首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The lepidopteran primary spermatocytes produce first eupyrene (nucleated) and later apyrene (anucleated) spermatozoa. The shift to apyrene commitment of the spermatocytes is related to an apyrene-spermatogenesis-inducing factor (ASIF) becoming active towards pupation. During diapause, the primary spermatocytes lyse and spermatogenesis ceases. The renewal of the dichotomous spermatogenesis in the testes of post-diapausing, last-instar larvae of the codling moth was studied in vivo and in vitro. In vivo, the post-diapausing larvae resume the two types of spermatogenesis. Since ASIF activity is related to pupation, the earliest apyrene spermatids appear one day before pupation, as in non-diapausing larvae. In vitro, renewal of spermatogenesis occurs if 20-hydroxy-ecdysone is added to the medium, but only eupyrene spermatids occur since the testes are explanted before ASIF activity has started. These spermatids are unreduced and develop directly from primary spermatocytes which do not undergo meiotic divisions. Moreover, only flagella develop in these spermatids and the nuclei remain spherical. Post-diapause resumption of spermatogenesis is thus a complex process in which meiosis-blocking and meiosis-deblocking factors, ecdysteroids, and the ASIF play regulative roles.  相似文献   

2.
Spermatogenesis uses mitotic and meiotic cell cycles coordinated with growth and differentiation programs to generate functional sperm. Our analysis of a Drosophila mutant has revealed that asunder (asun), which encodes a conserved protein, is an essential regulator of spermatogenesis. asun spermatocytes arrest during prophase of meiosis I. Strikingly, arrested spermatocytes contain free centrosomes that fail to stably associate with the nucleus. Spermatocytes that overcome arrest exhibit severe defects in meiotic spindle assembly, chromosome segregation, and cytokinesis. Furthermore, the centriole-derived basal body is detached from the nucleus in asun postmeiotic spermatids, resulting in abnormalities later in spermatogenesis. We find that asun spermatocytes and spermatids exhibit drastic reduction of perinuclear dynein–dynactin, a microtubule motor complex. We propose a model in which asun coordinates spermatogenesis by promoting dynein–dynactin recruitment to the nuclear surface, a poorly understood process required for nucleus–centrosome coupling at M phase entry and fidelity of meiotic divisions.  相似文献   

3.
Our previous studies (10, 11) showed that mammalian follicle-stimulating hormone (FSH) alone was indispensable and sufficient for the initiation and promotion of spermatogenesis from secondary spermatogonia to primary spermatocytes in organ culture of testes fragments from the newt, Cynops pyrrhogaster. The present study demonstrated that FSH promoted in the same model system the differentiation of primary spermatocytes even further: to the stage of elongated spermatids. When testes fragments, consisting of somatic cells and germ cells (mostly primary spermatocytes), were cultured in a control medium for three weeks, only round spermatids and spermatogonia were observed; both the diameter of the cysts and the viability of the germ cells decreased to about 10–15% of the original level. On the other hand, when the medium was supplemented with FSH, elongated spermatids appeared by the second week; both the diameter of the cysts and the viability of the germ cells were maintained at a higher level than in the control medium. The effect of FSH was dose-dependent. However, neither transferrin, androgens (testosterone and 5α-dihydrotestosterone) nor luteinizing hormone (LH) was effective. The addition of cyanoketone, a specific inhibitor of 3β-hydroxy-Δ5-steroid dehydrogenase (3β-HSD) (32), to the FSH-containing medium did not prevent the differentiation promoted by FSH, indicating that it is unlikely that Δ4-steroid metabolites produced in fragments by FSH acted directly on germ cells. Insulin was found to improve the viability of germ cells during a 2 week of culture period. In the presence of FSH, the cells in various differentiative stages had morphological characteristics very similar to those in vivo, whereas in the absence of FSH primary spermatocytes showed abnormal features in their nuclei and cytoplasm, indicating that they were deteriorating. These results and our previous results (1–3) suggest that FSH promotes primary spermatocytes to differentiate into elongated spermatids probably by stimulating Sertoli cells to secrete factors which then act on the germ cells.  相似文献   

4.
Research on in vitro spermatogenesis is important for elucidating the spermatogenic mechanism. We previously developed an organ culture method which can support spermatogenesis from spermatogonial stem cells up to sperm formation using immature mouse testis tissues. In this study, we examined whether it is also applicable to mature testis tissues of adult mice. We used two lines of transgenic mice, Acrosin-GFP and Gsg2-GFP, which carry the marker GFP gene specific for meiotic and haploid cells, respectively. Testis tissue fragments of adult GFP mice, aged from 4 to 29 weeks old, which express GFP at full extension, were cultured in medium supplemented with 10% KSR or AlbuMAX. GFP expression decreased rapidly and became the lowest at 7 to 14 days of culture, but then slightly increased during the following culture period. This increase reflected de novo spermatogenesis, confirmed by BrdU labeling in spermatocytes and spermatids. We also used vitamin A-deficient mice, whose testes contain only spermatogonia. The testes of those mice at 13-21 weeks old, showing no GFP expression at explantation, gained GFP expression during culturing, and spermatogenesis was confirmed histologically. In addition, the adult testis tissues of Sl/Sld mutant mice, which lack spermatogenesis due to Kit ligand mutation, were cultured with recombinant Kit ligand to induce spermatogenesis up to haploid formation. Although the efficiency of spermatogenesis was lower than that of pup, present results showed that the organ culture method is effective for the culturing of mature adult mouse testis tissue, demonstrated by the induction of spermatogenesis from spermatogonia to haploid cells.  相似文献   

5.
6.
7.
8.
As a well-known crustacean model species, the Chinese mitten crab Eriocheir sinensis presents spermatozoa with decondensed DNA. Our aim was to analyze structural distribution of the histone H3 and its acetylated lysine 9 (H3K9ac) during spermatogenesis for the mechanistic understanding of the nuclear decondensation of the spermatozoa in E. sinensis. Using specific antibodies, we followed the structural distribution and acetylated lysine 9 of the histone H3 during spermatogenesis, especially spermiogenesis, of E. sinensis. Various spermary samples at different developmental stages were used for histological immunofluorescence and ultrastructural immunocytochemistry. Our results demonstrate a wide distribution of the histone H3 and H3K9ac during spermatogenesis, including spermatogonia, spermatocytes, spermatids, and immature and mature spermatozoa except for absence of H3K9ac in the secondary spermatocytes. Especially during the initial stage of nuclear decondensation, histone H3 lysine 9 was acetylated and then an amount of H3K9ac was removed from within to outside of the nuclei of late spermatids. The portion of remaining H3K9ac was gradually transferred from the nuclei during the stages of spermatozoa maturation. Our findings suggest both the acetylation of histone H3 lysine 9 and the remain of H3K9ac to contribute to the nuclear decondensation in spermatozoa of E. sinensis.  相似文献   

9.
The presence and biosynthesis of the testis-specific isozyme of lactate dehydrogenase (LDH-X) in cells at various stages of spermatogenesis have been examined. Enrichment of testicular cells in various stages of spermatogenesis has been achieved by two methods: (1) cell separation by velocity sedimentation in the Elutriator rotor and (2) γ irradiation of testes to eliminate specific classes of testicular cells. Separation of cells from immature mice indicated that cells prior to the midpachytene stage contain no LDH-X. Measurement of LDH-X levels in cells separated from adult mice and in testicular homogenates prepared at various times after irradiation indicated that the highest level of LDH-X per cell (normalized for DNA content) was in spermatids. Synthesis of LDH-X was determined, after in vivo injection of [3H]valine, by measurement of the radioactivity in LDH-X precipitated with specific antiserum. After irradiation, the rate of LDH-X synthesis remained constant, despite the loss of early primary spermatocytes. In separated cells, the rate of LDH-X synthesis was highest in late pachytene spermatocytes, lower in round spermatids, and even lower, but still significant, in elongated spermatids. Therefore, the synthesis of LDH-X begins at a specific point during spermatogenesis, the midpachytene stage of spermatocyte development, and continues throughout spermatid differentiation.  相似文献   

10.
11.
Summary Sulfhydryl oxidase (SOx) is an enzyme that catalyzes the oxidation of sulfhydryl compounds. It is present in mitochondria of certain testicular cells at specific stages of functional activation. In the mature human testis moderate SOx immunoreactivity is found in Leydig cells, and lacking in Sertoli and in peritubular cells. The Adark spermatogonia usually contain immuno-reactive mitochondria, while in Apale spermatogonia immunoreactivity is mostly low. In stage V of spermatogenesis, Apale spermatogonia were found containing immunoreactive material. Leptotene (stages IV and V) and zygotene (stage VI) primary spermatocytes display a moderate immunoreaction. It is strongest in pachytene spermatocytes of stages I–IV, decreases in stage V, and is low during diakinesis and in secondary spermatocytes. Late spermatids usually show a stronger immunoreactivity than early spermatids. At stage V of spermatogenesis the late spermatids contain only few immunoreactive particles. Spermatozoa are free of SOx-immunoreactive mitochondria. In residual bodies small amounts of SOx-immunoreactive particles are seen. Compared to rat and hamster testis, SOx immunoreactivity of the human testis is less clearly stage-dependent and it is not confined to certain germ cell stages. As deduced from the findings in patients with spermatogenic disorders, the SOx immunoreactivity of spermatogonia in human testis seems to be of diagnostic relevance.  相似文献   

12.
13.
The objective was to evaluate the long-term outcome of testis tissue xenografting from neonatal bison calves as a model for closely related rare or endangered ungulates. Testis tissue was collected postmortem from two newborn bison calves (Bison bison bison) and small fragments of the tissue were grafted under the back skin of immunodeficient recipient mice (n = 15 mice; eight fragments/mouse). Single xenograft samples were removed from representative recipient mice every 2 mo after grafting (for up to 16 mo). The retrieved xenografts were evaluated for seminiferous tubular density, tubular diameter, seminiferous tubular morphology, and identification of the most advanced germ cell type. Overall, 69% of the grafted testis fragments were recovered as xenografts. Xenografts weight increased (P < 0.02) approximately four-fold by 2 mo and 10-fold by 16 mo post-grafting. In testis xenografts, gradual maturational changes were evident, manifested as the first detection of the following at the times specified: seminiferous tubule expansion, 2 mo; spermatocytes, 6 mo; round spermatids, 12 mo; and elongated spermatids, 16 mo. Furthermore, there were differences between the two donor calves regarding the efficiency of spermatogenesis in xenografts. The timing of complete spermatogenesis approximately corresponded to the reported timing of sexual maturation in bison. This study demonstrated, apparently for the first time, that testis tissue xenografting from neonatal bison donors into recipient mice resulted in testicular maturation and complete development of spermatogenesis in the grafts.  相似文献   

14.
Xie F  Conti M 《Developmental biology》2004,265(1):196-206
To gain insight into the mechanisms of cAMP signaling in germ cells, the expression and subcellular localization of the full-length form of the soluble adenylyl cyclase (sAC) was investigated during rat spermatogenesis and in spermatozoa. A full-length sAC-specific antibody was generated by using a glutathione S-transferase (GST)-sAC carboxyl-terminal region (1399aa-1608aa) fusion protein as the antigen. The selectivity of the purified antibody was confirmed by immunoblotting with lysates from HEK293 cells overexpressing full-length sAC or truncated sAC. Western blot analysis demonstrated that full-length sAC protein appeared on day 25 during testis development. The expression levels increased progressively on days 30 and 35 and remained elevated in adult testis. Full-length sAC protein is retained in spermatozoa from the cauda epididymis. Consistent with the timing of the appearance of the Western blot signal, immunohistochemistry with testis sections at different stages of development detected sAC in late pachytene spermatocytes as well as round and elongating spermatids. Further experiments on the subcellular localization of native or recombinant enzymes revealed that full-length sAC is not only recovered in soluble fractions but also in particulate fractions of testis extracts. Immunofluorescence detection showed localization of the protein in the cytoplasm as well as in organelles of pachytene spermatocytes and spermatids. These findings indicate that cAMP production in spermatids and spermatozoa may occur at sites other than the plasma membrane and suggest that full-length sAC may play a role during spermatid differentiation.  相似文献   

15.
Spermatozoa released from the seminiferous tubules are terminally differentiated cells with no known synthetic activity. Their components are synthesized in the spermatogenic cells during spermatogenesis. In this study, we report the characterization and immunolocalization of beta-glucuronidase in mouse testicular germ cells and spermatozoa. The enzyme is an exoglycohydrolase with dual localization, being present in lysosomes and endoplasmic reticulum of several mouse and rat tissues. The purified germ cell preparations (spermatocytes, round spermatids, and condensed/elongated spermatids) when assayed for beta-glucuronidase activity showed that the spermatocytes contained five times more enzyme activity per cell than the spermatids. Polyacrylamide gel electrophoresis, carried out under native and denaturing conditions, demonstrated that the germ cells express only the lysosomal form of the enzyme (pI 5.5-6.0) with a subunit molecular mass of 74 kDa. Immunocytochemical studies revealed a positive reaction in the Golgi membranes, Golgi-associated vesicles, and lysosomes of late spermatocytes (pachytene spermatocytes) and a stage-specific localization during spermiogenesis. The forming or formed acrosome of the elongated spermatids (stages 9-16) and epididymal spermatozoa was highly immunopositive. Comparison of immunoprecipitation curves and kinetic properties of the enzyme present in spermatocytes and spermatozoa revealed no major differences. Taken together, our results demonstrate that beta-glucuronidase activities present in the lysosomes of spermatocytes and the sperm acrosome are kinetically and immunologically similar.  相似文献   

16.
Different germ-cell stages of Drosophila males with a double marked Y-chromosome and either a normal X- or a ring-X chromosome were irradiated with X-rays, inducing the following aberrations: chromosome loss, chromosome gain (XYX-females), partial Y loss and isochromosomes of the Y-chromosome.Doses of 520 rad in spermatocytes and spermatids and 2600 rad in sperm, produced the same effect in these stages with regard to the chromosome loss in the males with a normal X, and the following results were obtained: (a) The partial Y loss in postmeiotic stages is small in comparison with spermatocytes in both stocks. This could mean that in spermatocytes this aberration is determined by exchange processes which can only be induced and/or detected in premeiotic stages. (b) In spermatocytes and mature sperm of males with a ring-X chromosome, the chromosome loss was 2.9 times greater than in those with a normal X. In spermatids of the males with a ring-X the rate of loss was only 1.5 times greater. In spermatocytes of either males with a ring-X or a normal X a similar high rate of isochromosomes could be induced. However, in spermatids and mature sperm the rate of induction of isochromosomes was found to be very small. These results seem to indicate that in mature sperm the rejoining of breaks in the Y-chromosome takes place before, and in the X-chromosome usually after the replication. If in post-meiotic stages of Drosophila the X- and Y-chromosomes existed as chromatid-like subunits then in spermatids these should behave as a structural unit.In sperm we were able to induce similar frequencies of individuals with a single isochromosome type in all body cells as of individuals with two types of isochromosomes (isochromosome mosaics). This result seems to indicate that after irradiation of sperm one of the first two division nuclei is lethal in an proportion of the zygotes.  相似文献   

17.
Chymotrypsin inhibitor isolated from Ascaris suum (ACHI) was tested for the induction of dominant lethal mutations in male mice. Dominant lethal effects of ACHI for the main stages of germ cell development were analyzed by mating at specific time points after dosing. Two groups of adult BALB/c males received 24 or 40 mg per kilogram body weight (BW) per day intraperitoneal (IP) injection of ACHI in sterile phosphate-buffered saline (PBS) for five consecutive days (subacute exposure). Males from a third group were administered single IP injections of ACHI—60 mg/kg BW (acute exposure). The control group received concurrent injections of PBS for five successive days. After the last dose, each male was mated with two untreated females. For fractionated examination with regard to successive germ cell stages (spermatozoa, spermatids, spermatocytes, spermatogonia), every second week, two other untreated virgin females were placed with each male for mating. The uteri of the females were inspected on the 15th day of gestation, and preimplantation loss and postimplantation loss determined from dominant lethal parameters. Exposure of mice germ cells to ACHI did not impair mating activity of males. Fertility index was reduced (P < 0.05) only for females mated at the third week with males exposed to the highest dose of ACHI. In the females bred to ACHI-treated males, significant (P < 0.05) increase in preimplantation loss was observed at postinjection weeks 1 (reflecting exposure to spermatozoa after single treatment and to spermatozoa or late spermatids after subacute dosing) and 3 (reflecting exposure to mid and early spermatids for acute dosing and to mid and early spermatids or late spermatocytes following acute treatment), regardless of dose and length of exposure to the inhibitor. At the 60-mg/kg-BW group, a significant increase of this parameter was also noted at week 5 (reflecting exposure to early spermatocytes). During mating days 15–21, a significant (P < 0.05) increase in postimplantation loss and dominant lethal effects were observed for all doses of ACHI. Acute ACHI exposure 5 weeks prior to mating resulted in dominant lethal effects in early spermatocytes. These preliminary data suggest that ACHI induces dominant lethal mutations at postmeiotic and meiotic stages of spermatogenesis, but spermatids are the most sensitive cell stage to the effect of ACHI. These results show that ACHI may be one of the factors causing disturbances in spermatogenesis leading to a reduction of host reproductive success.  相似文献   

18.
We describe seasonal variations of the histology of the seminiferous tubules and efferent ducts of the tropical, viviparous skink, Mabuya brachypoda, throughout the year. The specimens were collected monthly, in Nacajuca, Tabasco state, Mexico. The results revealed strong annual variations in testicular volume, stages of the germ cells, and diameter and height of the epithelia of seminiferous tubules and efferent ducts. Recrudescence was detected from November to December, when initial mitotic activity of spermatogonia in the seminiferous tubules were observed, coinciding with the decrease of temperature, photoperiod and rainy season. From January to February, early spermatogenesis continued and early primary and secondary spermatocytes were developing within the seminiferous epithelium. From March through April, numerous spermatids in metamorphosis were observed. Spermiogenesis was completed from May through July, which coincided with an increase in temperature, photoperiod, and rainfall. Regression occurred from August through September when testicular volume and spermatogenic activity decreased. During this time, the seminiferous epithelium decreased in thickness, and germ cell recruitment ceased, only Sertoli cells and spermatogonia were present in the epithelium. Throughout testicular regression spermatocytes and spermatids disappeared and the presence of cellular debris, and scattered spermatozoa were observed in the lumen. The regressed testes presented the total suspension of spermatogenesis. During October, the seminiferous tubules contained only spermatogonia and Sertoli cells, and the size of the lumen was reduced, giving the appearance that it was occluded. In concert with testis development, the efferent ducts were packed with spermatozoa from May through August. The epididymis was devoid of spermatozoa by September. M. brachypoda exhibited a prenuptial pattern, in which spermatogenesis preceded the mating season. The seasonal cycle variations of spermatogenesis in M. brachypoda are the result of a single extended spermiation event, which is characteristic of reptilian species. J. Morphol. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
20.
Proteins of the hsp70 family are abundant in mouse spermatogenic cells. These cells also synthesize relatively large amounts of a 70,000-molecular-weight protein (P70) that appears to be a cell-specific isoform of hsp70, the major heat-inducible protein (R.L. Allen, D.A. O'Brien, and E.M. Eddy, Mol. Cell. Biol. 8:828-832, 1988). In this study, proteins of unstressed and heat-stressed spermatogenic cells consisting of purified preparations of preleptotene, leptotene-zygotene, pachytene spermatocytes, and round spermatids were analyzed by two-dimensional polyacrylamide gel electrophoresis. Unstressed preleptotene and leptotene-zygotene spermatocytes contained little P70, whereas relatively large amounts of P70 were present in pachytene spermatocytes and round spermatids. Labeling studies showed that P70 was synthesized primarily in pachytene spermatocytes and that little synthesis occurred in round spermatids or in preleptotene and leptotene-zygotene stages of spermatogenesis. Synthesis of hsp70 was not detectable in unstressed cells but was induced in all stages of isolated germ cells following heat stress. These results indicate that P70 is expressed in a stage-specific manner during cell differentiation, whereas hsp70 is synthesized in response to stress in all populations of isolated spermatogenic cells examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号