共查询到20条相似文献,搜索用时 15 毫秒
1.
Hridayabhiranjan Shukla Lakshmikanthrao Viswanathan Niranjan Prasad Shukla 《Enzyme and microbial technology》1984,6(12)
Data obtained on the conversion of -glucose to alcohol using Saccharomyces cerevisiae in batch culture has been analysed kinetically. The effects of different kinetic parameters, e.g. rates of ethanol and biomass formation, rate of -glucose utilization and variation of pH have been studied. Analysis of data was made on the basis of Michaelis-Menten, Leudeking-Piret and simple kinetics. Unsteady rate behaviour in the lag phase was observed and explained. 相似文献
2.
Giuliano C. Clososki Cíntia D.F. Milagre Paulo J.S. Moran J. Augusto R. Rodrigues 《Journal of Molecular Catalysis .B, Enzymatic》2007,48(3-4):70-76
Methyleneketoesters were readily prepared in high yields by performing a direct -methylenation of the corresponding ketoesters using a previously described protocol. Reactions of ethyl 2-methylene-3-oxo-3-arylpropanoates 2a–c catalyzed by S. cerevisiae were performed with good conversions to give reductions of the CC, CO or both, depending on the reaction conditions and on the substitution of the aryl moiety. Reaction of 3-methylene-2-oxo-4-phenylbutyrate 2d was carried out with free yeast cells and with yeast cells immobilized with calcium alginate, in which the major products resulted from CC and CO bond reduction.
相似文献
Full-size image (4K)
3.
Genetically modified Saccharomyces cerevisiae strain (YPB-G) which secretes a bifunctional fusion protein that contains both Bacillus subtilis -amylase and Aspergillus awamori glucoamylase activities was used for the direct conversion of starch into ethanol. Starch was either supplied initially to different nutrient media or added instantaneously to the reactor at various discrete time instants (pulse feeding). Stoichiometric modeling was used to investigate the effects of initial substrate concentration and growth rate of the recombinant yeast culture on ethanol production. Reaction stoichiometries describing both the anabolism and catabolism of the microorganism were used as an input to flux balance analysis (FBA), the preferred metabolic modeling approach since the constructed stoichiometric network was underdetermined. Experiments for batch and fed-batch systems at different substrate concentrations were analyzed theoretically in terms of flux distributions using ethanol production rate as the maximization criteria. Calculated ethanol rates were in agreement with experimental measurements, suggesting that this recombinant microorganism is sufficiently evolved to optimize its ethanol production. The function of the main pathways of yeast metabolism (PPP, EMP, TCA) are discussed together with the node analyses of glucose-6-P and pyruvate branch points. Theoretical node analysis revealed that if the split ratio in G6P branch point is changed by genetic manipulations, the ethanol yield would be affected considerably. 相似文献
4.
Masahiro Yamagishi Kiyohisa Mizumoto Akira Ishihama 《Molecular & general genetics : MGG》1995,249(2):147-154
The guanylyltransferase activity of mRNA capping enzyme catalyzes the transfer of GMP from GTP to the 5 terminus of mRNA. In Saccharomyces cerevisiae, the activity is carried on the subunit of capping enzyme, the product of the CEG1 gene. We have isolated 10 recessive, temperature-sensitive mutations of CEG1; nine (cegl-1 to cegl-9) were isolated on a single-copy plasmid and the remaining one (cegl-10) on a multicopy plasmid. The presence of cegl-10 in multiple copies is essential for the viability of cells carrying the mutation, and a shift to the restrictive temperature resulted in rapid growth arrest of cegl-10 cells, while growth rates of other mutants decreased gradually upon temperature upshift. Intragenic complementation was not observed for pairwise combinations of the mutations. Although the majority of the mutations occurred at the amino acid residues conserved between Cegl and the Schizosaccharomyces pombe homologue, none were located in the regions that are also conserved among viral capping enzymes and polynucleotide ligases. Guanylyltransferase activity of the mutant proteins as measured by covalent Ceg1-GMP complex formation was heat-labile. The availability of these mutants should facilitate studies of the structure-function relationships of capping enzyme, as well as the roles and regulation of mRNA capping. 相似文献
5.
In most eukaryotic organisms, recombination events leading to exchanges between homologous chromosomes link the homologs in a manner that allows their proper attachment to the meiotic spindle. In the yeast Saccharomyces cerevisiae these exchanges are initiated in early prophase as double-strand breaks in the DNA. These breaks are processed through a series of intermediates to yield mature crossovers late in prophase. The following experiments were designed to monitor the appearance of the earliest recombinant DNA strands formed in this process. A polymerase chain reaction assay was devised that allows the detection of recombinant strands at a known initiation site for meiotic recombination. The time and rate of appearance of recombinant strands was found to coincide with commitment to recombination, demonstrating that DNA strands bearing sequences from both parental chromosomes are rapidly formed after the initiation of meiotic recombination. Received: 22 July 1997 / Accepted: 25 February 1998 相似文献
6.
Y. Shimma A. Nishikawa B. bin Kassim A. Eto Y. Jigami 《Molecular & general genetics : MGG》1997,256(5):469-480
We have found that yeast mutants that are defective in mannose outer chain elongation of N-linked glycoproteins show higher cell wall porosity than normal cells, and are hypersensitive to antibiotics with a large
molecular weight; such as neomycin and geneticin. Wild-type yeast cells also showed enhanced sensitivity to neomycin in the
presence of tunicamycin, an inhibitor of N-glycosylation, suggesting that the extent of N-glycosylation may affect the sensitivity of yeast cells to drugs and that sensitivity to neomycin may be an effective method
for screening for yeast mutants defective in N-glycosylation. Pursuing this logic, we isolated neomycin-sensitive yeast mutants and screened them for defects in N-glycosylation. The neomycin-sensitive, N-glycosylation-defective mutants fell into 15 complementation groups including alleles of the previously isolated temperature-sensitive
nes mutants nes10, nes17, and nes25. Gene cloning revealed that NES10 was identical to SEC20, which is involved in ER-Golgi protein transport. NES17 was identical to ALG1, which encodes a β-1,4-mannosyltransferase present in the ER. MSN17, a multicopy suppressor of nes17/alg1, was also isolated and found to be an allele of PSA1, which is involved in GDP-mannose synthesis. NES25 was identical to GUK1, which encodes a GMP kinase. Overexpression of MSN17 increased the GDP-mannose level in a wild-type strain by about threefold, and guk1 decreased the GDP-mannose level to one-fourth, suggesting a close relationship between GTP metabolism and mannose outer chain
elongation; the link is presumably provided by the process of GDP-mannose transport in the Golgi membranes.
Received: 11 March 1997 / Accepted: 15 July 1997 相似文献
7.
The effects of amino acids on glutathione (GSH) production by Saccharomyces cerevisiae T65 were investigated in this paper. Cysteine was the most important amino acids, which increased intracellular GSH content greatly but inhibited cell growth at the same time. The suitable amino acids addition strategy was two-step addition: in the first step, cysteine was added after two hours culture to 2 mM and then, the three amino acids (glutamic acid, glycine, and serine) were added after seven hours culture. The optimum concentration of those three key amino acids (10 mM glutamic acid, 10 mM glycine, and 10 mM serine) was obtained by orthogonal matrix method. With the optimum amino acids addition strategy a 1.63% intracellular GSH content was obtained in shake flask culture. Intracellular GSH content was 55.2% higher than the experiments without three amino acids addition. The cell biomass and GSH yield were 9.4 g/L and 153.2 mg/L, respectively. Using this amino acids addition strategy in the fed-batch culture of S. cerevisiae T65, GSH content, the biomass, and GSH yield reached 1.41%, 133 g/L, and 1875 mg/L, respectively, after 44 hours fermentation. GSH yield was about 2.67 times as that of amino acids free. 相似文献
8.
Based on the high sequence homology between the yeast ORF YBR296c (accession number P38361 in the SWISS-PROT database) and the PHO4 gene of Neurospora crassa, which codes for a Na+/Pi cotransporter with twelve putative transmembrane domains, the YBR296c ORF was considered to be a promising candidate gene for a plasma membrane-bound phosphate transporter in Saccharomyces cerevisiae. Therefore, this gene, here designated PHO89, was cloned and a set of deletion mutants was constructed. We then studied their Pi uptake activity under different conditions. We show here that a transport activity displayed by PHO89 strains under alkaline conditions and in the presence of Na+ is absent in pho89 null mutants. Moreover, when the pH was lowered to pH 4.5 or when Na+ was omitted, this activity decreased significantly, reaching values close to those exhibited by the Δpho89 mutant. Studies of the acid phosphatase activity of these strains, as well as promoter sequence analysis, suggest that expression of the PHO89 gene is under the control of the PHO regulatory system. Northern analysis shows that this gene is only transcribed under conditions of Pi limitation. This is, to our knowledge, the first demonstration that the PHO89 gene codes for the Na+/Pi cotransporter previously characterized by kinetic studies, and represents the only Na+-coupled secondary anion transport system so far identified in S. cerevisiae. Pho89p has been shown to have an apparent Km of 0.5 μM and a pH optimum of 9.5, and is highly specific for Na+; activation of transport is maximal at a Na+ concentration of 25 mM. Received: 2 November 1997 / Accepted: 20 February 1998 相似文献
9.
10.
Young-Sok Jeun Myoung-Dong Kim Yong-Cheol Park Tae-Hee Lee Myung-Sang Yoo Yeon-Woo Ryu Jin-Ho Seo 《Journal of Molecular Catalysis .B, Enzymatic》2003,26(3-6):251-256
Pyridine nucleotide transhydrogenase is a metabolic enzyme transferring the reducing equivalent between two nucleotide acceptors such as NAD+ and NADP+ for balancing the intracellular redox potential. Soluble transhydrogenase (STH) of Azotobacter vinelandii was expressed in a recombinant Saccharomyces cerevisiae strain harboring the Pichia stipitis xylose reductase (XR) gene to study effects of redox potential change on cell growth and sugar metabolism including xylitol and ethanol formation. Remarkable changes were not observed by expression of the STH gene in batch cultures. However, expression of STH accelerated the formation of ethanol in glucose-limited fed-batch cultures, but reduced xylitol productivity to 71% compared with its counterpart strain expressing xylose reductase gene alone. The experimental results suggested that A. vinelandii STH directed the reaction toward the formation of NADH and NADP+ from NAD+ and NADPH, which concomitantly reduced the availability of NADPH for xylose conversion to xylitol catalyzed by NADPH-preferable xylose reductase in the recombinant S. cerevisiae. 相似文献
11.
In this paper the high-cell-density fed-batch culture and optimal amino acid modulation were combined together to enhance glutathione production in Saccharomyces cerevisiae T65. Ethanol concentration in the broth was an important parameter for feedback control in fed-batch culture. Low ethanol concentration was propitious to both the cell growth and glutathione synthesis. The feedback control of a low ethanol concentration was an efficient way to realize high-cell-density culture and the biomass reached 140 g/L after 57 h fermentation. With optimal amino acid addition to elevate the glutathione content continually, the maximum glutathione yield achieved 2190 mg/L. 相似文献
12.
Do-Hyun Kwon Myoung-Dong Kim Tae-Hee Lee Yong-Joo Oh Yeon-Woo Ryu Jin-Ho Seo 《Journal of Molecular Catalysis .B, Enzymatic》2006,43(1-4):86-89
To increase the NAD(P)H-dependent xylitol production in recombinant Saccharomyces cerevisiae harboring the xylose reductase gene from Pichia stipitis, the activity of glucose 6-phosphate dehydrogenase (G6PDH) encoded by the ZWF1 gene was amplified to increase the metabolic flux toward the pentose phosphate pathway and NADPH regeneration. Compared with the control strain, the specific G6PDH activity was enhanced approximately 6.0-fold by overexpression of the ZWF1 gene. Amplification in the G6PDH activity clearly improved the NAD(P)H-dependent xylitol production in the recombinant S. cerevisiae strain. With the aid of an elevated G6PDH level, maximum xylitol concentration of 86 g/l was achieved with productivity of 2.0 g/l h in the glucose-limited fed-batch cultivation, corresponding to 25% improvement in volumetric xylitol productivity compared with the recombinant S. cerevisiae strain containing the xylose reductase gene only. 相似文献
13.
14.
I. C. Farcasanu M. Mizunuma D. Hirata T. Miyakawa 《Molecular & general genetics : MGG》1998,259(5):541-548
In a search for components involved in Mn2+ homeostasis in the budding yeast Saccharomyces cerevisiae, we isolated a mutant with modifications in Mn2+ transport. The mutation was found to be located in HIP1, a gene known to encode a high-affinity permease for histidine. The mutation, designated hip1–272, caused a frameshift that resulted in a stop codon at position 816 of the 1812-bp ORF. This mutation led to Mn2+ resistance, whereas the corresponding null mutation did not. Both hip1–272 cells and the null mutant exhibited low tolerance to divalent cations such as Co2+, Ni2+, Zn2+, and Cu2+. The Mn2+ phenotype was not influenced by supplementary histidine in either mutant, whereas the sensitivity to other divalent cations was alleviated by the addition of histidine. The cellular Mn2+ content of the hip1–272 mutant was lower than that of wild type or null mutant, due to increased rates of Mn2+ efflux. We propose that Hip1p is involved in Mn2+ transport, carrying out a function related to Mn2+ export. Received: 9 January 1998 / Accepted: 4 May 1998 相似文献
15.
H. Fujimura 《Molecular & general genetics : MGG》1998,260(1):102-107
The immunosuppressant leflunomide inhibits cytokine-stimulated proliferation of lymphoid cells in vitro and also inhibits
the growth of the eukaryotic microorganism Saccharomyces cerevisiae. To elucidate the molecular mechanism of action of the drug, two yeast genes which suppress the anti-proliferative effect
when present in multiple copies were cloned and designated MLF1 and MLF2 for multicopy suppressor of leflunomide sensitivity. DNA sequencing analysis revealed that the MLF1 gene is identical to the FUR4 gene, which encodes a uracil permease and functions to import uracil efficiently. The MLF2 was found to be identical to the URA3 gene. Excess exogenous uracil also overcomes the anti-proliferative effect of leflunomide on yeast cells. Uracil prototrophy
also conferred resistance to leflunomide. Uracil uptake was inhibited by leflunomide. Thus, the growth inhibition by leflunomide
seen in a S. cerevisiae ura3 auxotroph is due to the inhibition of the entry of exogenous uracil via the Fur4 uracil permease.
Received: 7 May 1998 / Accepted: 16 July 1998 相似文献
16.
17.
Homothallic Saccharomyces cerevisiae strains switch their mating-type in a specific gene conversion event induced by a DNA double strand break made by the HO endonuclease. The RAD52 group genes control recombinational repair of DNA double strand breaks, and we examined their role in native homothallic mating-type switching. Surprisingly, we found that the Rad54 protein was important but not essential for mating-type switching under natural conditions. As an upper limit, we estimate that 29% of the rad54 spore clones can successfully switch their mating-type. The RAD55 and RAD57 gene products were even less important, but their presence increased the efficiency of the process. In contrast, the RAD51 and RAD52 genes are essential for homothallic mating-type switching. We propose that mating-type switching in RAD54 mutants occurs stochastically with a low probability, possibly reflecting different states of chromosomal structure. Received: 3 August 1998 / Accepted: 22 September 1998 相似文献
18.
19.
Giovanni Spagna Riccardo N. Barbagallo Rosa Palmeri Cristina Restuccia Paolo Giudici 《Enzyme and microbial technology》2002,31(7):1030-1035
Three hundred sixty-one yeast strains (80 of which ascribable to Saccharomyces cerevisiae) were isolated from Sicilian musts and wines with the purpose of looking for β-glucosidase (βG, EC 3.2.1.21) activity. Of these, the AL 41 strain had highest endogenous βG activity and was identified as belonging to the species S. cerevisiae by biochemical and molecular methods. This enzyme was subsequently characterized. It had optimum effect at pH 3.5–4.0, whilst optimum temperature was 20 °C, compatible with typical wine-cellar conditions; it was not inhibited by ethanol, at concentrations of 12–14%, or fructose and glucose. The βG was also characterised in terms of the kinetic parameters Km (2.55 mM) and Vmax (1.71 U mg−1 of protein). Finally, it remained stable for at least 35 days in model solutions of must and wine. 相似文献
20.
Robert H. Schiestl R. Daniel Gietz P. J. Hastings Ulrike Wintersberger 《Molecular & general genetics : MGG》1990,222(1):25-32
Summary The frequency of intra- and interchromosomal recombination was determined in RAD18 and rad18 deletion and rad18-3 mutant strains. It was found that spontaneous interchromosomal recombination at trp5, his1, ade2, and MAT was elevated 10- to 70-fold in the rad18-3 and rad18 mutants as compared to the RAD
+ strains. On the other hand the frequencies of spontaneous intrachromosomal recombination for the his33, his35 and the his4C
–, his4A
– duplications and for heterothallic mating type switching were only marginally elevated in the rad18 deletion mutant, and recombination between ribosomal DNA repeats was only 2-fold elevated in the rad18-3 mutant. These differences may be due to a haploid versus diploid specific difference. However interchromosomal recombination was elevated 40-fold and intrachromosomal recombination was only marginally (1.5-fold) elevated in a diploid homozygous for rad18, arguing against a haploid versus diploid specific difference. Possible explanations for the difference in the elevated levels of intra- versus interchromosomal spontaneous recombination are discussed. 相似文献