首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human osteoclast formation from monocyte precursors under the action of receptor activator of nuclear factor-kappaB ligand (RANKL) was suppressed by granulocyte macrophage colony-stimulating factor (GM-CSF), with down-regulation of critical osteoclast-related nuclear factors. GM-CSF in the presence of RANKL and macrophage colony-stimulating factor resulted in mononuclear cells that were negative for tartrate-resistant acid phosphatase (TRAP) and negative for bone resorption. CD1a, a dendritic cell marker, was expressed in GM-CSF, RANKL, and macrophage colony-stimulating factor-treated cells and absent in osteoclasts. Microarray showed that the CC chemokine, monocyte chemotactic protein 1 (MCP-1), was profoundly repressed by GM-CSF. Addition of MCP-1 reversed GM-CSF suppression of osteoclast formation, recovering the bone resorption phenotype. MCP-1 and chemokine RANTES (regulated on activation normal T cell expressed and secreted) permitted formation of TRAP-positive multinuclear cells in the absence of RANKL. However, these cells were negative for bone resorption. In the presence of RANKL, MCP-1 significantly increased the number of TRAP-positive multinuclear bone-resorbing osteoclasts (p = 0.008). When RANKL signaling through NFATc1 was blocked with cyclosporin A, both MCP-1 and RANTES expression was down-regulated. Furthermore, addition of MCP-1 and RANTES reversed the effects of cyclosporin A and recovered the TRAP-positive multinuclear cell phenotype. Our model suggests that RANKL-induced chemokines are involved in osteoclast differentiation at the stage of multinucleation of osteoclast precursors and provides a rationale for increased osteoclast activity in inflammatory conditions where chemokines are abundant.  相似文献   

3.
Colonies of CD1a+ HLA-DR+/DQ+ CD4+ cells with the functional and some of the structural attributes of Langerhans cells are observed in human bone marrow cultures in semi-solid media and are assumed to be the progeny of an early progenitor, the dendritic/Langerhans cell CFU (CFU-DL). The cytokine-regulated growth of these cells has been studied using a chemically defined serum-free system to culture both unfractionated and highly enriched bone marrow progenitor cell populations. Although unfractionated cell growth was optimal in serum replete cultures with PHA-stimulated leukocyte-conditioned medium (PHA-LCM) suboptimal proliferation of CFU-DL was observed in serum even in the absence of PHA-LCM. No colonies were observed under serum-free conditions when granulocyte-macrophage CSF (GM-CSF), IL-3, granulocyte CSF (G-CSF), and macrophage CSF (M-CSF) were present at levels optimal for granulocyte colony-forming unit (CFU-G) and macrophage colony-forming unit (CFU-M) growth. Addition of IL-1 alpha to these cytokines stimulated a small number of CFU-DL. However, in the presence of GM-CSF and IL-3, TNF-alpha or TNF-beta (5 U/ml) were both highly effective in promoting growth up to 82% of optimal and CFU-G growth was also enhanced at these concentrations. TNF was only active during the first 3 days of culture and higher concentrations of TNF-alpha but not TNF-beta were inhibitory for both CFU-DL and CFU-G. CD34+ cell-enriched populations were also enriched for both myeloid progenitors (CFU-G + CFU-M) and CFU-DL to 36- and 48-fold, respectively, and single cell cultures of CD34+ cells yielded single colonies containing both CD1a+ dendritic cells and CD1a- macrophages. Thus dendritic/Langerhans progenitors in the bone marrow expresses CD34, have a capacity for both macrophage and dendritic cell differentiation, and depend on hemopoietic growth factors and TNF for their further development in vitro.  相似文献   

4.
IL-33 is a new member of the IL-1 family, which plays a crucial role in inflammatory response, enhancing the differentiation of dendritic cells and alternatively activated macrophages (AAM). Based on the evidence of IL-33 expression in bone, we hypothesized that IL-33 may shift the balance from osteoclast to AAM differentiation and protect from inflammatory bone loss. Using transgenic mice overexpressing human TNF, which develop spontaneous joint inflammation and cartilage destruction, we show that administration of IL-33 or an IL-33R (ST2L) agonistic Ab inhibited cartilage destruction, systemic bone loss, and osteoclast differentiation. Reconstitution of irradiated hTNFtg mice with ST2(-/-) bone marrow led to more bone loss compared with the chimeras with ST2(+/+) bone marrow, demonstrating an important endogenous role of the IL-33/ST2L pathway in bone turnover. The protective effect of IL-33 on bone was accompanied by a significant increase of antiosteoclastogenic cytokines (GM-CSF, IL-4, and IFN-γ) in the serum. In vitro IL-33 directly inhibits mouse and human M-CSF/receptor activator for NF-κB ligand-driven osteoclast differentiation. IL-33 acts directly on murine osteoclast precursors, shifting their differentiation toward CD206(+) AAMs via GM-CSF in an autocrine fashion. Thus, we show in this study that IL-33 is an important bone-protecting cytokine and may be of therapeutic benefit in treating bone resorption.  相似文献   

5.
6.
The effect of recombinant human granulocyte-macrophage colony stimulating factor (GM-CSF) on the expression of HLA-DR, and the production of the cytokines interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha) by human peripheral blood monocyte-enriched populations was investigated. GM-CSF was shown to induce both the expression of HLA-DR and the cytokines IL-1 and TNF alpha in a dose-dependent manner. In contrast, interferon-gamma (IFN-gamma), which induced major histocompatibility complex (MHC) class II expression, did not induce IL-1 or TNF alpha production. However, IFN-gamma enhanced the cell surface expression of HLA-DR and the production of IL-1 and TNF alpha on monocyte-enriched cells stimulated by GM-CSF. By itself, GM-CSF did not induce surface class II expression on the human monocytic tumour cell line THP-1, whereas it synergized with IFN-gamma to induce surface expression. These cells responded to GM-CSF by producing IL-1 and TNF alpha; Northern blotting showed that mRNA levels of IL-1 and TNF alpha were transiently induced, similar to other cytokines. Our results indicate that GM-CSF is a major macrophage activating factor that is capable of inducing both the expression of HLA-DR and the cytokines involved in T-cell activation by macrophages; therefore, GM-CSF may be of importance in potentiating antigen presenting function.  相似文献   

7.
8.
Cultured human monocytes undergo a process of differentiation and maturation lasting 5 to 10 days that ultimately leads to the appearance of large macrophage-like cells. This differentiation is growth factor dependent: of all the cytokines tested, only macrophage colony-stimulating factor (M-CSF), granulocyte/macrophage-CSF (GM-CSF), and IL-3 proved capable of supporting the differentiation and the long term survival of the macrophage-like cells. Although all three cytokines yield cells with macrophage characteristics, cells developed in M-CSF have features distinct from those matured in either IL-3 or GM-CSF. At the morphologic level, the M-CSF-supported monocyte cultures yield elongated, spindle-shaped cells whereas those supported with IL-3 or GM-CSF yielded round cells with distinct nuclei. All three macrophage populations expressed similar levels of HLA-DR, CD11b, and CD11c, but the M-CSF-treated cultures yielded more CD14+ and CD16+ (Fc gamma RIII) cells. All three cell populations developed capacity for antibody-dependent cellular cytotoxicity (ADCC) as well as antibody-independent cytotoxicity with peak activity achieved after 8 to 12 days in culture. ADCC capacity developed earliest and the level of activity was usually greatest in the M-CSF-treated cultures, possibly correlating with the higher level of expression of CD16. Our findings indicate that any of these cytokines, but particularly M-CSF, may be useful clinically in enhancing the tumoricidal capacity of tumor-specific mAb through augmentation of macrophage capacity for ADCC.  相似文献   

9.
TNF skews monocyte differentiation from macrophages to dendritic cells   总被引:4,自引:0,他引:4  
Monocytes represent a large pool of circulating precursors of APCs, both macrophages and dendritic cells (DCs). It is thus important to identify the mechanisms by which microenvironment regulates monocyte differentiation. We have previously shown that, upon contact with resting stromal cells such as fibroblasts, monocytes differentiate into macrophages in an IL-6/M-CSF-dependent fashion. Yet, in the inflamed tissue, monocytes need to yield DCs for the adaptive immunity to be induced. Inasmuch as TNF and IL-1 are present at the site of inflammation, we tested their capacity to modulate monocyte differentiation into either macrophages or DCs. TNF, but not IL-1, induce monocytes to become DCs despite the presence of fibroblasts. TNF-induced DCs contain Langerin-positive cells and are able to induce allogenic T cell proliferation. Then, TNF was found to decrease the expression and internalization of the M-CSF receptor, thus overriding the IL-6/M-CSF pathway. Thus, TNF facilitates the induction of adaptive immunity by promoting DC differentiation not only from CD34+ progenitors but also from CD14+ blood precursors.  相似文献   

10.
Tumour necrosis factor (TNF) induces apoptosis in a range of cell types via its two receptors, TNFR1 and TNFR2. Here, we demonstrate that proliferation and TNFR2 expression was increased in human leukaemic TF-1 cells by granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-3 (IL-3), with TNFR1 expression unaffected. Consequently, they switch from a proliferative to a TNF-induced apoptotic phenotype. Raised TNFR2 expression and susceptibility to TNF-induced apoptosis was not a general effect of proliferation as IL-1beta and IFN-gamma both proliferated TF-1 cells with no effect on TNFR expression or apoptosis. Although raised TNFR2 expression correlated with the apoptotic phenotype, stimulation of apoptosis in GM-CSF-pretreated cells was mediated by TNFR1, with stimulation of TNFR2 alone insufficient to initiate cell death. However, TNFR2 did play a role in apoptotic and proliferative responses as they were blocked by the presence of an antagonistic TNFR2 antibody. Additionally, coincubation with cycloheximide blocked the mitotic effects of GM-CSF or IL-3, allowing only the apoptotic responses of TNF to persist. TNF life/death was also observed in K562, but not MOLT-4 and HL-60 human leukaemic cell types. These findings show a cooperative role of TNFR2 in the TNF life/death switching phenomenon.  相似文献   

11.
The mechanisms of action of marketed TNF-blocking drugs in lesional tissues are still incompletely understood. Because psoriasis plaques are accessible to repeat biopsy, the effect of TNF/lymphotoxin blockade with etanercept (soluble TNFR) was studied in ten psoriasis patients treated for 6 months. Histological response, inflammatory gene expression, and cellular infiltration in psoriasis plaques were evaluated. There was a rapid and complete reduction of IL-1 and IL-8 (immediate/early genes), followed by progressive reductions in many other inflammation-related genes, and finally somewhat slower reductions in infiltrating myeloid cells (CD11c+ cells) and T lymphocytes. The observed decreases in IL-8, IFN-gamma-inducible protein-10 (CXCL10), and MIP-3alpha (CCL20) mRNA expression may account for decreased infiltration of neutrophils, T cells, and dendritic cells (DCs), respectively. DCs may be less activated with therapy, as suggested by decreased IL-23 mRNA and inducible NO synthase mRNA and protein. Decreases in T cell-inflammatory gene expression (IFN-gamma, STAT-1, granzyme B) and T cell numbers may be due to a reduction in DC-mediated T cell activation. Thus, etanercept-induced TNF/lymphotoxin blockade may break the potentially self-sustaining cycle of DC activation and maturation, subsequent T cell activation, and cytokine, growth factor, and chemokine production by multiple cell types including lymphocytes, neutrophils, DCs, and keratinocytes. This results in reversal of the epidermal hyperplasia and cutaneous inflammation characteristic of psoriatic plaques.  相似文献   

12.
Osteoclasts are terminally differentiated from cells of monocyte/macrophage lineage by stimulation with TNF-related activation-induced cytokine (TRANCE) (receptor activator of NF-kappaB ligand/osteoprotegerin ligand/osteoclast differentiation factor/TNFSF11/CD254). In the present study, we attempted to determine when and how the cell fate of precursors becomes committed to osteoclasts following TRANCE stimulation. Although mouse bone marrow-derived macrophages (BMMs) were able to differentiate into either osteoclasts or dendritic cells, the cells no longer differentiated into dendritic cells after treatment with TRANCE for 24 h, indicating that their cell fate was committed to osteoclasts. Committed cells as well as BMMs were still quite weak in tartrate-resistant acid phosphatase activity, an osteoclast marker, and incorporated zymosan particles by phagocytosis. Interestingly, committed cells, but not BMMs, could still differentiate into osteoclasts even after incorporation of the zymosan particles. Furthermore, IL-4 and IFN-gamma, potent inhibitors of osteoclast differentiation, failed to inhibit osteoclast differentiation from committed cells, and blocking of TRANCE stimulation by osteoprotegerin resulted in cell death. Adhesion to culture plates was believed to be essential for osteoclast differentiation; however, committed cells, but not BMMs, differentiated into multinucleated osteoclasts without adhesion to culture plates. Although LPS activated the NF-kappaB-mediated pathway in BMMs as well as in committed cells, the mRNA expression level of TNF-alpha in the committed cells was significantly lower than that in BMMs. These results suggest that characteristics of the committed cells induced by TRANCE are distinctively different from that of BMMs and osteoclasts.  相似文献   

13.
IL-12, like IL-18, was shown to potently inhibit osteoclast formation in cultures of cocultures of murine osteoblast and spleen cells, as well as in adult spleen cells treated with M-CSF and receptor activator of NF-kappaB ligand (RANKL). Neither IL-12 nor IL-18 was able to inhibit RANKL-induced osteoclast formation in cultured RAW264.7 cells, demonstrating that IL-12, like IL-18, was unable to act directly on osteoclastic precursors. IL-12, like IL-18, was found to act by T cells, since depletion of T cells from the adult spleen cell cultures ablated the inhibitory action of IL-12 and addition of either CD4 or CD8 T cells from C57BL/6 mice to RANKL-stimulated RAW264.7 cultures permitted IL-12 or IL-18 to be inhibitory. Additionally, IL-12 was still able to inhibit osteoclast formation in cocultures with osteoblasts and spleen cells from either GM-CSF R(-/-) mice or IFN-gamma R(-/-) mice, indicating that neither GM-CSF nor IFN-gamma was mediating osteoclast inhibition in these cultures. Combined, IL-18 and IL-12 synergistically inhibited osteoclast formation at concentrations 20- to 1000-fold less, respectively, than when added individually. A candidate inhibitor could not be demonstrated using neutralizing Abs to IL-4, IL-10, or IL-13 or from mRNA expression profiles among known cytokine inhibitors of osteoclastogenesis in response to IL-12 and IL-18 treatment, although the unknown inhibitory molecule was determined to be secreted from T cells.  相似文献   

14.
Although TNF is a major proinflammatory cytokine, increasing evidence indicates that TNF also has immunosuppressive feedback effects. We have demonstrated in this study that, in both resting and activated states, mouse peripheral CD4(+)CD25(+) T regulatory cells (Tregs) expressed remarkably higher surface levels of TNFR2 than CD4(+)CD25(-) T effector cells (Teffs). In cocultures of Tregs and Teffs, inhibition of proliferation of Teffs by Tregs was initially transiently abrogated by exposure to TNF, but longer exposure to TNF restored suppressive effects. Cytokine production by Teffs remained continually suppressed by Tregs. The profound anergy of Tregs in response to TCR stimulation was overcome by TNF, which expanded the Treg population. Furthermore, in synergy with IL-2, TNF expanded Tregs even more markedly up-regulated expression of CD25 and FoxP3 and phosphorylation of STAT5, and enhanced the suppressive activity of Tregs. Unlike TNF, IL-1beta and IL-6 did not up-regulate FoxP3-expressing Tregs. Furthermore, the number of Tregs increased in wild-type mice, but not in TNFR2(-/-) mice following sublethal cecal ligation and puncture. Depletion of Tregs significantly decreased mortality following cecal ligation and puncture. Thus, the stimulatory effect of TNF on Tregs resembles the reported costimulatory effects of TNF on Teffs, but is even more pronounced because of the higher expression of TNFR2 by Tregs. Moreover, our study suggests that the slower response of Tregs than Teffs to TNF results in delayed immunosuppressive feedback effects.  相似文献   

15.
Y Guo  WW Xu  J Song  W Deng  DQ Liu  HT Zhang 《PloS one》2012,7(7):e40179
Nef functions as an immunosuppressive factor critical for HIV-1 replication, survival and development of AIDS following HIV-1 infection. What effects Nef exerts on differentiation and maturation of monocytes towards dendritic cells (DCs) remains greatly controversial. In this study, we used THP-1 (human monocytic leukemia cell line) as monocytic DC precursors to investigate how overexpression of HIV-1 Nef influences the processes of differentiation and maturation of dendritic cells. In striking contrast to negative controls, our results showed that morphological and phenotypical changes (CD11c, CD14, CD40, CD80, CD83, CD86, and HLA-DR) occurred on recombinant THP-1 expressing HIV-1 Nef (short for Nef) upon co-stimulation of GM-CSF/IL-4 or GM-CSF/IL-4/TNF-α/ionomycin. Moreover, CD4, CCR5, and CXCR4 were also down-regulated on Nef. It might be hypothesized that Nef prevents superinfection and signal transduction in HIV-1 infected monocytes. Collectively, our study demonstrates that long-lasting expression of Nef at high levels indeed retards differentiation and maturation of dendritic cells in terms of phenotype and morphology. We are hopeful that potentially, stable expression of intracellular Nef in vivo may function as a subtle mode to support long-lasting HIV-1 existence.  相似文献   

16.
In inflammatory arthritis such as RA, osteoclastic activity is severely enhanced. GM-CSF was reportedly elevated in synovial fluid, but is a strong inhibitor of osteoclastogenesis; here lies a contradiction. Our objective was to examine what type of osteoclasts generate and resorb bone with resistance to GM-CSF in an inflammatory joint. Monocyte-derived cells generated in GM-CSF were morphologically and immunophenotypically different from both the conventional DC and macrophage. They could differentiate into osteoclasts in the presence of RANKL + M-CSF, acquiring a stronger osteoclastic activity under TNF treatment. Furthermore, their differentiation was not inhibited by GM-CSF, while monocyte-derived osteoclast differentiation was completely inhibited. The resorption was suppressed by GM-CSF, and the existence of another osteoclastic pathway has been suggested. Our findings indicate another type of osteoclast exists in inflammatory arthritis.  相似文献   

17.
We have established a system for directed differentiation of human embryonic stem (hES) cells into myeloid dendritic cells (DCs). As a first step, we induced hemopoietic differentiation by coculture of hES cells with OP9 stromal cells, and then, expanded myeloid cells with GM-CSF using a feeder-free culture system. Myeloid cells had a CD4+CD11b+CD11c+CD16+CD123(low)HLA-DR- phenotype, expressed myeloperoxidase, and included a population of M-CSFR+ monocyte-lineage committed cells. Further culture of myeloid cells in serum-free medium with GM-CSF and IL-4 generated cells that had typical dendritic morphology; expressed high levels of MHC class I and II molecules, CD1a, CD11c, CD80, CD86, DC-SIGN, and CD40; and were capable of Ag processing, triggering naive T cells in MLR, and presenting Ags to specific T cell clones through the MHC class I pathway. Incubation of DCs with A23187 calcium ionophore for 48 h induced an expression of mature DC markers CD83 and fascin. The combination of GM-CSF with IL-4 provided the best conditions for DC differentiation. DCs obtained with GM-CSF and TNF-alpha coexpressed a high level of CD14, and had low stimulatory capacity in MLR. These data clearly demonstrate that hES cells can be used as a novel and unique source of hemopoietic and DC precursors as well as DCs at different stages of maturation to address essential questions of DC development and biology. In addition, because ES cells can be expanded without limit, they can be seen as a potential scalable source of cells for DC vaccines or DC-mediated induction of immune tolerance.  相似文献   

18.
Follicular dendritic cells (FDC)3 play crucial roles in germinal center (GC) formation and differentiation of GC B cells. Many aspects of FDC function are influenced by contact with B or T cells, and by cytokines produced in the GC, which involve stimulation of CD40 and TNF-alpha receptors on FDC. In this study, using an established FDC line, HK cells, we compared the effects of CD40 and TNF receptor triggering on cytokine induction and activation of mitogen-activated protein kinase family. We show that HK cells spontaneously produced IL-6, M-CSF, and G-CSF mRNA. Both the soluble form of CD40 ligand (sCD40L) and TNF increased the level of M-CSF and G-CSF mRNA. While TNF strongly induced IL-6 mRNA, its expression was not affected by sCD40L treatment, differing from the strong IL-6 induction in other cell types upon CD40 stimulation. In addition, sCD40L treatment resulted in activation of extracellular signal-related kinase 1 and 2 (ERK1/2) and p38 without significant increase in c-Jun N-terminal kinase (JNK) activity. Lack of JNK activation differs in that most B cells respond to CD40 stimulation by inducing JNK activity strongly, suggesting distinct characteristics of CD40 signaling in FDC. Compared with the effects of sCD40L, TNF was capable of inducing JNK activity in addition to the activation of ERK1/2 and p38. Furthermore, the proximal signaling elements activated by TNF differed from those activated by sCD40L, in that TNF did not require PMA-sensitive protein kinase C isoforms in the activation of ERK and p38, whereas sCD40L did. However, signals activated by these stimuli converged on cytokine gene expression in a synergistic manner, which may have implication in augmenting FDC function during GC reaction.  相似文献   

19.
There is evidence that mature dendritic cells (DCs) present in the rheumatoid arthritis (RA) joint mediate immunopathology in RA. In this study, we indicate that early myeloid progenitors for DCs and DC growth factors existing in RA synovial fluid (SF) are also likely participants in the RA disease process. A fraction of cells lacking markers associated with mature DCs or DC precursors and enriched in CD34(negative) myeloid progenitors was isolated from RA SF. These cells proliferated extensively when cultured in vitro with cytokines that promote the growth of myeloid DCs (GM-CSF/TNF/stem cell factor/IL-4) and, to a lesser degree, when cultured with monocyte/granulocyte-restricted growth factors (M-CSF/GM-CSF). Mature DCs derived from RA SF progenitors with CD14-DC cytokines known to be prevalent in the inflamed RA joint (GM-CSF/TNF/stem cell factor/IL-13) were potent stimulators of allogeneic T cells and inflammatory-type Th1 responses and included CD14-DC subtypes. Cell-free RA SF facilitated DC maturation from myeloid progenitors, providing direct evidence that the inflamed RA joint environment instructs DC growth. Enhanced development of CD14-derived DCs was correlated with the presence of soluble TNFR (p55), raising the possibility that soluble TNFR also regulate CD14-derived DC growth in vivo. SF from patients with osteoarthritis contained neither myeloid DC progenitors nor DC growth factors. The existence of DC progenitors and myeloid DC growth factors in RA SF supports the concept that RA SF may be a reservoir for joint-associated DCs and reveals a compelling mechanism for the amplification and perpetuation of DC-driven responses in the RA joint, including inflammatory-type Th1 responses.  相似文献   

20.
TNF is a major therapeutic target in a range of chronic inflammatory disorders, including asthma. TNFR-associated factor (TRAF)1 is an intracellular adaptor molecule important for signaling by TNFR. In this study, we investigated the role of TRAF1 in an adoptive transfer model of allergic lung inflammation. Mice deficient in TRAF1 (TRAF1(-/-)) and wild-type (WT) control animals were adoptively transferred with WT OVA-immune CD4(+) T cells, exposed to an aerosol of LPS-free OVA, and analyzed for the development of allergic lung inflammation. In contrast to WT mice, TRAF1(-/-) recipients failed to display goblet cell hyperplasia, eosinophilic inflammation, and airway hyperresponsiveness in this model of asthma. Neither T cell recruitment nor expression of the proinflammatory cytokines IL-4, IL-5, IL-13, or TNF occurred in the lungs of TRAF1(-/-) mice. Although purified myeloid TRAF1(-/-) dendritic cells (DCs) exhibited normal Ag-presenting function and transmigratory capacity in vitro and were able to induce OVA-specific immune responses in the lung draining lymph nodes (LNs) following adoptive transfer in vivo, CD11c(+)CD11b(+) DCs from airways of TRAF1(-/-) recipients were not activated, and purified draining LN cells did not proliferate in vitro. Moreover, transfer of WT or TRAF1(-/-) DCs failed to restore T cell recruitment and DC activation in the airways of TRAF1(-/-) mice, suggesting that the expression of TRAF1 in resident lung cells is required for the development of asthma. Finally, we demonstrate that T cell-transfused TRAF1(-/-) recipient mice demonstrated impaired up-regulation of ICAM-1 expression on lung cells in response to OVA exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号