首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sepsis is a systemic response to infection in which toxins, such as bacterial lipopolysaccharide (LPS), stimulate the production of inflammatory mediators like the cytokine tumor necrosis factor alpha (TNF-alpha). Previous studies from our laboratory have revealed that LPS inhibits the intestinal absorption of L-leucine and D-fructose in rabbit when it was intravenously administered, and that TNF-alpha seems to mediate this effect on amino acid absorption. To extend this work, the present study was designed to evaluate the possible effect of TNF-alpha on D-galactose intestinal absorption, identify the intracellular mechanisms involved and establish whether this cytokine mediates possible LPS effects. Our findings indicate that TNF-alpha decreases D-galactose absorption both in rabbit intestinal tissue preparations and brush-border membrane vesicles. Western blot analysis revealed reduced amounts of the Na+/glucose cotransporter (SGLT1) protein in the plasma membrane attributable to the cytokine. On the contrary, TNF-alpha increased SGLT1 mRNA levels. Specific inhibitors of the secondary messengers PKC, PKA, the MAP kinases p38 MAP, JNK, MEK1/2 as well as the proteasome, diminished the TNF-alpha-evoked inhibitory effect. LPS inhibition of the uptake of the sugar was blocked by a TNF-alpha antagonist. In conclusion, TNF-alpha inhibits D-galactose intestinal absorption by decreasing the number of SGLT1 molecules at the enterocyte plasma membrane through a mechanism in which several protein-like kinases are involved.  相似文献   

2.
Lipopolysaccharide (LPS) endotoxin is a causative agent of sepsis. The aim of this study was to examine LPS effects on intestinal fructose absorption and to decipher mechanisms. Sepsis was induced by intravenous injection of LPS in rabbits. The ultrastructural study and DNA fragmentation patterns were identical in the intestine of LPS and sham animals. LPS treatment reduced fructose absorption altering both mucosal-to-serosal transepithelial fluxes and uptake into brush border membrane vesicles (BBMVs). Cytochalasin B was ineffective on fructose uptake, indicating that GLUT5, but not GLUT2, transport activity was targeted. GLUT5 protein levels in BBMvs were lower in LPS than in sham-injected rabbits. Thus lower fructose transport resulted from lower levels of GLUT5 protein. LPS treatment decreased GLUT5 levels by proteasome-dependent degradation. Specific inhibitors of PKC, PKA, and MAP kinases (p38MAPK, JNK, MEK1/2) protected fructose uptake from adverse LPS effect. Moreover, a TNF-alpha antagonist blocked LPS action on fructose uptake. We conclude that intestinal fructose transport inhibition by LPS is associated with diminished GLUT5 numbers in the brush border membrane of enterocytes triggered by activation of several interrelated signaling cascades and proteasome degradation.  相似文献   

3.
The p38 mitogen-activated protein kinase (MAPK) cascade transduces multiple extracellular signals from cell surface to nucleus and is employed in cellular responses to cellular stresses and apoptotic regulation. The involvement of the p38 MAPK cascade in opioid- and opioid receptor-like receptor-1 (ORL1) receptor-mediated signal transduction was examined in NG108-15 neuroblastoma x glioma hybrid cells. Stimulation of endogenous delta-opioid receptor (DOR) or ORL1 resulted in activation of p38 MAPK. It also induced the activation of extracellular signal-regulated kinases (ERKs), another member of the MAPK family, with slower kinetics. Activation of p38 MAPK was abolished by selective antagonists of DOR or ORL1, pretreatment with pertussis toxin, or SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK had no significant effect on opioid-induced ERK activation, indicating that p38 MAPK activity was not required for ERK activation, though its stimulation preceded ERK activation. Inhibition of protein kinase A (PKA) strongly diminished p38 activation mediated by DOR or ORL1 but had no significant effect on ERK activation, and protein kinase C (PKC) inhibitors potentiated stimulation of p38 while inhibiting activation of ERKs. Taken together, our results provide the first evidence for coupling of DOR and ORL1 to the p38 MAPK cascade and clearly demonstrate that receptor-mediated activation of p38 MAPK both involves PKA and is negatively regulated by PKC.  相似文献   

4.
The pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) is induced by glucocorticoids (GCs), but it was not previously known if MIF regulates cellular sensitivity to GC. Here we show in GC and LPS-treated peritoneal macrophages derived from MIF-/- and wt mice that the absence of endogenous MIF is associated with increased sensitivity to GC of TNF release. This is associated with increased expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), concomitant decreased phosphorylation of p38 MAPK, but no effect of MIF on nuclear factor kappaB (NF-kappaB). These results demonstrate that MIF regulates GC sensitivity by phosphorylation of p38, and provides a cellular mechanism for this observation, indicating that MKP-1 is a central target of this regulation.  相似文献   

5.
Activation of MAPK pathways by angiotensin II (Ang II) is important for cardiac fibroblast (CFB) proliferation and migration. Activity of MAP-kinases is closely controlled by a group of dual-specific MAP kinase phosphatases (MKPs). Lipopolysaccharides (LPS) and cytokines are elevated in patients with heart failure and may contribute to disease progression. In this study, we investigate the effect of LPS on Ang II-induced CFB function. Pretreatment of CFBs with LPS (1 microg/mL; 30 min) almost completely inhibited Ang II-induced DNA-synthesis and inhibited Ang II directed chemotaxis by more than 80%. Compared to controls, LPS pretreatment significantly reduced phosphorylation levels of ERK1/2- and p38 MAPK and induced MKP-1 levels. Silencing MKP-1 with antisense oligodesoxynucleotides reversed the antimitogenic effect of LPS on Ang II-induced CFB DNA-synthesis and migration. Induction of MKP-1 by LPS was inhibited by the protein kinase C (PKC)-inhibitor calphostin C, but not by the ERK1/2-pathway inhibitor PD98059, suggesting that PKC but not ERK1/2 is required for LPS-mediated MKP-1 induction in CFBs. Our data demonstrate that LPS have direct cellular effects in CFBs through an inhibition of Ang II-induced MAPK activity via PKC-mediated induction of MKP-1. This might be relevant with regard to the decreased MAPK activity and increased levels in MKPs reported during chronic heart failure in humans.  相似文献   

6.
Treatment with inhaled carbon monoxide (CO) has been shown to ameliorate intestinal injury induced by lipopolysaccharide (LPS) or ischemia-reperfusion in experimental animals. We hypothesized that CO intraperitoneal administration (i.p) might provide similar protection against inhaled gas. In the present study, 1 h after intravenously receiving 5 mg/kg LPS, rats were exposed to either room air or 2 ml/kg of 250 ppm CO i.p for 1, 3, and 6 h. Intestinal tissues were collected to determine the levels of platelet activator factor (PAF), intercellular adhesion molecule-1 (ICAM-1), interlukin-10 (IL-10), maleic dialdehyde (MDA), cell apoptotic rate and the phosphorylated p38 mitogen activated protein kinase (MAPK), as well as myeloperoxidase (MPO) and superoxide dismutase (SOD) activity. After CO i.p, the increase of PAF, ICAM-1, MDA, MPO, and cell apoptosis rate induced by LPS was markedly reduced (P < 0.05 or 0.01), while the decrease of IL-10 and SOD was significantly increased (P < 0.05). Western blotting showed that the effects of CO i.p were mediated by p38 MAPK pathway. Thus, the results of our study show that CO i.p exerts potent protection against LPS induced injury to the intestine via anti-oxidant, anti-inflammation and anti-apoptosis, which may involve the p38 MAPK pathway.  相似文献   

7.
A selective p38 MAP kinase (p38 MAPK) inhibitor, SB202190, induced apoptotic cell death of a macrophage-like cell line, J774.1, in the presence of lipopolysaccharide (LPS), as judged by DNA nicks revealed by terminal deoxy transferase (TdT)-mediated dUTP nick end labeling (TUNEL), activation of caspase-3, and subsequent release of lactate dehydrogenase. This cytotoxicity was dependent on both LPS and SB202190, and such inhibitors of the upstream LPS-signaling cascade as polymyxin B and TPCK blocked this macrophage cell death. SB202190 suppressed the kinase activity of p38, leading to inhibition of activation of MAPKAPK2 and then the subsequent phosphorylation of hsp27 in LPS-treated macrophages both in vitro and in vivo, but an inactive analog of SB202190, SB202474, did not. There was a threshold of the time of addition of SB202190 to LPS-treated macrophages to induce apoptosis, which was before full transmission of p38 activity to a direct downstream kinase, MAPKAPK2. Besides, localization of phosphorylated hsp27 in Golgi area of the LPS-treated macrophages was suppressed by SB202190, while it was not by SB202474. These results suggest that selective inhibition of p38 MAPK activity in LPS-induced MAP kinase cascade leads to apoptosis of macrophages.  相似文献   

8.
Our recent data suggest that during auto- and allograft recognition in sponges (Porifera), cytokines are differentially expressed. Since the mitogen-activated protein kinase (MAPK) signal transduction modulates the synthesis and release of cytokines, we intended to identify one key molecule of this pathway. Therefore, a cDNA from the marine sponge Suberites domuncula encoding the MAPK was isolated and analyzed. Its encoded protein is 366 amino acids long (calculated Mr 42 209), has a TGY dual phosphorylation motif in protein kinase subdomain VIII and displays highest overall similarity to the mammalian p38 stress activated protein kinase (SAPK2), one subfamily of MAPKs. The sponge protein was therefore termed p38_SD. The overall homology (identity and similarity) between p38_SD and human p38alpha (CSBP2) kinase is 82%. One feature of the sponge kinase is the absence of threonine at position 106. In human p38alpha MAPK this residue is involved in the interaction with the specific pyridinyl-imidazole inhibitor; T106 is replaced in p38_SD by methionine. Inhibition studies with the respective inhibitor SB 203580 showed that it had no effect on the phosphorylation of the p38 substrate myelin basic protein. A stress responsive kinase Krs_SD similar to mammalian Ste20 kinases, upstream regulators of p38, had already previously been found in S. domuncula. The S. domuncula p38 MAPK is phosphorylated after treatment of the animal in hypertonic medium. In contrast, exposure of cells to hydrogen peroxide, heat shock and ultraviolet light does not cause any phosphorylation of p38. It is concluded that sponges, the oldest and most simple multicellular animals, utilize the conserved p38 MAPK signaling pathway, known to be involved in stress and immune (inflammatory) responses in higher animals.  相似文献   

9.
Villus enterocyte nutrient absorption occurs via precisely orchestrated interactions among multiple transporters. For example, transport by the apical Na(+)-glucose cotransporter, SGLT1, triggers translocation of NHE3, Na(+)-H(+) antiporter isoform 3, to the plasma membrane. This translocation requires activation of p38 mitogen-activated protein kinase (MAPK), Akt2, and ezrin. Akt2 directly phosphorylates ezrin, but the precise role of p38 MAPK in this process remains to be defined. Sequence analysis suggested that p38 MAPK could not directly phosphorylate Akt2. We hypothesized that MAPKAPK-2 might link p38 MAPK and Akt2 activation. MAPKAPK-2 was phosphorylated after initiation of Na(+)-glucose cotransport with kinetics that paralleled activation of p38 MAPK, Akt2, and ezrin. MAPKAPK-2, Akt2, and ezrin phosphorylation were all attenuated by p38 MAPK inhibition but were unaffected by dominant negative ezrin expression. Akt2 inhibition blocked ezrin but not p38 MAPK or MAPKAPK-2 phosphorylation, suggesting that MAPKAPK-2 could be an intermediate in p38 MAPK-dependent Akt2 activation. Consistent with this, MAP-KAPK-2 could phosphorylate an Akt2-derived peptide in vitro. siRNA-mediated MAPKAPK-2 knockdown inhibited phosphorylation of Akt2 and ezrin but not p38 MAPK. MAPKAPK-2 knockdown also blocked NHE3 translocation. Thus, MAP-KAPK-2 controls Akt2 phosphorylation. In so doing, MAP-KAPK-2 links p38 MAPK to Akt2, ezrin, and NHE3 activation after SGLT1-mediated transport.  相似文献   

10.
目的:观察低浓度一氧化碳(CO)吸入和腹腔给予对脂多糖(LPS)诱导大鼠小肠损伤的作用及作用过程中丝裂原活化蛋白激酶p38(p38 MAPK)磷酸化水平的变化。方法:6组SD大鼠静脉注入5mg/kg体质量IPS或等容量生理盐水;1h后,对照及LPS注入组吸入室内空气,CO吸入及LPS注入+CO吸入组吸入体积分数为2.5×10^-4CO.CO腹腔及LPS注入+CO腹腔组腹腔通入体积分数为2.5×10^-4CO。观察1、3、6h后放血处死,取回盲部上小肠,酶联免疫吸附法测定血小板活化因子(PAV)及细胞间黏附分子-1(ICAM-1)水平;光镜观察组织形态学变化;蛋白印迹法测定p38 MAPK磷酸化水平。结果:LPS注入组PAF、ICAM-1及p38 MAPK磷酸化水平显著高于相应时间点的对照、CO吸入及CO腹腔组(P均〈0.01);组内各时间点比较,差异无统计学意义。与相应时间点的LPS注入组比较,LPS注入+CO吸入及LPS注入+CP腹腔组的PAF和ICAM-1明显降低(P均〈0.05),但p38 MAPK磷酸化水平进一步增高(P均〈0.05);此两组间及两组内各时间点比较,差异无统计学意义。结论:低浓度CO吸入和腹腔给予以非时间依赖方式下调LPS诱导的大鼠小肠PAF、ICAM-1表达而起相似的保护作用;p38 MAPK信号转导通路可能参与了这一过程。  相似文献   

11.
Mitogen-activated protein kinases (MAPKs) are a family of proteins that constitute signaling pathways involved in processes that control gene expression, cell division, cell survival, apoptosis, metabolism, differentiation and motility. The MAPK pathways can be divided into conventional and atypical MAPK pathways. The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases, MAPK kinase, and MAPK. Atypical MAPK pathways are not organized into this three-tiered cascade. MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases. The latter are referred to as MAPK-activated protein kinases. This review focuses on one such MAPK-activated protein kinase, MAPK-activated protein kinase 5 (MK5) or p38-regulated/activated protein kinase (PRAK). This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways. Recent findings on the regulation of the activity and subcellular localization, bona fide interaction partners and physiological roles of MK5/PRAK are discussed.  相似文献   

12.
The co-transport of sodium and glucose is the first step for intestinal glucose absorption. Dietary glucose and sodium chloride (NaCl) may facilitate this physiological process in common carp (Cyprinus carpio L.). To test this hypothesis, we first investigated the feeding rhythm of intestinal glucose absorption. Carps were fed to satiety once a day (09:00 a.m.) for 1 month. Intestinal samples were collected at 01:00, 05:00, 09:00, 13:00, 17:00 and 21:00. Result showed that food intake greatly enhanced sodium/glucose cotransporter 1 (SGLT1) and glucose transporter type 2 (GLUT2) expressions, and improved glucose absorption, with highest levels at 09:00 a.m.. Then we designed iso-nitrogenous and iso-energetic diets with graded levels of glucose (10%, 20%, 30%, 40% and 50%) and NaCl (0%, 1%, 3% and 5%), and submitted to feeding trial for 10 weeks. The expressions of SGLT1 and GLUT2, brush border membrane vesicles (BBMVs) glucose transport and intestinal villus height were determined after the feeding trial. Increasing levels of dietary glucose and NaCl up-regulated mRNA and protein levels of SGLT1 and GLUT2, enhanced BBMVs glucose transport in the proximal, mid and distal intestine. As for histological adaptive response, however, high-glucose diet prolonged while high-NaCl diet shrank intestinal villus height. Furthermore, we also found that higher mRNA levels of SGLT1 and GLUT2, higher glucose transport capacity of BBMVs, and higher intestinal villus were detected in the proximal and mid intestine, compared to the distal part. Taken together, our study indicated that intestinal glucose absorption in carp was primarily occurred in the proximal and mid intestine, and increasing levels of dietary glucose and NaCl enhanced intestinal glucose absorption in carp.  相似文献   

13.
Microglial cells release monocyte chemoattractant protein-1 (MCP-1) which amplifies the inflammation process by promoting recruitment of macrophages and microglia to inflammatory sites in several neurological diseases. In the present study, dexamethasone (Dex), an anti-inflammatory and immunosuppressive drug has been shown to suppress the mRNA and protein expression of MCP-1 in activated microglia resulting in inhibition of microglial migration. This has been further confirmed by the chemotaxis assay which showed that Dex or MCP-1 neutralization with its antibody inhibits the microglial recruitment towards the conditioned medium of lipopolysaccharide (LPS)-treated microglial culture. This study also revealed that the down-regulation of the MCP-1 mRNA expression by Dex in activated microglial cells was mediated via mitogen-activated protein kinase (MAPK) pathways. It has been demonstrated that Dex inhibited the phosphorylation of Jun N-terminal kinase (JNK) and p38 MAP kinases as well as c-jun, the JNK substrate in microglia treated with LPS. The involvement of JNK and p38 MAPK pathways in induction of MCP-1 production in activated microglial cells was confirmed as there was an attenuation of MCP-1 protein release when microglial cells were treated with inhibitors of JNK and p38. In addition, Dex induced the expression of MAP kinase phosphatase-1 (MKP-1), the negative regulator of JNK and p38 MAP kinases in microglial cells exposed to LPS. Blockade of MKP-1 expression by triptolide enhanced the phosphorylation of JNK and p38 MAPK pathways and the mRNA expression of MCP-1 in activated microglial cells treated with Dex. In summary, Dex inhibits the MCP-1 production and subsequent microglial cells migration to the inflammatory site by regulating MKP-1 expression and the p38 and JNK MAPK pathways. This study reveals that the MKP-1 and MCP-1 as novel mediators of biological effects of Dex may help developing better therapeutic strategies for the treatment of patients with neuroinflammatory diseases.  相似文献   

14.
Angiotensin II elicits cytosolic Ca2+ signal that is transferred into the mitochondria. Previously we found in H295R cells that this signal transfer is enhanced by both the inhibition of p38 MAPK and a novel isoform of PKC [G. Szanda, P. Koncz, A. Rajki, A. Spät, Participation of p38 MAPK and a novel-type protein kinase C in the control of mitochondrial Ca2+ uptake, Cell Calcium 43 (2008) 250–259]. Now we report that simultaneous activation of these protein kinases (by TNFα and PMA + an inhibitor of the conventional PKC isoforms, respectively) attenuates the transfer of cytosolic Ca2+ signal, elicited by depolarisation or store-operated Ca2+ influx, into the mitochondria. The Ca2+ uptake enhancing effect of the p38 MAPK inhibitor SB202190 is due to the inhibition of p38 MAPK and not to a direct mitochondrial action. Protein kinases reduce mitochondrial [Ca2+] by inhibiting the uptake mechanism. The threshold of mitochondrial Ca2+ uptake may depend on the activity of p38 MAPK. The silencing of protein kinase D (PKD) also results in enhanced transfer of Ca2+ signal from the cytosol into the mitochondria. Our data indicate that Ca2+ mobilising agonists, through the simultaneous activation of p38 MAPK, a novel PKC isoform and PKD, exert a negative feed-forward action on mitochondrial Ca2+ uptake, thus reducing the risk of Ca2+ overload.  相似文献   

15.
We investigated the involvement of mitogen-activated protein kinases (MAPKs) in the maturation of CD83(-) dendritic cells (DC) derived from human blood monocytes. Maturating agents such as LPS and TNF-alpha induced the phosphorylation of members of the three families of MAPK (extracellular signal-regulated kinase l/2, p46/54 c-Jun N-terminal kinase, and p38 MAPK). SB203580, an inhibitor of the p38 MAPK, but not the extracellular signal-regulated kinase l/2 pathway blocker PD98059, inhibited the up-regulation of CD1a, CD40, CD80, CD86, HLA-DR, and the DC maturation marker CD83 induced by LPS and TNF-alpha. In addition, SB203580 inhibited the enhancement of the allostimulatory capacity and partially prevented the down-regulation of FITC-dextran uptake induced by LPS and TNF-alpha. Likewise, SB203580 partially prevented the up-regulation of IL-1alpha, IL-1beta, IL-lRa, and TNF-alpha mRNA upon stimulation with LPS and TNF-alpha, as well as the release of bioactive TNF-alpha induced by LPS. DC maturation induced by the contact sensitizers 2,4-dinitrofluorobenzene and NiSO(4), as seen by the up-regulation of CD80, CD86, and CD83, was also coupled to the phosphorylation of p38 MAPK, and was inhibited by SB203580. The irritants SDS and benzalkonium chloride that do not induce DC maturation did not trigger p38 MAPK phosphorylation. Together, these data indicate that phosphorylation of p38 MAPK is critical for the maturation of immature DC. These results also suggest that p38 MAPK phosphorylation in DC may become useful for the identification of potential skin contact sensitizers.  相似文献   

16.
We have recently reported that attenuated phosphorylation of heat shock protein (HSP) 27 correlates with tumor progression in patients with hepatocellular carcinoma (HCC). In the present study, we investigated what kind of kinase regulates phosphorylation of HSP27 in human HCC-derived HuH7 cells. 12-O-tetradecanoylphorbol-13-acetate (TPA) and 1-oleoyl-2-acetylglycerol, direct activators of protein kinase C (PKC), markedly strengthened the phosphorylation of HSP27. Bisindorylmaleimide I, an inhibitor of PKC, suppressed the TPA-induced levels of HSP27 phosphorylation in addition to its basal levels. Knock down of PKCdelta suppressed HSP27 phosphorylation, as well as p38 mitogen-activated protein kinase (MAPK) phosphorylation. SB203580, an inhibitor of p38 MAPK, suppressed the TPA-induced HSP27 phosphorylation. Our results strongly suggest that activation of PKCdelta regulates the phosphorylation of HSP27 via p38 MAPK in human HCC.  相似文献   

17.
18.
As a drug used to treat imatinib-resistant and -intolerant, chronic and advanced phase chronic myelogenous leukaemia, nilotinib is well characterised as a potent inhibitor of the Abl tyrosine kinase activity of wild-type and imatinib-resistant mutant forms of BCR-Abl. Here we review the profile of nilotinib as a protein kinase inhibitor. Although an ATP-competitive inhibitor of Abl, nilotinib binds to a catalytically inactive conformation (DFG-out) of the activation loop. As a consequence of this, nilotinib exhibits time-dependent inhibition of Abl kinase in enzymatic assays, which can be extrapolated to other targets to explain differences between biochemical activity and cellular assays. Although these differences confound assessment of kinase selectivity, as assessed using a combination of protein binding and transphosphorylation assays, together with cellular autophosporylation and proliferation assays, well established kinase targets of nilotinib in rank order of inhibitory potency are DDR-1 > DDR-2 > BCR-Abl (Abl) > PDGFRα/β > KIT > CSF-1R. In addition nilotinib has now been found to bind to both MAPK11 (p38β) and MAPK12 (p38α), as well as with very high affinity to ZAK kinase. Although neither enzymatic nor cellular data are yet available to substantiate the drug as an inhibitor of ZAK phosphorylation, modeling predicts that it binds in an ATP-competitive fashion.  相似文献   

19.
Ultrastructural studies on the epithelium, sugar transport and immunocytochemistry of Na+-glucose cotransporter (SGLT1) were carried out in the jejunum of Spontaneously Hypertensive Rats (SHR) and their normotensive genetic control, Wistar-Kyoto (WKY) rats. Electron microscopy studies showed a regular brush-border membrane in the jejunal enterocytes of WKY rats, with colloidal gold particles, representing SGLTI, localized at the microvilli of the absorptive epithelial cells. However, a patchy loss of microvilli was detected in the jejunal sections from SHR, with no presence of colloidal gold particles, indicating the absence of the SGLT1 protein. Most adjacent microvilli were normal in size like those found in WKY rats, and SGLT1 labeling was observed. All these changes were accompanied by a reduction in Na+-dependent D-glucose and D-galactose uptakes in the jejunal BBMVs isolated from SHR, when compared to WKY rats. We conclude that ultrastructural changes were paralleled by modifications in the sugar transport and in the localization of SGLT1 in the jejunal epithelium of SHR.  相似文献   

20.
Low density lipoproteins (LDL) inhibit the Na+/H+ antiport and thereby sensitize platelet towards agonist. However, mechanisms underlying the suppressing effect of LDL on Na+/H+ exchange are unclear. We here show that the lowering of intracellular pH and the suppression of the sodium propionate-induced Na+/H+ exchange in the presence of LDL are abolished by SKF86002, a selective inhibitor of p38MAP kinase (p38MAPK). The inhibitory effect of LDL on Na+/H+ exchange was mimicked by H2O2, which directly activates p38MAPK. Exposure of platelets to LDL or H2O2 led to phosphorylation of p38MAPK, its upstream regulator MAP kinase kinase 3/6 (MKK 3/6), and its downstream target heat shock protein 27 (HSP27), and this effect was abrogated in SKF86002-pretreated platelets. In addition, both LDL and H2O2 produced the SKF86002-sensitive phosphorylation of an oligopeptide encompassing p38MAPK phosphorylation sequence derived from NHE-1, a major Na+/H+ exchanger in platelets. We further show that the sensitizing effects of LDL on the thrombin-induced platelet activation, as reflected by aggregation and granule secretion, are abolished in cells pretreated with SKF86002. We conclude that activation of p38MAPK is required for the inhibitory effect of LDL on Na+/H+ antiport and thereby for LDL-dependent sensitization in human platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号