首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution pattern of total lipids, glyco- and phospholipids, and one betaine lipid (DGTS) in the fronds of the ferns Dryopteris filix-mas and Matteuccia struthiopteris was studied. The lipid composition of the embryo leaflets forming a bud, or treble clef, and that of fully opened leaves changed throughout the growth season. The maximum amount of DGTS in clefs and mature leaves was detected at the beginning of the season. By midsummer, the DGTS content decreased, dropping to zero in the fully opened leaves, and then increased again. The amount of DGTS in the clefs collected in October versus those collected in May was somewhat higher in the case of Dryopteris filix-mas and almost twofold lower in the case of Matteuccia struthiopteris. The ratio between polar lipids contained in the clefs and mature leaves throughout the growth season was determined.  相似文献   

2.
Over 40 higher plant species were examined for the contents of total lipids, phospholipids, diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) by using micro-HPTLC. The results showed a wider range of plants containing betaine lipids. So, DGTS was found in some higher plant species, not studied earlier, belonging to Equisetophyta, Polypodiophyta; the lipid composition of many other species from Spermatophyta was also studied. It was demonstrated that more primitive plant species contained, as a rule, the betaine lipid DGTS. The quantitative data for the distribution of the main phospholipid classes PC, PE, and PG in various plant species and their tissues are given in this paper.  相似文献   

3.
The marine alga Chlorella minutissima contains DGTS (diacylglyceryl-N,N,N-trimethylhomoserine) as a major component (up to 44% of total lipids). This lipid is absent from other members of the Chlorococcales, except for C. fusca, which contains DGTS as 1.3% of total lipids. Contrary to expectation, the DGTS is accompanied by PC (phosphatidylcholine) as the major phospholipid. DGTS is normally highly saturated in the C-1 position of glycerol, but in C. minutissima, both C-1 and C-2 are acylated with EPA (eicosapentaenoic acid, 20:5) in the major molecular species (over 90% of total). The DGTS level shows a marked rhythmic fluctuation with time which is inversely correlated with the level of MGDG (monogalactosyldiacylglycerol), the other major lipid. Improved NMR data and the first electrospray MS data on this lipid are presented.  相似文献   

4.
A polar lipid accounting for 12.5% of the total lipid nitrogen has been isolated from the protozoan Acanthamoeba castellanii. On the basis of thin-layer chromatography and mass spectral analysis, the lipid has been identified as diacylglyceryltrimethylhomoserine (DGTS). Fast atom bombardment (FAB) mass spectra of DGTS are reported for the first time and are compared to the FAB mass spectra of phosphatidylcholines and the electron ionization (EI) and field desorption (FD) mass spectra of DGTS. Gas-liquid chromatographic-mass spectrometric (GLC-MS) analysis of the acyl chain composition of this lipid has shown that 87.5% consists of cis-9-octadecenoic acid. Plasma membrane isolated from this organism has shown that labeled DGTS appears in the plasma membrane but is not enriched in this fraction. DGTS has been isolated previously only from a limited number of green plants and one species of fungus. Identification of this lipid in Acanthamoeba indicates that this lipid is distributed among a diverse group of lower eucaryotes.  相似文献   

5.
Diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) belongs to a family of three known betaine lipids. It is synthesized by a number of bacteria, fungi, brown, red and green algae, in addition to lichens, and is also found in higher plants Bryophyta, Equisetophyta and Polydiophyta. It has been determined that DGTS plants can be DGTS-positive or DGTS-negative. The purpose of the present study was to examine the leaves of the ferns Drytopteris filix-mas (L.) Tod. and Pteridium aquilinum (L.) Kuhn, collected at different time periods during a single vegetation season for their DGTS contents. The results obtained show that amounts of DGTS in all of the species examined varies relative to the time periods in which they were collected.  相似文献   

6.
Abstract. 1. Adults of rolled-leaf hispine beetles (Chrysomelidae, Coleoptera) spend their lives in the scrolls formed by immature leaves of Heliconia (Heli-coniaceae, Monocotyledonae) in Tropical America. As many as eight hispine species can intermingle in the host scrolls at a single site. Scrolls of single host species are invariably occupied by adults of more than one hispine species, and as many as five species can simultaneously occupy one scroll.
2. I made virgin scrolls, which had never contained any insects, by growing leaves under the cover of plastic bags.
3. Thirty-seven combinations of single hispine and Heliconia species were experimentally created in the virgin scrolls, at two sites and in two seasons, in Costa Rica. Combinations included all abundant host species at the sites.
4. All beetles left all leaves of the twenty-eight unnatural beetle—host combinations, within 24 h. On the other hand, none of the nine natural combinations was completely abandoned within the experimental period.
5. Thus, host specificity is not broader in the absence of similar hispine species that might be competitors, and interspecies competition does not affect this obvious aspect of resource utilization for these phytophagous insects.  相似文献   

7.
Moore TS  Du Z  Chen Z 《Plant physiology》2001,125(1):423-429
Diacylglyceryltrimethylhomo-Ser (DGTS) is an abundant lipid in the membranes of many algae, lower plants, and fungi. It commonly has an inverse concentration relationship with phosphatidylcholine, thus seemingly capable of replacing this phospholipid in these organisms. In some places this replacement is complete; Chlamydomonas reinhardtii is such an organism, and was used for these investigations. We have assayed headgroup incorporation to form DGTS in vitro. The precursor for both the homo-Ser moiety and the methyl groups was found to be S-adenosyl-L-Met. DGTS formation was associated with microsomal fractions and is not in plastids. By analogy with phosphatidylcholine and phosphatidylethanolamine biosynthesis in higher plants, the microsomal activity probably is associated with the endoplasmic reticulum. The pH optimum for the total reaction was between 7.5 and 8.0, and the best temperature was 30 degrees C. The apparent K(m) and V(max) for S-adenosyl-L-Met in the overall reaction were 74 and 250 microM, respectively.  相似文献   

8.
The composition of lipids, PLs and FAs in the treegrowing lichenXanthoria parientina, collected during the period from Marchto May, was studied. The major polar lipids found, includingphospholipids, were DGTS, PC, PE, and PG. Polar and PL contentswere also identified, and certain trends in the changing proportionsof PC (increasing from 17.8 to 50.1%) and DGTS (decreasing from27.1 to 12.6%) were determined. The fatty acid composition wasexamined using capillary GC-MS in the neutral, glyco- and PLfractions. Hydroxy acids were detected only in the glycolipidfraction; their seasonal dynamics were also studied. The seasonalchanges occurring in lipid composition due to the temperaturefactor were identified. It was found that X. parientina hada characteristic temperature-based lipid pattern, increasingin its neutral lipid content from 40.6% in March to 52.7% inMay but decreasing in glycolipid from 39.0% in March to 27.0%in May. Key words: Xanthoria, lipids, DGTS, fatty acids, lichen  相似文献   

9.
Tani T  Kudo G 《Annals of botany》2005,95(2):263-270
BACKGROUND AND AIMS: Dryopteris crassirhizoma is a semi-evergreen fern growing on the floor of deciduous forests. The present study aimed to clarify the photosynthetic and storage functions of overwintering leaves in this species. METHODS: A 2-year experiment with defoliation and shading of overwintering leaves was conducted. Photosynthetic light response was measured in early spring (for overwintering leaves) and summer (for current-year leaves). KEY RESULTS: No nitrogen limitation of growth was detected in plants subjected to defoliation. The number of leaves, their size, reproductive activity (production of sori) and total leaf mass were not affected by the treatment. The defoliation of overwintering leaves significantly reduced the bulk density of rhizomes and the root weight. The carbohydrates consumed by the rhizomes were assumed to be translocated for leaf production. Photosynthetic products of overwintering leaves were estimated to be small. CONCLUSION: Overwintering leaves served very little as nutrient-storage and photosynthetic organs. They partly functioned as a carbon-storage organ but by contrast to previous studies, their physiological contribution to growth was found to be modest, probably because this species has a large rhizome system. The small contribution of overwintering leaves during the short-term period of this study may be explained by the significant storage ability of rhizomes in this long-living species. Other ecological functions of overwintering leaves, such as suppression of neighbouring plants in spring, are suggested.  相似文献   

10.
Membrane lipids and fatty acids of Ochromonas danica were analyzed.Of the two betaine lipids, the homoserine lipid DGTS mainlycontains 14:0 and 18:2 fatty acids, while the alanine lipidDGTA is enriched in 18:0, 18:2 and 22:5 fatty acids. Of thepolar moiety of DGTA, improved NMR data are presented. On incubationof cells with [3,4-14C]methionine, DGTS as well as DGTA werelabelled. With [1-14C]methionine as a substrate, the label appearedin DGTS only. If double labelled [3H](glycerol)/[14C](polarpart)DGTS was used as a precursor, radioactivity was incorporatedspecifically into DGTA in which the isotope ratio was unchangedcompared to the precursor. Thus, the glyceryltrimethylhomoserinepart of DGTS acts as the precursor of the polar group of DGTA.Labelling of cells with [1-14C]oleate in a pulse-chase mannerand subsequent analysis of the label in the fatty acids andmolecular species of different lipids including DGTS and DGTA,suggested a clearly different role of the two betaine lipids:DGTS acts as a i) primary acceptor for exogenous C18 monoeneacid, ii) substrate for the desaturation of 18:1 to 18:2 acid,and iii) donor of mainly 18:2 fatty acid to be distributed amongPE and other membrane lipids. Into DGTA, in contrast, fattyacids are introduced only after elongation and desaturation.As a result, the biosynthesis of DGTA from DGTS involves a decarboxylationand recarboxylation of the polar part and a simultaneous deacylationand reacylation of the glycerol moiety. (Received January 28, 1992; Accepted March 11, 1992)  相似文献   

11.
The phase transition in the lipid phase of aqueous dispersions of diacylglyceryltrimethylhomoserine (DGTS) was measured by fluorescence depolarization of parinaric acid and differential scanning calorimetry. In both techniques, the phase transition temperatures (Tm) of 1-palmitoyl-2-stearoyl DGTS and of 1,2-distearoyl DGTS were 53 and 59 degrees C, respectively. Each of these Tm values was significantly higher than the Tm value of phosphatidylcholine with an identical combination of fatty acids. This suggests that the intermolecular interactions of DGTS molecules are slightly different from those of phosphatidylcholine molecules.  相似文献   

12.
Phosphate limitation caused significant changes in the fatty acid and lipid composition of Monodus subterraneus. With decreasing phosphate availability from 175 to 52.5, 17.5 and 0 microM (K2HPO4), the proportion of the major VLC-PUFA, eicosapentaenoic acid (EPA), gradually decreased from 28.2 to 20.8, 19.4 and 15.5 mol% (of total fatty acids), respectively. The cellular total lipid content of starved cells increased, mainly due to the dramatic increase in triacylglycerols (TAG) levels. Among polar lipids, cellular contents of digalactosyldiacylglycerol (DGDG) and diacylglyceroltrimethylhomoserine (DGTS) increased sharply from 0.29 and 0.19 to 0.60 and 0.38 fg cell(-1), respectively, while that of monogalactosyldiacylglycerol (MGDG) was not significantly changed. In the absence of phosphate, the proportion of phospholipids was significantly reduced from 8.3% to 1.4% of total lipids, and the proportion of triacylglycerols (TAG) increased from 6.5% up to 39.3% of total lipids. The share of MGDG was substantially reduced, from 35.7% to 13.3%, while that of DGDG and DGTS reduced less from 18.3% to 15.1%, and 12.2% to 8.6%, respectively. The most distinctive change in the fatty acid composition was noted in that of DGDG, where the proportion of EPA, located exclusively at the sn-1 position, increased from 11.3% to 21.5% at the expense of 16:0, 16:1 and 18:1. In MGDG, however, the proportion of EPA did not change appreciably. In contrast to higher plants, DGDG accumulated under P-deprivation in M. subterraneus, did not resemble PC and the positional distribution of its fatty acids was not altered, preserving the C20/C16 structure of its molecular species. We suggest that under phosphate starvation DGTS is a likely source of C20 acyl groups that can be exported to the sn-1 position of DGDG and can partially compensate for the decrease in PE, the apparent source of C20 acyl-containing diacylglycerols in this alga. Moreover, accumulation of non-esterified 18:0 indicates that no polar lipid can replace PC, which appears to be the only lipid capable of C18 desaturation in this alga.  相似文献   

13.
Rhodobacter sphaeroides, which produces diacylglyceryl-N,N,N-trimethylhomoserine (DGTS) under phosphate-limiting conditions, was incubated with L-[1-14C]- and L-[methyl-14C]methionine in pulse and pulse-chase experiments. The label was incorporated specifically into the polar part of DGTS and of three other compounds. One of them (compound 3) could be identified as diacylglyceryl-N,N-dimethylhomoserine by cochromatography with a reference obtained semisynthetically from DGTS. It was labelled when using L-[1-14C]- as well as L-[methyl-14C]methionine as a precursor and was converted to DGTS when incubated with the DGTS-forming eukaryotic alga Ochromonas danica (Chrysophyceae). Of the other two compounds labelled with L-[1-14C]methionine, compound 2 was also labelled with L-[methyl-14C]methionine whereas compound 1 was not, suggesting that these two intermediates are the corresponding N-methyl and nonmethylated lipids, respectively. The methyltransferase inhibitor 3'-deazaadenosine enhanced the amounts of compounds 1 to 3 but decreased the amount of DGTS. It is concluded that in R. sphaeroides, DGTS is synthesized by the same pathway as in eukaryotic organisms and that the N methylation is the terminal step in this process and occurs on the preformed lipid. Since the phosphatidylcholine-deficient mutant CHB20, lacking the phosphatidylcholine-forming N-methyltransferase was able to synthesize DGTS, one or several separate N-methyltransferases are suggested to be responsible for the synthesis of DGTS.  相似文献   

14.
Bacteria react to phosphate starvation by activating genes involved in the transport and assimilation of phosphate as well as other phosphorous compounds. Some soil bacteria have evolved an additional mechanism for saving phosphorous. Under phosphate-limiting conditions, they replace their membrane phospholipids by lipids not containing phosphorus. Here, we show that the membrane lipid pattern of the free-living microsymbiotic bacterium Rhizobium (Sinorhizobium) meliloti is altered at low phosphate concentrations. When phosphate is growth limiting, an increase in sulpholipids, ornithine lipids and the de novo synthesis of diacylglyceryl trimethylhomoserine (DGTS) lipids is observed. Rhizobium meliloti phoCDET mutants, deficient in phosphate uptake, synthesize DGTS constitutively at low or high medium phosphate concentrations, suggesting that reduced transport of phosphorus sources to the cytoplasm causes induction of DGTS biosynthesis. Rhizobium meliloti phoU or phoB mutants are unable to form DGTS at low or high phosphate concentrations. However, the functional complementation of phoU or phoB mutants with the phoB gene demonstrates that, of the two genes, only intact phoB is required for the biosynthesis of the membrane lipid DGTS.  相似文献   

15.
杨淼  孟迎迎  褚亚东  薛松 《植物学报》2018,53(6):812-828
以模式藻株莱茵衣藻(Chlamydomonas reinhardtii)为材料, 基于液质联用技术对其极性甘油酯组进行定性定量分析。通过综合利用UPLC-ESI-Q-Trap/MS的一级质谱扫描(中性丢失或母离子扫描)及UPLC-ESI-Orbitrap/MS2的二级碎片信息扫描, 共鉴定出109种极性甘油酯分子; 再通过外标法利用UPLC-ESI-Q-Trap/MS在多级反应监测模式下对各分子进行靶向定量分析。结果表明, 莱茵衣藻的极性脂以糖脂MGDG、DGDG及甜菜碱脂DGTS为主, 所有极性脂的分子组成表明, DGDG、SQDG、DGTS及PI是C18脂肪酸的去饱和载体。该研究利用液质联用技术建立了莱茵衣藻极性甘油酯组的结构图谱及定量分析技术平台, 为微藻极性脂生物学功能及脂质代谢研究奠定了基础。  相似文献   

16.
The development of the sexual phase of six Mexican species of Dryopteris is described and compared. Spores of all studied species are monolete, ellipsoid and have a rugose surface; the perine is folded, brown to dark brown, with a tubercled outline. Germination pattern is of the Vittaria-type and the development pattern of the prothallia is of the Aspidium-type. Gametangia are of the common type for the leptosporangiate advanced ferns. First leaves of the sporophytes appear 258-265 after sowing and apparently in Dryopteris pseudo-filix-mas the sporophyte have an apogamic origin (80 days). To make a comparative analysis of gametophytic characteristics in the twelve Mexican species and conclude of germination is of the Vittaria-type and development pattern prothallial is of the Aspidium-type, and unicelular trichomes on margin and superficial gametophytic to yield irregular aspect are characteristics to yield unit and characteristic to genera to conform Dryopteridaceae family (sensu Moran 1995) with the exception of Didymochlaena genus.  相似文献   

17.
Two Haptophytes were isolated from extensive aquaculture ponds at Veta La Palma state (Guadalquivir estuary, SW Spain). They were identified as Pseudoisochrysis paradoxa VLP and Diacronema vlkianum VLP based on their SSU rDNA homology to other Haptophytes and positioned in the Isochrysidaceae and Pavlovaceae families, respectively. Both Haptophytes had phosphatidilglycerol (PG) as the only phospholipid (PL), representing a low proportion of the total lipid content (0.8% in P. paradoxa VLP and 3.3% in D. vlkianum VLP). Instead, they were found to have different types of betaine lipids (BL) that were identified and characterized by HPLC/ESI-TOF-MS operating in multiple reacting monitoring (MRM) modes. P. paradoxa VLP had 2.2% of total lipids as diacylgyceryl-N-trimethylhomoserine (DGTS): it is the first Haptophyte reported to have this BL. Its total lipid fraction also contained 12.0% of diacylglyceryl-carboxyhydroxymethylcholine (DGCC) as the main BL and no diacylglyceryl-hydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA) was detected. DGTA was only present (4.6% of total lipids) in D. vlkianum VLP: this was the main difference in BL content relative to P. paradoxa. D. vlkianum VLP also had DGTS (4.1%) and DGCC (7.6%): it is the first microalgae in which the simultaneous presence of these three BL has been demonstrated.The fatty acid profiles of P. paradoxa VLP and D. vlkianum VLP were close to those described for the major part of known members of the Isochrisidaceae and Pavlovaceae families, respectively, with the main differences due to the higher percentages of 18:1n9 (18.5%), 18:4n3 (12.6%) and 22:6n3 (9.3%) in the former. The corresponding fatty acid percentages for D. vlkianum VLP were 3.9%, 3.5% and 3.9%, respectively. D. vlkianum VLP showed higher 16:1n7 (16.1%) and 20:5n3 (9.4%) contents, whereas P. paradoxa VLP had significantly lower percentages of 16:1n7 (1.7%) and 20:5n3 (0.6%). Fatty acids of BL differed between both haptophytes. In DGTS from P. paradoxa VLP, 90.9% of total molecular species consisted of the 14:0–18:1 fatty acid combination, whereas DGTS from D. vlkianum showed a more diverse range of fatty acids. The unsaturation index (UI) of DGTS was lower (55.8) than that of total lipid UI (178.3) in P. paradoxa VLP. In D. vlkianum VLP the UI of DGTS was higher (146.9) and similar to that for total cell lipids (145.9). DGTA from D. vlkianum VLP had the highest UI (321.8) of all BL studied and it contained maximum levels (27.7%) of 22:6n3, representing 7.1 times the proportion of this fatty acid in the whole lipid extract. DGCC was enriched in 20:5n3 by a factor of around four in both microalgae. Due to different levels of this fatty acid in the two microalgae their respective 20:5n3 content in DGCC varied from 2.2% (P. paradoxa VLP) to 41.0% (D. vlkianum VLP) and these concentrations were also associated with UI values of 92.2 and 271.0, respectively. The specific differences in BL and fatty acids described in the present work for two phylogenetic distant Hatophytes is a contribution to a better understanding on the complex relationship between lipid composition and taxonomy of this important Division of microalgae. Present results can also be useful for a more accurate identification of primary producers in food web studies using fatty acids and intact polar lipids as trophic markers.  相似文献   

18.
The distribution of O-(1,2-diacylglycero)-4-(N,N,N-trimethyl)homoserine (DGTS), a betaine lipid, in ten samples of plants belonging to the division Lycopodiophyta collected in various habitats was studied. Homogeneous plant tissues (vegetative shoots and spikelets) and mixed tissues (shoots with spikelets) were analyzed. A particular attention was paid to the DGTS-synthesizing ability of various club mosses, various tissue types forming an organ in a single plant species, as well as the ratio between DGTS and other glycerolipid classes.  相似文献   

19.
The biosynthesis of lipids in Cryptomonas strain CR-1 was studiedusing radioactive tracers. For studies of general aspects ofthe biosynthesis of lipids, the cells were labelled with [14C]NaHCO3or with [l,3-14]glycerol. In both cases, monogalactosyl diacylglycerol(MGDG) was the most heavily labelled lipid. Phosphatidylcholineand the alanine lipid DGTA were not labelled to specific activitiescomparable to those of MGDG and DGDG. It is improbable thatthe so-called "eukaryotic pathway", which has been suggestedas the pathway for the synthesis of " eukaryotic" molecularspecies of MGDG from PC in higher plants, is operative in Cryptomonascells which contain typical "eukaryotic" MGDG. The homoserinelipid DGTS was labelled to a significant level only in its polargroup. The C-3 and C-4 atoms of methionine, as well as the methylcarbon of methionine, were incorporated into both DGTS and DGTA,whereas the C-l carbon of methionine was incorporated uniquelyinto DGTS. Results of pulse-chase experiments with [3,4-14C]methionineand [methyl.-l4C]methionine suggest the conversion of DGTS toDGTA. (Received April 22, 1991; Accepted June 12, 1991)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号