forms. Resonances of the following amino acids have also been assigned in both forms: Phe-10; Pro-30; Phe-82; Trp-59; Leu-68. The proton NOE connectivity patterns of the monomer of yeast isozyme-1 ferricytochrome c are similar to those of horse, tuna, and yeast isozyme-2 ferricytochromes c, even though the observed hyperfine resonance spectra are significantly different for the various cytochromes. The pattern of dimer proton hyperfine resonances is distinct from the isozyme-1 monomer pattern, which indicates that the formation of a disulfide bridge via Cys-102 is detected at the heme site, approximately 10 A distant. It appears that a specific structural change is induced upon dimerization, which, in turn, causes specific perturbations in the vicinity of the heme. However, the general features of the NOE connectivity pattern in the dimer are the same as for the monomer indicating that dimerization does not result in drastic structural disruption. Furthermore, the 1H NMR spectrum of the dimer can be mimicked by the monomer form that results when the -SH group of Cys-102 is chemically modified with certain types of bulky, or hydrophilic reagents (i.e. 5,5'-dithiobis[2-nitrobenzoate], indicating that perturbations of the yeast isozyme-1 ferricytochrome c proton resonance spectrum observed upon dimerization are essentially due to changes in intramolecular, rather than intermolecular, interactions. These results suggest that a possible regulatory site for yeast isozyme-1 cytochrome c exists at position 102, which could conceivably have a physiological role in altering the conformation of the molecule.  相似文献   

14.
1. Ferricytochrome c3 from D. gigas exhibits two low-spin ferric heme EPR resonances with gz-values at 2.959 and 2.853. Ferrocytochrome c3 is diamagnetic based on the absence of any EPR signals. 2. EPR potentiometric titrations result in the resolution of the two low-spin ferric heme resonances into two additional heme components representing in total the four hemes of the cytochrome, with EM values of -235 mV and -315 mV at heme resonance I and EM values of -235 mV and -306 mV at heme resonance II. 3. EPR spectroscopy has detected a significant diminution of intensity (approx. 60 p. 100) in the gx amplitude of ferricytochrome c3 in the presence of D. gigas ferredoxin II. The presence of ferredoxin II also causes a more negative shift in the EM of the second components of the signals at heme resonances I and II of cytochrome C3. Both observations suggest that an interaction has occurred between cytochrome C3 and ferredoxin II. 4. The results presented suggest that the heme ligand environment of ferricytochrome c3 from D. gigas is less perturbed and/or less asymmetric than environment for ferricytochrome c3 from D. vulgaris whose EPR behavior indicates the non-equivalence of all four hemes.  相似文献   

15.
We present a 1.59-A resolution crystal structure of reduced Paracoccus pantotrophus cytochrome cd(1) with cyanide bound to the d(1) heme and His/Met coordination of the c heme. Fe-C-N bond angles are 146 degrees for the A subunit and 164 degrees for the B subunit of the dimer. The nitrogen atom of bound cyanide is within hydrogen bonding distance of His(345) and His(388) and either a water molecule in subunit A or Tyr(25) in subunit B. The ferrous heme-cyanide complex is unusually stable (K(d) approximately 10(-6) m); we propose that this reflects both the design of the specialized d(1) heme ring and a general feature of anion reductases with active site heme. Oxidation of crystals of reduced, cyanide-bound, cytochrome cd(1) results in loss of cyanide and return to the native structure with Tyr(25) as a ligand to the d(1) heme iron and switching to His/His coordination at the c-type heme. No reason for unusually weak binding of cyanide to the ferric state can be identified; rather it is argued that the protein is designed such that a chelate-based effect drives displacement by tyrosine of cyanide or a weaker ligand, like reaction product nitric oxide, from the ferric d(1) heme.  相似文献   

16.
17.
Cytochrome c1 from a photosynthetic bacterium Rhodobacter sphaeroides R-26 has been purified to homogeneity. The purified protein contains 30 nmol heme per mg protein, has an isoelectric point of 5.7, and is soluble in aqueous solution in the absence of detergents. The apparent molecular weight of this protein is about 150,000, determined by Bio Gel A-0.5 m column chromatography; a minimum molecular weight of 30,000 is obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis. The absorption spectrum of this cytochrome is similar to that of mammalian cytochrome c1, but the amino acid composition and circular dichroism spectral characteristics are different. The heme moiety of cytochrome c1 is more exposed than is that of mammalian cytochrome c1, but less exposed than that of cytochrome c2. Ferricytochrome c1 undergoes photoreduction upon illumination with light under anaerobic conditions. Such photoreduction is completely abolished when p-chloromercuriphenylsulfonate is added to ferricytochrome c1, suggesting that the sulfhydryl groups of cytochrome c1 are the electron donors for photoreduction. Purified cytochrome c1 contains 3 +/- 0.1 mol of the p-chloromercuriphenylsulfonate titratable sulfhydryl groups per mol of protein. In contrast to mammalian cytochrome c1, the bacterial protein does not form a stable complex with cytochrome c2 or with mammalian cytochrome c at low ionic strength. Electron transfer between bacterial ferrocytochrome c1 and bacterial ferricytochrome c2, and between bacterial ferrocytochrome c1 and mammalian ferricytochrome c proceeds rapidly with equilibrium constants of 49 and 3.5, respectively. The midpoint potential of purified cytochrome c1 is calculated to be 228 mV, which is identical to that of mammalian cytochrome c1.  相似文献   

18.
The aliphatic regions of the nuclear magnetic resonance spectra of horse ferricytochrome c and horse ferrocytochrome c are described. Resonance assignments have been made using NMR double-resonance techniques, spectral comparison of related proteins, the perturbing effects of extrinsic probes, and from knowledge of the X-ray structure of cytochrome c. There are eight firmly assigned methyl resonances of ferrocytochrome c and seven firmly assigned methyl resonances of ferricytochrome c.  相似文献   

19.
Interaction of thiocyanate with horseradish peroxidase (HRP) was investigated by relaxation rate measurements (at 50.68 MHz) of the 15N resonance of thiocyanate nitrogen and by following the hyperfine shifted ring methyl proton resonances (at 500 MHz) of the heme group of SCN-.HRP solutions. At pH 4.0, the apparent dissociation constant (KD) for thiocyanate binding to HRP was deduced to be 158 mM from the relaxation rate measurements. Chemical shift changes of 1- and 8-ring methyl proton resonances in the presence of various amounts of thiocyanate at pH 4.0 yielded KD values of 166 and 136 mM, respectively. From the pH dependence of KD and the 15N resonance line width, it was observed that thiocyanate binds to HRP only under acidic conditions (pH less than 6). The binding was found to be facilitated by protonation of an acid group on the enzyme with pKa 4.0. The pH dependence of the 15N line width as well as the apparent dissociation constant were quantitatively analyzed on the basis of a reaction scheme in which thiocyanate in deprotonated ionic form binds to the enzyme in protonated acidic form. The KD for thiocyanate binding to HRP was also evaluated in the presence of an excess of exogenous substrates such as resorcinol, cyanide, and iodide ions. It was found that the presence of cyanide (which binds to heme iron at the sixth coordination position) and resorcinol did not have any effect on the binding of thiocyanate, indicating that the binding site of the thiocyanate ion is located away from the ferric center as well as from the aromatic donor binding site. The KD in the presence of iodide, however, showed that iodide competes with thiocyanate for binding at the same site. The distance of the bound thiocyanate ion from the ferric center was deduced from the 15N relaxation time measurements and was found to be a 6.8 A. From the distance as well as the change in the chemical shifts and line width of 1- and 8-methyl proton resonances, it is suggested that the binding site of thiocyanate may be located near heme, placed symmetrically with respect to 1- and 8-methyl groups of the heme of HRP. Similarity in the modes of binding of iodide and thiocyanate suggests that the oxidation of thiocyanate ion by H2O2 may also proceed via the two-electron transfer pathway under acidic conditions, as is the case for iodide.  相似文献   

20.
A c-type monoheme cytochrome c554 (13 kDa) was isolated from cells of Achromobacter cycloclastes IAM 1013 grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination (low-spin form) coexisting with a minor high-spin form as revealed by the contribution at 630 nm. Magnetic susceptibility measurements support the existence of a small contribution of a high-spin form at all pH values, attaining a minimum at intermediate pH values. The mid-point redox potential determined by visible spectroscopy at pH 7.2 is +150 mV. The pH-dependent spin equilibrum and other relevant structural features were studied by 300-MHz 1H-NMR spectroscopy. In the oxidized form, the 1H-NMR spectrum shows pH dependence with pKa values at 5.0 and 8.9. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c554. Forms I and II predominate at low pH values, and the 1H-NMR spectra reveal heme methyl proton resonances between 40 ppm and 22 ppm. These forms have a methionyl residue as a sixth ligand, and C6 methyl group of the bound methionine was identified in the low-field region of the NMR spectra. Above pH 9.6, form III predominates and the 1H-NMR spectrum is characterized by down-field hyperfine-shifted heme methyl proton resonances between 29 ppm and 22 ppm. Two new resonances are observed at congruent to 66 ppm and 54 ppm, and are taken as indicative of a new type of heme coordination (probably a lysine residue). These pH-dependent features of the 1H-NMR spectra are discussed in terms of the heme environment structure. The chemical shifts of the methyl resonances at different pH values exhibit anti-Curie temperature dependence. In the ferrous state, the 1H-NMR spectrum shows a methyl proton resonance at -3.9 ppm characteristic of methionine axial ligation. The electron-transfer rate between ferric and ferrous forms has been estimated to be smaller than 2 x 10(4) M-1 s-1 at pH 5. EPR spectroscopy was also used to probe the ferric heme environment. A prominent signal at gmax congruent to 3.58 and the overall lineshape of the spectrum indicate an almost axial heme environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号