首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Two immobilized lipases from Candida antarctica have been compared for the direct esterification of tyrosol with oleic acid in equimolar conditions and in the absence of organic solvent. Candida antarctica lipase B was immobilized on octyl-silica agglomerates and compared with commercial Novozym 435. Reduction of tyrosol particle size to 0.1 mm significantly increased the reaction rate with both immobilized lipases, and reduced pressure improved the final tyrosyl oleate yield up to 95% (w/w) in both cases. Immobilized lipases were recovered and reutilized in three consecutive trials with negligible inactivation. Under optimum conditions, a product mixture comprising more than 95% of tyrosyl oleate (w/w) was attained in less than 2 hours. Finally, the index of antioxidant activity obtained, according to the Rancimat method, indicated that tyrosyl oleate was slightly more effective than tyrosol as an antioxidant in a low polar matrix.  相似文献   

2.
The substrate selectivity of numerous commercially available lipases from microorganisms, plants and animal tissue towards 9-octadecenoic acids with respect to the cis/trans configuration of the CC double bond was examined by the esterification of cis- and trans-9-octadecanoic acid (oleic and elaidic acid respectively) with n-butanol in n-hexane. A great number of lipases studied, e.g. those from Pseudomonas sp., porcine pancreas or Carica papaya, were unable to discriminate between the isomeric 9-octadecenoic acids. However, lipases from Candida cylindracea and Mucor miehei catalysed the esterification of oleic acid 3–4 times faster than the corresponding reaction of elaidic acid and therefore have a high preference for the cis isomer. Of all biocatalysts examined, only recombinant lipases from Candidaantarctica favoured elaidic acid as substrate. While the preference of Candida antarctica lipase B for the trans isomer was quite low, Candida antarctica lipase A had an extraordinary substrate selectivity and its immobilized enzyme preparation [Chirazyme L-5 (3) from Boehringer] esterified elaidic acid about 15 times faster than oleic acid. Received: 29 October 1998 / Received revision: 18 December 1998 / Accepted: 21 December 1998  相似文献   

3.
Summary Short chain fatty acid esters of geraniol and citronellol were synthesized by lipase-catalyzèd transesterification with yields as high as 98% molar conversion. Triacylglycerols were the best substrates and immobilized Candida antarctica lipase, SP435 gave the highest overall yields. The lipases tested successfully accommodated novel acyl donors such as isopropenyl acetate and glycidyl butyrate.  相似文献   

4.
The use of water-in-ionic liquid microemulsion-based organogels (w/IL MBGs) as novel supports for the immobilization of lipase B from Candida antarctica and lipase from Chromobacterium viscosum was investigated. These novel lipase-containing w/IL MBGs can be effectively used as solid phase biocatalysts in various polar and non-polar organic solvents or ILs, exhibiting up to 4.4-fold higher esterification activity compared to water-in-oil microemulsion-based organogels. The immobilized lipases retain their activity for several hours at 70°C, while their half life time is up to 25-fold higher compared to that observed in w/IL microemulsions. Fourier-transform infrared spectroscopy data indicate that immobilized lipases adopt a more rigid structure, referring to the structure in aqueous solution, which is in correlation with their enhanced catalytic behavior observed.  相似文献   

5.
《Process Biochemistry》2010,45(4):593-597
This paper reports a simple method for producing macroporous silica-monoliths with controllable porosity that can be used for the immobilization of lipases to generate an active and stable micro-reactor for biocatalysis. A range of commercially available lipases has been examined using the hydrolysis reactions of 4-nitrophenyl butyrate in water–decane media. The kinetic studies performed have identified that a similar value for kcat is obtained for the immobilized Candida antarctica lipase A (0.13 min−1) and the free lipase in solution (0.12 min−1) whilst the immobilized apparent Michaelis constant Km (3.1 mM) is 12 times lower than the free lipase in solution (38 mM). A 96% conversion was obtained for the immobilized C. antarctica lipase A compared to only 23% conversion for the free lipase. The significant higher conversions obtained with the immobilized lipases were mainly attributed to the formation of a favourable biphasic system in the continuous flowing micro-reactor system, where a significant increase in the interfacial activation occurred. The immobilized C. antarctica lipase A on the monolith also exhibited improved stability, showing 64% conversion at 80 °C and 70% conversion after continuous running for 480 h, compared to 40 and 20% conversions under the same temperature and reaction time for the free lipase.  相似文献   

6.
Abstract

The enzymatic transesterification of docosahexaenoic acid (DHA) ethyl ester with glycerol was carried out by using several immobilized lipases in a solvent-free system. This reaction involves the initial formation of sn-2 docosahexaenyl monoacylglycerol. This DHA derivative is highly relevant for improving the bioavailability of DHA and it has received increasing interest in the field of nutrition. Three commercial lipases, from Rhizomucor miehei (RML), Alcaligenes sp. (AQ) and Candida antarctica-fraction B (CALB) were immobilized by interfacial adsorption on a commercial hydrophobic support (a methacrylate resin containing octadecyl groups, Sepabeads C-18) and tested for glycerolysis of DHA ethyl ester. In certain cases (e.g. immobilized CALB), the transesterification reaction continues to the formation of triacylglycerol (80%) by using a very high excess of DHA ethyl ester ((115 mmols versus 1.24 mmols of glycerol and high temperatures (50?°C). However, the same biocatalyst working at lower temperatures, 37?°C, synthetizes a 90% of sn-2 monoacylglycerol even in the presence of that a high excess of DHA ethyl ester. Interestingly, immobilized RML derivative synthesizes a 98% of sn-2 monoacylglyceride (2-MG) in 15?min at 37?°C with a 4% of immobilized biocatalyst. These high activity and regioselectivity under very mild reaction conditions are very interesting for the thermal oxidative stability of the omega-3 fatty acid as well as for the thermal stability of the biocatalyst. Using Normal Phase HPLC-ELSD and accurate commercial markers, the formation of the 2-MG was confirmed.  相似文献   

7.
The hydrolysis reaction of p-nitrophenyl butyrate catalyzed by lipases was followed with in situ UV/vis diode array spectrophotometry. Five enzymes - Candida antarctica lipase B and Fusarium solani pisi cutinase wild-type and three single-mutation variants - were tested as catalysts in homogeneous conditions and immobilized on zeolite NaY, on a polyacrylate support and as cross-linked aggregates. Using deconvolution techniques and kinetic modeling, the thermal stability of the different biocatalysts was compared in operational conditions and the results were supported by steady-state enzyme fluorescence measurements. We concluded that both the mutagenesis and the immobilization on zeolite NaY had a positive effect on the thermal stability of F. solani pisi cutinase.  相似文献   

8.
Different immobilized preparations of three different lipases – those from Aspergillus niger (ANL), Candida rugose (CRL) and Candida antarctica B (CAL-B) – have been used in the regioselective monohydrolysis of different peracetylated-β-galactopyranosides. Three very different immobilization strategies – covalent attachment, anionic exchange and interfacial activation on a hydrophobic support – were employed for each lipase. The role of the immobilization strategy on the hydrolytic activities, specificities and regioselectivities of the lipases were investigated. Moreover, the effect the biocatalysts performance of the presence of different moieties in the anomeric position of the substrate was analyzed. The PEI-ANL immobilized preparation was six times more active than the CNBr-ANL in the hydrolysis of 1-thioisopropyl-2,3,4,6-tetra-O-acetyl-β-d-galactopyranoside whereas the CNBr-ANL showed 2 times more activity than the PEI-ANL in the hydrolysis of galactal. Using CRL, the octyl-CRL was completely specific and regioselective in the hydrolysis of galactal, producing the C-6 monohydroxylated product in 99% yield. The PEI-CRL showed low specificity and poor regioselectivity, hydrolyzing in C-6 but also in C-3 positions whereas the PEI-CRL preparation showed good specificity although low regioselectivity, hydrolyzing in C-6, C-4 and C-3 positions.  相似文献   

9.
A destabilizing effect at pH 7 of sodium phosphate on several lipases immobilized via interfacial activation is shown in this work. This paper investigates if this destabilizing effect is extended to other inactivation conditions, immobilization protocols or even other immobilized enzymes (ficin, trypsin, β-galactosidase, β-glucosidase, laccase, glucose oxidase and catalase). As lipases, those from Candida antarctica (A and B), Candida rugosa and Rhizomucor miehei have been used. Results confirm the very negative effect of 100 mM sodium phosphate at pH 7.0 for the stability of all studied lipases immobilized on octyl agarose, while using glutaraldehyde-support the effect is smaller (still very significant using CALA) and in some cases the effect disappeared (e.g., using CALB). The change of the pH to 5.0 or 9.0, or the addition of 1 M NaCl reduced the negative effect of the phosphate in some instances (e.g., at pH 5.0, this negative effect is only relevant for CALB). Regarding the other enzymes, only the monomeric β-galactosidase from Aspergillus oryzae is strongly destabilized by the phosphate buffer. This way, the immobilization protocol and the inactivation conditions strongly modulate the negative effect of sodium phosphate on the stability of immobilized lipases, and this effect is not extended to other enzymes.  相似文献   

10.
Ascorbyl fatty acid esters are commercially interesting fat-soluble antioxidants. In this work, enzymatic synthesis of ascorbyl esters from less expensive and readily available plant oils, and their anti-oxidative activities are described. Among the immobilized lipases tested, Candida antarctica lipase B was the best for the synthesis of plant oil-based ascorbyl esters. The enzyme showed much better catalytic performances in the binary mixtures of biomass-based 2-methyltetrahydrofuran (MeTHF) and t-butanol than the previously preferred t-butanol. The conversions of 70–73% were obtained under the optimal reaction conditions after 24?h, with the unsaturated fatty acid esters (oleate and linoleate, 80–90%) as the major products. The immobilized lipase kept the relative activity of 80% after reuse for 6 batches in MeTHF-containing system. Besides, anti-oxidative activities of plant oil-based ascorbyl esters and ascorbic acid were comparable, which could remove α,α-diphenyl-β-picrylhydrazyl (DPPH) free radical of >87%.  相似文献   

11.
Abstract

Porcine pancreatic lipase (PPL) and Candida cylindracea lipase (CCL) were immobilized on Celite and Amberlite IRA 938 by deposition from the aqueous solution by the addition of hexane. The influence of the immobilization on the activities of the immobilized lipase derivatives has been studied. The immobilized lipases were used in synthesis of pentyl isovalerates. Various reaction parameters affecting the synthesis of pentyl isovalerates were investigated. The reaction rates were compared with the rates of esterification with free lipases. The immobilized lipases were found to be very effective in the esterification reaction. The lipases immobilized on Celite 545 exhibited better operational stabilities than that of immobilized on Amberlite IRA‐938.  相似文献   

12.
Kahveci D  Xu X 《Biotechnology letters》2011,33(10):2065-2071
Candida rugosa lipase (CRL) and Candida antarctica lipase A (CALA) with improved activity and selectivity were prepared for use in organic solvent media. CRL bioimprinted with fatty acids exhibited eightfold enhanced transesterification activity in hexane. Combination of bioimprinting and coating with lecithin or with immobilization did not improve the activity further. CALA was immobilized with and without bioimprinting, none of which improved the activity. All modified lipases were tested for selective ethanolysis of fish oil to concentrate omega-3 polyunsaturated fatty acids (PUFA). None of the preparations, except the immobilized ones catalysed ethanolysis. Immobilized CRL-catalyzed ethanolysis giving 27% (v/v) ethyl esters (EE) in 48 h, of which 43 mol% was oleic acid but no PUFA was detected in the EE fraction. Fatty acid selectivity of CALA was significantly improved by immobilization combined with bioimprinting, resulting in 5.5-fold lower omega-3 PUFA in EE.  相似文献   

13.
The immobilization of lipases within sol–gel derived silica, using multi-walled carbon nanotubes (MWNTs) as additives in order to protect the inactivation of lipase during sol–gel process and to enhance the stability of lipase, was investigated. Three sol–gel immobilized lipases (Candida rugosa, Candida antarctica type B, Thermomyces lanuginosus) with 0.33% (w/w) MWNT showed much higher activities than lipase immobilized without MWNT. The influence of MWNT content and MWNT shortened by acid treatment in the sol–gel process on the activity and stability of immobilized C. rugosa lipase was also studied. In hydrolysis reaction, immobilized lipase containing 1.1% pristine MWNT showed 7 times higher activity than lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT showed 10 times higher activity in esterification reaction, compared with lipase immobilized without MWNT. The lipase coimmobilized with 2.7% shortened MWNT retained 96% of initial activity after 5 times reuse, while the lipase immobilized without MWNT was fully inactivated under the same condition.  相似文献   

14.
Amino acid modified chitosan beads (CBs) for immobilization of lipases from Candida rugosa were prepared by activation of a chitosan backbone with epichlorohydrin followed by amino acid coupling. The beads were analyzed by elemental analysis and solid state NMR with coupling yields of the amino acids ranging from 15 to 60%. The immobilized lipase on unmodified chitosan beads showed the highest immobilization yield (92.7%), but its activity was relatively low (10.4%). However, in spite of low immobilization yields (15–50%), the immobilized lipases on the amino acid modified chitosan beads showed activities higher than that of the unmodified chitosan beads, especially on Ala or Leu modified chitosan beads (Ala-CB or Leu-CB) with 49% activity for Ala-CB and 51% for Leu-CB. The immobilized lipases on Ala-CB improved thermal stability at 55 °C, compared to free and immobilized lipases on unmodified chitosan beads and the immobilized lipase on Ala-CB retained 93% of the initial activity when stored at 4 °C for 4 weeks. In addition, the activity of the immobilized lipase on Ala-CB retained 77% of its high initial activity after 10 times of reuse. The kinetic data (kcat/Km) supports that the immobilized lipase on Ala-CB can give better substrate specificity than the unmodified chitosan beads.  相似文献   

15.
Summary The sensitivity of twenty six microbial lipases towards acetaldehyde (an unavoidable by-product in lipase-catalysed acyl transfer reactions with vinyl esters) was investigated. The sensitivity of an individual enzyme strongly depends on its properties such as microbial source, molecular weight and relative lysine content. Whereas the majority of enzymes (from Pseudomonas, Rhizopus, Chromobacterium, Mucor and Candida antarctica sp.) proved to be remarkably stable, lipases from Candida rugosa and Geotrichum candidum lost most of their activity when exposed to acetaldehyde.  相似文献   

16.
Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).  相似文献   

17.
S‐1‐(2‐Furyl) ethanol serves as an important chiral building block for the preparation of various natural products, fine chemicals, and is widely used in the chemical and pharmaceutical industries. In this work, lipase‐catalyzed kinetic resolution of (R/S)‐1‐(2‐furyl) ethanol using different acyl donors was investigated. Vinyl esters are good acyl donors vis‐à‐vis alkyl esters for kinetic resolution. Among them, vinyl acetate was found to be the best acyl donor. Different immobilized lipases such as Rhizomucor miehei lipase, Thermomyces lanuginosus lipase, and Candida antarctica lipase B were evaluated for this reaction, among which C. antarctica lipase B, immobilized on acrylic resin (Novozym 435), was found to be the best catalyst in n‐heptane as solvent. The effect of various parameters was studied in a systematic manner. Maximum conversion of 47% and enantiomeric excess of the substrate (ees) of 89% were obtained in 2 h using 5 mg of enzyme loading with an equimolar ratio of alcohol to vinyl acetate at 60°C at a speed of 300 rpm in a batch reactor. From the analysis of progress curve and initial rate data, it was concluded that the reaction followed the ordered bi–bi mechanism with dead‐end ester inhibition. Kinetic parameters were obtained by using nonlinear regression. This process is more economical, green, and easily scalable than the chemical processes. Chirality 26:286–292, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
The activities of four immobilized lipases for glycerolysis of a commercially available fish oil (TG500) rich in eicosapentaenoic residues (>58%, w/w) have been characterized in solvent-free systems. The effects of the mole ratio of TG500 to glycerol and temperature have been investigated. The highest conversion was obtained at 60°C with a Candida antarctica fraction B lipase (Chirazyme L-2) and a mole ratio of TG500 (based on fatty acid equivalents) to glycerol of 1.5 to 1.  相似文献   

19.
The fatty acid specificity of the B-lipase derived from Candida antarctica was investigated in the synthesis of esters of ethyl D-glucopyranoside. The specificity was almost identical with respect to straight-chain fatty acids with 10 to 18 carbon atoms. However, lower fatty acids such as hexanoic and octanoic acid and the unsaturated 9-cis-octadecenoic acid were found to be poor substrates of the enzyme. As a consequence of this selectivity, these fatty acids were accumulated in the unconverted fraction when ethyl D-glucopyranoside was esterified with an excess of a mixture of fatty acids. This accumulation can reduce the overall effectiveness of the process as the activity of the lipase was found to be reduced when exposed to high concentrations of short-chain fatty acids. Finally, using a simplified experimental set-up, the specificity of the C. antarctica B-lipase was compared to the specificity of lipases derived from C. rugosa, Mucor miehei, Humicola, and Pseudomonas. Apart from the C. rugosa lipase, which exhibited a very poor performance, all the enzymes showed a very similar specificity with respect to fatty acids longer than octanoic acid while only the C. antarctica B-lipase showed activity towards sort-chain fatty acids.  相似文献   

20.
We have analyzed the effects of the buffer nature on the stability of immobilized lipases. Commercial phospholipase Lecitase Ultra (LU), lipase B from Candida antarctica (CALB) and lipase from Thermomyces lanuginosus (TLL) have been immobilized on octyl-glyoxyl agarose beads. The enzymes were readily inactivated using 4 M sodium phosphate but 6 M NaCl did not inactivate them. Using 2 M of sodium phosphate, the inactivation of the 3 immobilized enzymes still was very significant even at 25 °C but at lower rate than with higher phosphate concentration. Thermal stress inactivations of the immobilized enzymes revealed that even 100 mM sodium phosphate produced a significant decrease in enzyme stability; this effect was less pronounced for Lecitase but dramatic for CALB. While 6 M NaCl presented slightly positive (LU) or negative (TLL) effects on their thermal stabilities of, CALB was thermally stabilized under the same conditions. Results were very different using free enymes. Fluorescence spectroscopy revealed dramatic structural rearrangements of the immobilized enzymes in the presence of high phosphate concentration. From these results, the use of sodium phosphate does not seem to be recommended for studies on thermal stability of lipases, although this should be verified for each enzyme and immobilized preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号