首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intein‐based protein cleavages, if carried out in a controllable way, can be useful tools of recombinant protein purification, ligation, and cyclization. However, existing methods using contiguous inteins were often complicated by spontaneous cleavages, which could severely reduce the yield of the desired protein product. Here we demonstrate a new method of controllable cleavages without any spontaneous cleavage, using an artificial S1 split‐intein consisting of an 11‐aa N‐intein (IN) and a 144‐aa C‐intein (IC). In a C‐cleavage design, the IC sequence was embedded in a recombinant precursor protein, and the small IN was used as a synthetic peptide to trigger a cleavage at the C‐terminus of IC. In an N‐cleavage design, the short IN sequence was embedded in a recombinant precursor protein, and the separately produced IC protein was used to catalyze a cleavage at the N‐terminus of IN. These N‐ and C‐cleavages showed >95% efficiency, and both successfully avoided any spontaneous cleavage during expression and purification of the precursor proteins. The N‐cleavage design also revealed an unexpected and interesting structural flexibility of the IC protein. These findings significantly expand the effectiveness of intein‐based protein cleavages, and they also reveal important insights of intein structural flexibility and fragment complementation.  相似文献   

2.
The DNA repair protein RecA of Mycobacterium tuberculosis contains an intein, a self-splicing protein element. We have employed this Mtu recA intein to create a selection system for successful intein splicing by inserting it into a kanamycin-resistance gene so that functional antibiotic resistance can only be restored upon protein splicing. We then proceeded to develop an ORFTRAP, i.e., a selection system for the cloning of open reading frames (ORFs). The ORFTRAP exploits the self-splicing properties of inteins (which depend on full-length in-frame translation of a precursor protein) by allowing protein splicing to occur when DNA fragments encoding ORFs are inserted into the Mtu recA intein, whereas DNA fragments containing non-ORFs are selected against. Regions of the Mtu recA intein that tolerate the insertion of additional amino acids were identified by Bgl II linker scanning mutagenesis, and a respective construct was chosen as the ORFTRAP. To test the maximum insert size that could be cloned into ORFTRAP, DNA fragments of increasing length from the Listeria monocytogenes hly gene as well as a genomic library of Haemophilus influenzae were inserted and it was found that the longest permissive inserts were 425 bp and 251 bp, respectively. The H. influenzae ORFTRAP library also demonstrated the strength (strong selection power) and weakness (insertion of very small fragments) of the system. Further modifications should make the ORFTRAP useful for protein expression, epitope mapping, and antigen screening.  相似文献   

3.
Inteins are auto-processing domains that implement a multistep biochemical reaction termed protein splicing, marked by cleavage and formation of peptide bonds. They excise from a precursor protein, generating a functional protein via covalent bonding of flanking exteins. We report the kinetic study of splicing and cleavage reaction in [Fe–S] cluster assembly protein SufB from Mycobacterium tuberculosis (Mtu). Although it follows a canonical intein splicing pathway, distinct features are added by extein residues present in the active site. Sequence analysis identified two conserved histidines in the N-extein region; His-5 and His-38. Kinetic analyses of His-5Ala and His-38Ala SufB mutants exhibited significant reductions in splicing and cleavage rates relative to the SufB wildtype (WT) precursor protein. Structural analysis and molecular dynamics (MD) simulations suggested that Mtu SufB displays a unique mechanism where two remote histidines work concurrently to facilitate N-terminal cleavage reaction. His-38 is stabilized by the solvent-exposed His-5, and can impact N–S acyl shift by direct interaction with the catalytic Cys1. Development of inteins as biotechnological tools or as pathogen-specific novel antimicrobial targets requires a more complete understanding of such unexpected roles of conserved extein residues in protein splicing.  相似文献   

4.
Inteins are the protein equivalent of introns. They are remarkable and robust single turnover enzymes that splice out of precursor proteins during post‐translational maturation of the host protein (extein). The Deinococcus radiodurans Snf2 intein is the second member of the recently discovered Class 3 subfamily of inteins to be characterized. Class 3 inteins have a unique sequence signature: (a) they start with residues other than the standard Class 1 Cys, Ser or Thr, (b) have a noncontiguous, centrally located Trp/Cys/Thr triplet, and (c) all but one have Ser or Thr at the start of the C‐extein instead of the more common Cys. We previously proposed that Class 3 inteins splice by a variation in the standard intein‐mediated protein splicing mechanism that includes a novel initiating step leading to the formation of a previously unrecognized branched intermediate. In this mechanism defined with the Class 3 prototypic Mycobacteriophage Bethlehem DnaB intein, the triplet Cys attacks the peptide bond at the N‐terminal splice junction to form the class specific branched intermediate after which the N‐extein is transferred to the side chain of the Ser, Thr, or Cys at the C‐terminal splice junction to form the standard intein branched intermediate. Analysis of the Deinococcus radiodurans Snf2 intein confirms this splicing mechanism. Moreover, the Class 3 specific Block F branched intermediate was isolated, providing the first direct proof of its existence.  相似文献   

5.
The 440 amino acid Mtu recA intein consists of independent protein-splicing and endonuclease domains. Previously, removal of the central endonuclease domain of the intein, and selection for function, generated a 168 residue mini-intein, DeltaI-SM, that had splicing activity similar to that of the full-length, wild-type protein. A D422G mutation (DeltaI-CM) increased C-terminal cleavage activity. Using the DeltaI-SM mini-intein structure (presented here) as a guide, we previously generated a highly active 139 residue mini-intein, DeltaDeltaI(hh)-SM, by replacing 36 amino acid residues in the residual endonuclease loop with a seven-residue beta-turn from the autoprocessing domain of Hedgehog protein. The three-dimensional structures of DeltaI-SM, DeltaDeltaI(hh)-SM, and two variants, DeltaDeltaI(hh)-CM and DeltaDeltaI(hh), have been determined to evaluate the effects of the minimization on intein integrity and to investigate the structural and functional consequences of the D422G mutation. These structural studies show that Asp422 is capable of interacting with both the N and C termini. These interactions are lacking in the CM variant, but are replaced by contacts with water molecules. Accordingly, additional mutagenesis of residue 422, combined with mutations that isolate N-terminal and C-terminal cleavage, showed that the side-chain of Asp422 plays a role in both N and C-terminal cleavage, thereby suggesting that this highly conserved residue regulates the balance between the two reactions.  相似文献   

6.
The first naturally occurring split intein was found in the dnaE gene of Synechocystis sp. PCC6803 and belongs to a subclass of inteins without a penultimate histidine residue. We describe two high-resolution crystal structures, one derived from an excised Ssp DnaE intein and the second from a splicing-deficient precursor protein. The X-ray structures indicate that His147 in the conserved block F activates the side-chain N(delta) atom of the intein C-terminal Asn159, leading to a nucleophilic attack on the peptide bond carbonyl carbon atom at the C-terminal splice site. In this process, Arg73 appears to stabilize the transition state by interacting with the carbonyl oxygen atom of the scissile bond. Arg73 also seems to substitute for the conserved penultimate histidine residue in the formation of an oxyanion hole, as previously identified in other inteins. The finding that the precursor structure contains a zinc ion chelating the highly conserved Cys160 and Asp140 reveals the structural basis of Zn2+-mediated inhibition of protein splicing. Furthermore, it is of interest to observe that the carbonyl carbon atom of Asn159 and N(eta) of Arg73 are 2.6 angstroms apart in the free intein structure and 10.6 angstroms apart in the precursor structure. The orientation change of the aromatic ring of Tyr-1 following the initial acyl shift may be a key switching event contributing to the alignment of Arg73 and the C-terminal scissile bond, and may explain the sequential reaction property of the Ssp DnaE intein.  相似文献   

7.
The majority of inteins are comprised of a protein splicing domain and a homing endonuclease domain. Experimental evidence has demonstrated that the splicing domain and the endonuclease domain in a bifunctional intein are largely independent of each other with respect to both structure and activity. Here, an artificial bifunctional intein has been created through the insertion of an existing homing endonuclease into a mini-intein that is naturally lacking this functionality. The gene for I-CreI, an intron-encoded homing endonuclease, was grafted into the monofunctional Mycobacterium xenopi GyrA intein at the putative site of the missing endonuclease. The resulting fusion protein was found to be capable of protein splicing similar to that of the parent intein. In addition, the protein demonstrated site-specific endonuclease activity that is characteristic of the I-CreI homing endonuclease. The function of each domain therefore remained unaffected by the presence of the other domain. This artificial fusion of the two domains is a potential novel mobile genetic element.  相似文献   

8.
A recA deletion mutant of Mycobacterium smegmatis has been isolated by homologous recombination using a sacB counterselection strategy. Deletion of the recA gene from the chromosome was demonstrated by Southern hybridizations and by polymerase chain reaction (PCR). Western analysis using anti-RecA antibodies confirmed that the RecA protein was not made by the mutant strain. The recA deletion strain exhibited enhanced sensitivity to UV irradiation and failed to undergo homologous recombination. The results obtained from the recombination assays suggest that in wild-type M. smegmatis the majority of colonies arise from single cross-over homologous recombination events with only a very minor contribution from random integrations. The deficiencies in UV survival and recombination were complemented by introduction of the cloned M. smegmatis recA gene. Overexpression of RecA was found to be toxic in the absence of recX , which is found downstream of and co-transcribed with recA and is thus also affected by the deletion of recA . The M. smegmatis recA deletion strain was also complemented by the M. tuberculosis recA gene with or without its intein; most importantly, the frequency of double cross-over homologous recombination events was identical regardless of whether the M. tuberculosis recA gene contained or lacked the intein. Thus, the low frequency of homologous recombination observed in M. tuberculosis is not due to the presence of an intein-coding sequence in its recA gene per se .  相似文献   

9.
NMR structure of a KlbA intein precursor from Methanococcus jannaschii   总被引:1,自引:0,他引:1  
Certain proteins of unicellular organisms are translated as precursor polypeptides containing inteins (intervening proteins), which are domains capable of performing protein splicing. These domains, in conjunction with a single residue following the intein, catalyze their own excision from the surrounding protein (extein) in a multistep reaction involving the cleavage of two intein-extein peptide bonds and the formation of a new peptide bond that ligates the two exteins to yield the mature protein. We report here the solution NMR structure of a 186-residue precursor of the KlbA intein from Methanococcus jannaschii, comprising the intein together with N- and C-extein segments of 7 and 11 residues, respectively. The intein is shown to adopt a single, well-defined globular domain, representing a HINT (Hedgehog/Intein)-type topology. Fourteen beta-strands are arranged in a complex fold that includes four beta-hairpins and an antiparallel beta-ribbon, and there is one alpha-helix, which is packed against the beta-ribbon, and one turn of 3(10)-helix in the loop between the beta-strands 8 and 9. The two extein segments show increased disorder, and form only minimal nonbonding contacts with the intein domain. Structure-based mutation experiments resulted in a proposal for functional roles of individual residues in the intein catalytic mechanism.  相似文献   

10.
Inteins are proteins involved in the protein splicing mechanism, an autoprocessing event, where sequences (exteins) separated by inteins become ligated each other after recombination. Two kinds of inteins have been described, contiguous inteins and split inteins. The former ones are transcribed and translated as a single peptide along with their exteins, while the latter are fragmented between two different genes and are transcribed and translated separately. The aim of this study is to establish a method to obtain a fluorescent eukaryotic protein to analyze its cellular localization, using the natural split gp41-1 inteins. We chose natural split inteins due to their distribution in all three domains of life. Two constructs were prepared, one containing the N-terminal split intein along with the N-moiety of the Red Fluorescent Protein (RFP) and a second construct containing the C-terminal of split intein, the C-moiety of RFP and the gene coding for Maspin, a tumor suppressor protein. The trans-splicing was verified by transfecting both N-terminal and C-terminal constructs into mammalian cells. The success of the recombination event was highlighted through the fluorescence produced by reconstituted RFP after recombination, along with the overlap of the red fluorescence produced by recombined RFP and the green fluorescence produced by the hybridization of the recombinant Maspin with a specific antibody. In conclusion, we opted to use this mechanism of recombination to obtain a fluorescent Maspin instead to express a large fusion protein, considering that it could interfere with Maspin's structure and function.  相似文献   

11.
蛋白质剪接及其在蛋白质工程中的应用   总被引:2,自引:0,他引:2  
赫冬梅  钱凯先  沈桂芳 《遗传》2004,26(2):249-252
蛋白质剪接是蛋白质内含肽介导的,一种在蛋白质水平上翻译后的加工过程,它由一系列分子内的剪切-连接反应组成。蛋白质内含肽是一个蛋白质前体中的多肽序列,可以催化自身从蛋白质前体中断裂,使两侧的蛋白质外显肽连接成成熟的蛋白质。蛋白质内含肽的发现,不仅丰富了遗传信息翻译后加工的理论,在实践中也有广泛的应用前景。Abstract: Protein splicing , which is an intein mediated posttranslational processing, involves a series of intramolecular cleavage-ligation reactions. Intein is an intervening polypeptide which can catalytic self-cleavage from a pre-protein accompanied by the concomitant joining of the two flanking polypeptides (the extein) through a peptide bond. Protein splicing not only enriches genetic theory of posttranslational processing, but also have wide application prospect.  相似文献   

12.
We have engineered an intein which spontaneously and reversibly forms a thiazoline ring at the native N-terminal Lys-Cys splice junction. We identified conditions to stablize the thiazoline ring and provided the first crystallographic evidence, at 1.54 Å resolution, for its existence at an intein active site. The finding bolsters evidence for a tetrahedral oxythiazolidine splicing intermediate. In addition, the pivotal mutation maps to a highly conserved B-block threonine, which is now seen to play a causative role not only in ground-state destabilization of the scissile N-terminal peptide bond, but also in steering the tetrahedral intermediate toward thioester formation, giving new insight into the splicing mechanism. We demonstrated the stability of the thiazoline ring at neutral pH as well as sensitivity to hydrolytic ring opening under acidic conditions. A pH cycling strategy to control N-terminal cleavage is proposed, which may be of interest for biotechnological applications requiring a splicing activity switch, such as for protein recovery in bioprocessing.  相似文献   

13.
The recA gene of Mycobacterium tuberculosis is unusual in that it is expressed from two promoters, one of which, P1, is DNA damage inducible independently of LexA and RecA, while the other, P2, is regulated by LexA in the classical way (E. O. Davis, B. Springer, K. K. Gopaul, K. G. Papavinasasundaram, P. Sander, and E. C. B?ttger, Mol. Microbiol. 46:791-800, 2002). In this study we characterized these two promoters in more detail. Firstly, we localized the promoter elements for each of the promoters, and in so doing we identified a mutation in each promoter which eliminates promoter activity. Interestingly, a motif with similarity to Escherichia coli sigma(70) -35 elements but located much closer to the -10 element is important for optimal expression of P1, whereas the sequence at the -35 location is not. Secondly, we found that the sequences flanking the promoters can have a profound effect on the expression level directed by each of the promoters. Finally, we examined the contribution of each of the promoters to recA expression and compared their kinetics of induction following DNA damage.  相似文献   

14.
Hybrid silks hold a great potential as specific biomaterials due to its controlled mechanical properties. To produce fibers with tunable properties, here we firstly made chimeric proteins in vitro, called W2C4CT and W2C8CT, with ligation of MaSp repetitive modules (C) with AcSp modules (W) by intein trans splicing technology from smaller precursors without final yield reduction. Intein mediated chimeric proteins form fibers at a low concentration of 0.4 mg/mL in 50 mM K3PO4 pH 7.5 just drawn by hand. Hybrid fibers show smoother surface, and also have stronger chemical resistance as compared with fibers from W2CT (W fibers) and mixture of W2CT/C8CT (MHF8 fibers). Fibers from chimeric protein W2C4CT (HFH4) have improved mechanical properties than W fibers; however, with more C modules W2C8CT fibers (HFH8) properties decreased, indicates the length proportion of various modules is very important and should be optimized for fibers with specific properties. Generally, hybrid silks generated via chimeric proteins, which can be simplified by intein trans splicing, has greater potential to produce fibers with tunable properties. Our research shows that intein mediated directional protein ligation is a novel way to make large chimeric spider silk proteins and hybrid silks. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 385–392, 2016.  相似文献   

15.
蛋白质内含肽及其生物学意义   总被引:1,自引:0,他引:1  
蛋白质内含肽是存在于前体蛋白质中的一段多肽链,靠自我剪切的方式从前体蛋白中释放出来。蛋白质内含肽的发现,不仅在理论上丰富了遗传信息翻译后加工的内容,而且在实践上有重大的生物学意义,特别是在蛋白质纯化方面有着广泛的应用前景。本文就蛋白质内含肽的发现、特征、鉴定、剪接机制及其生物学意义作一概述。  相似文献   

16.
A new isotope labeling technique for peptide segments in a protein sample was recently established using the protein splicing element intein [Yamazaki et al. (1998) J. Am. Chem. Soc., 120, 5591–5592]. This method makes it possible to observe signals of a selected amino (N-) or carboxyl (C-) terminal region along a peptide chain. However, there is a problem with the yield of the segmentally labeled protein. In this paper, we report an increase in the yield of the protein that enables the production of sufficient amounts of segmentally 13C/15N-labeled protein samples. This was achieved by improvement of the expression level of the N-terminal fragment in cells and the efficiency of refolding into the active splicing conformation. The N-terminal fragment was expressed as a fused protein with the cellulose binding domain at its N-terminus, which was expressed as an insoluble peptide in cells and the expression level was increased. Incubation with 2.5 M urea and 50% glycerol increased the efficiency of the refolding greatly, thereby raising the final yields of the ligated proteins. The feasibility of application of the method to a high-molecular-weight protein was demonstrated by the results for a maltose binding protein consisting of 370 amino acids. All four examined joints in the maltose binding protein were successfully ligated to produce segmentally labeled protein samples.  相似文献   

17.
《Gene》1998,207(2):187-195
Most protein-splicing elements (inteins) function both as catalysts of protein splicing and as homing endonucleases. In order to identify the domains of inteins that are essential for protein splicing, the intein sequence embedded in the recA gene of Mycobacterium tuberculosis was genetically dissected. The effect of various modifications of the intein on the ability to mediate splicing was studied in Escherichia coli transformed with plasmids in which the coding sequence for the RecA intein was inserted in-frame between coding regions for the E. coli maltose-binding protein and a polypeptide containing a hexahistidine sequence as the N- and C-exteins, respectively. One type of genetic alteration of the RecA intein involved deletion of the the central region encoding 229 amino acids (aa), representing the entire homing endonuclease homology domain. The residual intein (211 aa plus an undecapeptide spacer) was able to promote protein splicing as efficiently as the wild-type intein, indicating that the homing endonuclease domain plays no role in the protein-splicing process and that the protein-splicing active center is confined to the N- and C-terminal segments of the intein, less than 110 aa each. Another type of alteration involved the introduction of overlapping translation termination and initiation codons in-frame into the intein coding region. The modified RecA intein, although synthesized as two separate components, could nevertheless mediate protein splicing, indicating that the N- and C-terminal protein-splicing domains can interact with sufficient affinity and specificity to allow protein-splicing to occur in trans. The efficiency of trans-splicing was much enhanced when the homing endonuclease domain was entirely deleted so that the length of the interacting N- and C-terminal intein fragments was only about 110 aa each.  相似文献   

18.
蛋白质剪切是一种翻译后修饰事件 ,它将插入前体蛋白的中间的蛋白质肽段 (Intein ,internalproteinfrag ment)剪切出来 ,并用正常肽键将两侧蛋白质多肽链 (Extein ,flankingproteinfragments)连接起来。在此过程中不需要辅酶或辅助因子的作用 ,仅需四步分子内反应。Intein及其侧翼序列可以通过突变产生高度特异性的自我切割用于蛋白质纯化、蛋白质连接和蛋白质环化反应 ,在蛋白质工程方面有广泛的应用前景。  相似文献   

19.
The DNA polymerase gene of Thermococcus marinus ( Tma ) contains an intein inserted at the pol-b site that possesses a 1611-bp ORF encoding a 537-amino acid residue. The LAGLIDADG motif, often found in site-specific DNA endonucleases, was detected within the amino acid sequence of the intein. The intein endonuclease, denoted as PI- Tma , was purified as a naturally spliced product from the expression of the complete DNA polymerase gene in Escherichia coli . PI- Tma cleaved intein-less DNA sequences, leaving four-base-long, 3'-hydroxyl overhangs with 5'-phosphate. Nonpalindromic recognition sequences 19 bp long were also identified using partially complementary oligonucleotide pair sequences inserted into the plasmid pET-22b(+). Cleavage by PI- Tma was optimal when present in 50 mM glycine–NaOH (pH 10.5), 150 mM KCl and 12 mM MgCl2 at 70 °C.  相似文献   

20.
异源生物中筛选高剪接活性Intein系统的建立   总被引:1,自引:0,他引:1  
原始物种体内蛋白质内含子(intein)介导的自催化蛋白剪接反应以100%效率进行.当这些蛋白质内含子被克隆入异源物种时,其剪接效率往往大大降低,绝大多数甚至完全失去剪接能力.本研究根据蛋白质内含子剪接活性与蛋白质外显子(extein)C端第1个保守氨基酸直接相关的特点,设计含有所有这些保守氨基酸的多个短的蛋白质外显子序列,通过PCR引入到卡那霉素抗性蛋白(KanR)的不同位点中,在此外显子中克隆入相应的蛋白质内含子,构建在大肠杆菌中依赖卡那霉素抗性来筛选高剪接活性蛋白质内含子的系统.结果显示,卡那霉素平板上菌落生长的结果与Western印迹检测的结果基本一致.说明建立的筛选高剪接活性蛋白质内含子系统成功.这种含有可选择蛋白质外显子的筛选系统,将蛋白质剪接与卡那霉素抗性相结合,直接从平板上观测剪接结果,成为快速、稳定筛选在异源物种中具有剪接活性蛋白内含子的新手段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号