共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of macrophage adhesion molecule 总被引:3,自引:0,他引:3
Macrophage adhesion molecule (MAM), an abundant surface molecule which functions in the adhesion and spreading of guinea pig macrophages on surfaces, is characterized as a heterodimer of the trypsin- and plasmin-sensitive glycopeptide gp160 (MAM-alpha) and the glycopeptide gp93 (MAM-beta). The density of MAM molecules is estimated at 630,000 per macrophage on the basis of quantitative binding of 125I-labeled monoclonal antibody. The glycopeptide subunits display microheterogeneity on isoelectrofocusing; the pI is 5.8-6.3 for gp160 (MAM-alpha) and 6.4-7.0 for gp93 (MAM-beta). A neutrophil gp160, gp93 molecule was shown to be indistinguishable from macrophage MAM on the basis of electrophoresis, isoelectrofocusing, and reactivity with 10 monoclonal antibodies. A related heterodimer of gp93 associated with a larger, antigenically different glycopeptide (gp180,gp93) was identified on circulating lymphocytes. Cumulative properties indicate that MAM is the guinea pig analogue of human Mo1 and mouse Mac-1. 相似文献
2.
Regulation of synthesis of macrophage adhesion molecule, a heterodimeric membrane glycoprotein 总被引:1,自引:0,他引:1
E Remold-O'Donnell 《Journal of immunology (Baltimore, Md. : 1950)》1988,140(4):1244-1249
Macrophage adhesion molecule is a surface molecule of guinea pig macrophages and neutrophils. It is the counterpart of mouse Mac-1 and human CD11b/CD18 (Mol/OKM-1/Mac-1/Leu-CAM) and is member of a family of heterodimer glycoproteins with a common beta-subunit. Macrophage adhesion molecule is a prevalent molecule in nonactivated macrophages, but it is dramatically decreased in macrophages activated in vivo. The experimental system of activated vs nonactivated guinea pig peritoneal macrophages was used to examine the mechanisms that down-regulate synthesis of this heterodimer molecule. [35S]Methionine labeling of nonactivated macrophages and chase incubation revealed that synthesis involves separate translation of the alpha- and beta-glycopeptides of "high mannose"-containing monomeric precursors, then refolding/assembly to form a heterodimer, and, finally, a maturation process that includes conversion of carbohydrate to "complex" units. Two lines of evidence demonstrate that down-regulation in activated macrophages occurs via restriction of the alpha-species. First, pre-beta is detected at 3 h only in activated macrophages. Second, the amount of newly translated pre-alpha averaged 16% in activated macrophages relative to nonactivated macrophages, which is close to the value of 12% for the mature heterodimer. The amount of newly translated pre-beta averaged 62%. These findings identify the regulatory step as a restriction of the alpha-species at, or before, translation. A model is proposed to explain regulation of synthesis of heterodimer membrane glycoproteins. 相似文献
3.
E Remold-O'Donnell 《Journal of immunology (Baltimore, Md. : 1950)》1988,141(3):905-912
Macrophage adhesion molecule (MAM), a member of the integrin superfamily of heterodimer membrane molecules with adhesive properties, is the guinea pig counterpart of human Mo1 (CD11b/CD18). Earlier work showed that MAM is synthesized as monomeric precursor glycopeptides that assemble to form the heterodimer. The heterodimer and monomer glycopeptides are characterized through the use of twelve mAb in immunoprecipitation, immunoblotting, binding assays, and a quantitative cell adhesion assay. Seven topographic regions are identified, two of which are shown to be critical for adhesion. One adhesion-related topographic region, the M2/M4 region, is on the alpha-subunit, and the other, the M8/M15 region, is on the beta-subunit. Both adhesion-related epitopic regions are not detectable on monomeric glycopeptides but are generated by conformational change on heterodimer formation. It is hypothesized that these structure-function relationships have general applicability to integrin molecules. 相似文献
4.
Peroxidases are important mediators of innate immune reactions throughout the animal kingdom. In many arthropods a myeloperoxidase homologue, peroxinectin, is known to function as a cell adhesion factor and an opsonin. Here, we report in the freshwater crayfish Pacifastacus leniusculus the isolation of properoxinectin, inactive in cell adhesion, and we also show that properoxinectin is produced in the mature blood cells whereas the hematopoietic tissue contains very little of this protein. Both properoxinectin and peroxinectin are catalytically active as peroxidases, at least when using low molecular weight substrates. The extracellular processing of properoxinectin into an active cell adhesion protein was found to involve proteolytic steps shared with the prophenoloxidase activating system to yield catalytically active phenoloxidase. Thus, the regulation of activities by two ancient metalloproteins, both potentially producing highly toxic substances aimed at pathogens, is carried out by limited proteolysis. The proteolytic processing is triggered in the presence of microbial compounds such as beta-glucans or lipopolysaccharide after the release of properoxinectin and prophenoloxidase activating serine proteinases from the blood cells. 相似文献
5.
6.
Cell adhesion molecule T-cadherin regulates vascular cell adhesion, phenotype and motility 总被引:6,自引:0,他引:6
T-cadherin (T-cad), an unusual glycosylphosphatidylinositol (GPI)-anchored member of the cadherin family of cell adhesion molecules, is widely expressed in the cardiovascular system. The expression profile of T-cad within diseased (atherosclerotic and restenotic) vessels indicates some relationship between expression of T-cad and the phenotypic status of resident cells. Using cultures of human aortic smooth muscle cells (SMC) and human umbilical vein endothelial cells (HUVEC) we investigate the hypothesis that T-cad may function in modulating adhesive properties of vascular cells. Coating of culture plates with recombinant T-cad protein or with antibody against the first amino-terminal domain of T-cad (anti-EC1) significantly decreased adhesion and spreading of SMC and HUVEC. HUVECs adherent on T-cad or anti-EC1 substratum exhibited an elongated morphology and associated redistribution of the cytoskeleton and focal adhesions to a distinctly peripheral location. These changes are characteristic of the less-adhesive, motile or pro-migratory, pro-angiogenic phenotype. Boyden chamber migration assay demonstrated that the deadhesion induced by T-cad facilitates cell migration towards a serum gradient. Overexpression of T-cad in vascular cells using adenoviral vectors does not influence cell adhesion or motility per se, but increases the detachment and migratory responses induced by T-cad substratum. The data suggest that T-cad acts as an anti-adhesive signal for vascular cells, thus modulating vascular cell phenotype and migration properties. 相似文献
7.
8.
Rho GTPases regulate multiple cellular responses, including cell motility and cell cycle progression. The Rho isoform RhoB represses transformation and affects endosomal trafficking, but its effects on cell adhesion and migration have not been investigated in detail. Here we show that RhoB-null macrophages are more rounded than wild-type macrophages on fibronectin and uncoated glass, and have reduced adhesion to ICAM-1 and glass but not fibronectin. This correlated with lower cell surface expression of beta2 and beta3 integrins but not beta1 integrin. RhoB-null cells migrated faster than Wt cells on fibronectin, consistent with their smaller spread area, but slower than Wt cells on glass, reflecting their reduced adhesion. C3 transferase, which inhibits RhoA, RhoB and RhoC, induced cell spreading but this effect was reduced in RhoB-null cells. However, RhoB is not required for assembly of podosomes, which are integrin-based adhesion sites, whereas C3 transferase induced a decrease in podosomes and defects in tail retraction. Since macrophages do not express RhoC, these effects of C3 transferase are due to inhibition of RhoA rather than RhoB. Our results suggest that RhoB affects cell shape and migration by regulating surface integrin levels. 相似文献
9.
10.
11.
X-ray structure of junctional adhesion molecule: structural basis for homophilic adhesion via a novel dimerization motif 总被引:12,自引:0,他引:12
Kostrewa D Brockhaus M D'Arcy A Dale GE Nelboeck P Schmid G Mueller F Bazzoni G Dejana E Bartfai T Winkler FK Hennig M 《The EMBO journal》2001,20(16):4391-4398
Junctional adhesion molecules (JAMs) are a family of immunoglobulin-like single-span transmembrane molecules that are expressed in endothelial cells, epithelial cells, leukocytes and myocardia. JAM has been suggested to contribute to the adhesive function of tight junctions and to regulate leukocyte trans migration. We describe the crystal structure of the recombinant extracellular part of mouse JAM (rsJAM) at 2.5 A resolution. rsJAM consists of two immunoglobulin-like domains that are connected by a conformationally restrained short linker. Two rsJAM molecules form a U-shaped dimer with highly complementary interactions between the N-terminal domains. Two salt bridges are formed in a complementary manner by a novel dimerization motif, R(V,I,L)E, which is essential for the formation of rsJAM dimers in solution and common to the known members of the JAM family. Based on the crystal packing and studies with mutant rsJAM, we propose a model for homophilic adhesion of JAM. In this model, U-shaped JAM dimers are oriented in cis on the cell surface and form a two-dimensional network by trans-interactions of their N-terminal domains with JAM dimers from an opposite cell surface. 相似文献
12.
pH dependence of neutrophil-endothelial cell adhesion and adhesion molecule expression 总被引:5,自引:0,他引:5
Serrano C. V. Jr; Fraticelli A.; Paniccia R.; Teti A.; Noble B.; Corda S.; Faraggiana T.; Ziegelstein R. C.; Zweier J. L.; Capogrossi M. C. 《American journal of physiology. Cell physiology》1996,271(3):C962
13.
PEGylation of antibodies is known to increase their half-life in systemic circulation, but nothing is known regarding whether PEGylation can improve the inhibitory potency of antibodies against target receptors. In this paper, we have examined this question using antibodies directed to Sialoadhesin (Sn), a macrophage-restricted adhesion molecule that mediates sialic acid dependent binding to different cells. Anti-Sn monoclonal antibodies (mAbs), SER-4 and 3D6, were conjugated to PEG 5 kDa or and PEG 20 kDa, resulting in the incorporation of up to 3 molecules of PEG per mAb molecule. Following purification of PEGylated mAbs by anion exchange chromatography, it was shown that PEGylation had little or no effect on antigen binding activity but led to a dramatic increase in inhibitory potency that was proportional to both the size of the PEG and the degree of derivatization. Thus, PEGylation of antibodies directed to cell surface receptors could be a powerful approach to improve the therapeutic efficacy of antibodies, not only by increasing their half-life in vivo, but also by increasing their inhibitory potency for blocking receptor-ligand interactions. 相似文献
14.
Purification, quaternary structure, composition, and properties of D-ribulose-1,5-bisphosphate carboxylase from Thiobacillus intermedius. 总被引:3,自引:9,他引:3 下载免费PDF全文
D-Ribulose-1,5-bisphosphate (RuBP) carboxylase has been purified from glutamate-CO2-S2O3(2)-grown Thiobacillus intermedius by pelleting the enzyme from the high-speed supernatant and by intermediary crystallization followed by sedimentation into a discontinuous 0.2 to 0.8 M sucrose gradient. The enzyme was homogeneous by the criteria of electrophoresis on polyacrylamide gels of several acrylamide concentrations, sedimentation velocity and equilibrium measurements, and electron microscopic observations of negatively stained preparations. The molecular weights of the enzyme determined by sedimentation equilibrium and light-scattering measurements averaged 462,500 +/- 13,000. The enzyme consisted of closely similar or identical polypeptide chains of a molecular weight of 54,500 +/- 5,450 determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The S(0)20,w of the enzyme was 18.07S +/- 0.22. Electron microscopic examination suggested that the octomeric enzyme (inferred from the molecular measurements mentioned) had a cubical structure. The specific activity of the enzyme was 2.76 mumol of RuBP-dependent CO2 fixed/min per mg of protein (at pH 8 and 30 C), and the turnover number in terms of moles of CO2 fixed per mole of catalytic site per second was 2.6. The enzyme was stable for 3 months at -20 C and at least 4 weeks at 0 C. The apparent Km for CO2 was 0.75 mM, and Km values for RuBP and Mg2+ were 0.076 and 3.6 mM, respectively. Dialyzed enzyme could be fully reactivated by the addition of 20 mM Mg2+ and partially reactivated by 20 mM Co2+, but Cd2+, Mn2+, Ca2+, and Zn2+ had no effect. The compound 6-phosphogluconate was a linear competitive inhibitor with respect to RuBP when it had been preincubated with enzyme, Mg2+, and HCO3-. 相似文献
15.
16.
Phan D Han E Birrell G Bonnal S Duggan L Esumi N Gutstein H Li R Lopato S Manogaran A Pollak ES Ray A Reddi PP Reichert AS Struffi P Tiscornia G Ximenez-Fyvie LA Zhang H Lin SH 《Protein expression and purification》2001,21(2):343-351
The cell--cell adhesion molecule 1 (C-CAM1) plays an important role as a tumor suppressor for prostate cancer. Decreased expression of C-CAM1 was detected in prostate, breast, and colon carcinoma. Reexpression of C-CAM1 in prostate and breast cancer cell lines was able to suppress tumorigenicity in vivo. These observations suggest that C-CAM1 may be used as a marker for cancer detection or diagnosis. To generate monoclonal antibodies specific to C-CAM1, we have overexpressed full-length human C-CAM1 in Sf9 cells using a baculovirus expression system. The protein was purified 104-fold using nickel affinity chromatography. About 0.4 mg purified C-CAM1 was obtained from 200 mg of infected cells. When the purified protein was digested with peptidyl-N-glycosidase, the apparent mobility of the protein on SDS--PAGE changed from 90 to 58 kDa, which is close to the molecular weight predicted from the cloned cDNA sequence. This observation suggests that C-CAM1 was glycosylated on asparagine residues when expressed in Sf9 cells. Western blotting and internal protein sequencing analysis confirmed that the purified protein is human C-CAM1. Biochemical and functional assays indicate that this protein expressed in Sf9 cells displays characteristics similar to those of native protein, including adhesion function and glycosylation modification. Using this protocol, sufficient quantity of this protein can be produced with purity suitable for monoclonal antibody generation and biochemical study. 相似文献
17.
18.
E Paietta R J Stockert M McManus D Thompson S Schmidt P H Wiernik 《Journal of immunology (Baltimore, Md. : 1950)》1989,143(9):2850-2857
We have previously shown a novel galactose/N-acetylgalactosamine specific lectin activity (Hodgkin's disease (HD) lectin) on the surface of cultured HD cells (lines L428, its variants, and line L540) to mediate lymphocyte adhesion. We here demonstrate that both surface membrane-bound and secreted HD lectin activities participate in the activation of agglutinated lymphocytes. Among known adhesion molecules expressed by the HD cells, only the intercellular adhesion molecule-1 (ICAM-1) contributed to this activation as an alternative PBL binding site. As yet we have not identified the cellular ligand(s) for the HD lectin on the lymphocyte surface. Pretreatment of lymphocytes with mAb to the accessory molecules CD2, CD3, CD4, CD8, CD11b, or CD11c did not interfere with their response to HD cells. mAb to CD11a (LFA-1), the alleged ligand of ICAM-1, inhibited the ICAM-1 but not the HD lectin-mediated lymphocyte stimulation. Although lymphocyte binding could proceed via either pathway, lymphocyte activation always depended upon factors secreted by the HD cells, one of which we identified as a soluble form of the HD lectin based on its shared properties with the membrane-bound form including immunologic cross-recognition and carbohydrate-binding specificity. Although HD cell-conditioned medium alone stimulated lymphocytes, HD cell plasma membranes could compensate for low concentrations of this medium. In addition, resting lymphocytes, normally unresponsive, were triggered into DNA synthesis by growth medium when cocultured with HD cell membranes. The unique functions of the surface-expressed HD lectin and its soluble counterpart as lymphocyte adhesion molecule and mitogen might be physiologically relevant to the severe immunodeficiencies occurring in patients with HD. 相似文献
19.
Deepak K. Bhalla 《Journal of cellular physiology》1996,169(3):429-438
Ozone (O3) exposure of humans and animals induces an inflammatory response in the lung, which is associated with macrophage stimulation, release of chemotactic agents, and recruitment of polymorphonuclear leukocytes (PMNs). This study was designed to investigate the functional aspects of the macrophages that impact inflammatory processes in the lung. Macrophages recovered by bronchoalveolar lavage (BAL) from rats exposed to purified air or 0.8 ppm O3 were studied for their chemotactic activity, adhesive interactions with alveolar epithelial cells in culture, surface morphology, and surface expression of cell adhesion molecules. The macrophages isolated from O3-exposed rats exhibited a greater motility in response to a chemotactic stimulus than the macrophages isolated from rats exposed to purified air. The macrophages from O3-exposed animals also displayed greater adhesion when placed in culture with epithelial cells isolated from adult rat lung (ARL-14) than the macrophages from control rats. Both chemotactic motility and cell adhesion stimulated by O3 exposure were attenuated when the macrophages were incubated in the presence of monoclonal antibodies to leukocyte adhesion molecules, CD11b, or epithelial cell adhesion molecules, ICAM-1. Flow cytometry revealed a modest increase in the surface expression of CD11b but no change in ICAM-1 expression in macrophages from O3-exposed rats when compared to those from the air-exposed controls. The results demonstrate an alteration of macrophage functions following O3 exposure and suggest the dependence of these functions on the biologic characteristics, rather than the absolute expression, of the cell adhesion molecules. © 1996 Wiley-Liss, Inc. 相似文献
20.
R A Zuellig C Rader A Schroeder M B Kalousek F Von Bohlen und Halbach T Osterwalder C Inan E T Stoeckli H U Affolter A Fritz 《European journal of biochemistry》1992,204(2):453-463
Axonin-1 is an axon-associated cell adhesion molecule (AxCAM) of the chicken, which promotes neurite outgrowth by interaction with the AxCAM L1(G4) of the neuritic membrane. Here we report the cloning and sequence determination of a cDNA encoding axonin-1. Peptides generated by enzymatic cleavage showed similarity to the AxCAM F11. Degenerated polymerase chain reaction (PCR) primers were designed and an axonin-1 fragment was amplified from mRNA of embryonic retina. Screening of a cDNA library from embryonic brain resulted in the isolation of a 4.0-kb cDNA insert with an open reading frame of 3108 nucleotides. The deduced polypeptide of 1036 amino acids includes a putative hydrophobic N-terminal signal sequence of 23 or 25 amino acids and a C-terminal hydrophobic sequence of 29 amino acids which is suggestive of sequences serving as signal for the attachment of a glycosyl-phosphatidylinositol (glycosyl-PtdIns) anchor. The putative mature form of axonin-1 comprises six immunoglobulin-like repeats, followed by four fibronectin-type III repeats. Axonin-1 exhibits 75% amino acid identity with the AxCAM TAG-1 of the rat, suggesting that it is the chicken homologue of TAG-1. Like TAG-1, axonin-1 is glycosyl-PtdIns-anchored to the neuronal membrane; in contrast to TAG-1, it does not exhibit an Arg-Gly-Asp sequence. 相似文献