首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of three different flavodoxins from Azotobacter vinelandii   总被引:7,自引:0,他引:7  
The flavodoxins from Azotobacter vinelandii cells grown N2-fixing and from cells grown on NH4OAc have been purified and characterized. The purified flavodoxins from these cells are a mixture of three different flavodoxins (Fld I, II, III) with different primary structures. The three proteins were separated by fast protein liquid chromatography; Fld I eluted at 0.38 M KCl, Fld II at 0.43 M KCl and Fld III at 0.45 M KCl. The most striking difference between the three flavodoxins was the midpoint potential (pH 7.0, 25 degrees C) of the semiquinone/hydroquinone couple, which was -320 mV for Fld I and -500 mV for the other two flavodoxins (Fld II and Fld III). All three flavodoxins were present in cells grown on NH4OAc. In cells grown on N2 as N source only Fld I and Fld II were found. The concentration of Fld II was 10-fold higher in N2-fixing cells than in cells grown on NH4OAc. Evidence has been obtained that Fld II is involved in electron transport to nitrogenase. As will be discussed, our observation that preparations of Azotobacter flavodoxin are heterogeneous, has consequences for the published data.  相似文献   

2.
In a number of nitrogen-fixing bacteria, nitrogenase is posttranslationally regulated by reversible ADP-ribosylation of dinitrogenase reductase. The structure of the dinitrogenase reductase from Azotobacter vinelandii is known. In this study, mutant forms of dinitrogenase reductase from A. vinelandii that are affected in various protein activities were tested for their ability to be ADP-ribosylated or to form a complex with dinitrogenase reductase ADP-ribosyltransferase (DRAT) from Rhodospirillum rubrum. R140Q dinitrogenase reductase could not be ADP-ribosylated by DRAT, although it still formed a cross-linkable complex with DRAT. Thus, the Arg 140 residue of dinitrogenase reductase plays a critical role in the ADP-ribosylation reaction. Conformational changes in dinitrogenase reductase induced by an F135Y substitution or by removal of the Fe(4)S(4) cluster resulted in dinitrogenase reductase not being a substrate for ADP-ribosylation. Through cross-linking studies it was also shown that these changes decreased the ability of dinitrogenase reductase to form a cross-linkable complex with DRAT. Substitution of D129E or deletion of Leu 127, which result in altered nucleotide binding regions of these dinitrogenase reductases, did not significantly change the interaction between dinitrogenase reductase and DRAT. Previous results showed that changing Lys 143 to Gln decreased the binding between dinitrogenase reductase and dinitrogenase (L. C. Seefeldt, Protein Sci. 3:2073-2081, 1994); however, this change did not have a substantial effect on the interaction between dinitrogenase reductase and DRAT.  相似文献   

3.
Oriented whole cell multilayers of Azotobacter vinelandii and Rhodospirillum rubrum were analyzed by electron spin resonance (ESR) spectroscopy to detect possible structural associations between nitrogenase molybdenum-iron (MoFe) protein and cytoplasmic or intracytoplasmic membrane. Initially, protocols were designed to obtain strong molybdenum-iron protein ESR signals in whole cell samples of each organism. Then, two-dimensional orientation of whole cell membranes was demonstrated in whole cell multilayers using doxyl stearate spin label in A. vinelandii and the bacteriochlorophyll a dimer triplet signal, (BCHl a)T2, from the intracytoplasmic membrane-bound photosynthetic apparatus of R. rubrum. Subsequent analysis of the low-field signals, g = 4.3 and g = 3.6, of molybdenum-iron protein in whole cell multilayers of each organism showed orientation-dependent characteristics, although the properties of each were different. Specifically, as the normal to the membrane plane was rotated from perpendicular to parallel with the ESR magnetic field, the amplitude of the g = 3.6 signal decreased from maximum to about 37% of maximum in A. vinelandii and from maximum to about 88% of maximum in R. rubrum. The angular dependence of the g = 4.3 peak during rotation varied in A. vinelandii, but decreased from maximum to about 63% of maximum in R. rubrum. These data suggest that the molybdenum-iron protein of nitrogenase was oriented in response to the physical orientation of cellular membranes and that a structural association may exist between this nitrogenase component and membrane in these organisms.  相似文献   

4.
Nitrogenase activity in the photosynthetic bacterium Rhodospirillum rubrum is reversibly regulated by ADP-ribosylation of a specific arginine residue of dinitrogenase reductase based on the cellular nitrogen or energy status. In this paper, we have investigated the ability of nicotinamide adenine dinucleotide, NAD (the physiological ADP-ribose donor), and its analogs to support covalent modification of dinitrogenase reductase in vitro. R. rubrum dinitrogenase reductase can be modified by DRAT in the presence of 2 mM NAD, but not with 2 mM nicotinamide mononucleotide (NMN) or nicotinamide adenine dinucleotide phosphate (NADP). We also found that the apo- and the all-ferrous forms of R. rubrum dinitrogenase reductase are not substrates for covalent modification. In contrast, Azotobacter vinelandii dinitrogenase reductase can be modified by the dinitrogenase reductase ADP-ribosyl transferase (DRAT) in vitro in the presence of either 2 mM NAD, NMN or NADP as nucleotide donors. We found that: (1) a simple ribose sugar in the modification site of the A. vinelandii dinitrogenase reductase is sufficient to inactivate the enzyme, (2) phosphoADP-ribose is the modifying unit in the NADP-modified enzyme, and (3) the NMN-modified enzyme carries two ribose-phosphate units in one modification site. This is the first report of NADP- or NMN-dependent modification of a target protein by an ADP-ribosyl transferase.  相似文献   

5.
6.
7.
The amino acid sequence of a group II flavodoxin, the Azotobacter vinelandii flavodoxin has been determined. The FMN-redox protein was shown to exist as a single polypeptide chain and to contain 179 amino acids. Despite the rather low amino acid sequence homology with the other flavodoxins sequenced, it is concluded that sequences of the group I and group II flavodoxins are homologous. The major differences between the group I and group II flavodoxins appears to be a lengthening in the C-terminal region in the group II flavodoxins.  相似文献   

8.
A spontaneous pleiotropic Nif- mutation in Rhodospirillum rubrum has been partially characterized biochemically and by complementation analysis with recombinant plasmids carrying Azotobacter vinelandii DNA in the vicinity of ORF12 [Jacobson et al. (1989) J. Bacteriol 171:1017–1027]. In addition to being unable to grow on N2 as a nitrogen source the phenotypic characterization of this and other metronidazole enriched spontaneous mutants showed (a) no nitrogenase activity, (b) the absence of NifHDK polypeptides, (c) a slower growth rate on NH inf4 sup+ , (d) approximately 50% higher glutamine synthetase (GS) activity than the wild-type, which was repressible, (e) an inability to switch-off GS activity in response to an NH inf4 sup+ up-shift, and (f) an inability to modify (32P-label) the GS polypeptide. The apparent relationship between the absence of nifHDK expression and the absence of GS adenylylation cannot be explained in terms of the current model for nif gene regulation. However, R. rubrum transconjugants receiving A. vinelandii DNA which originated immediately upstream from nifH, restored all aspects of the wild-type phenotype. These data suggest a here-to-fore unrecognized relationship between nif expression and GS switch-off (adenylylation) activity, and the existence of a previously unidentified regulatory locus in Azotobacter that complements this mutation.  相似文献   

9.
A first approximation to the tertiary structure of the nitrogenase flavodoxins of Klebsiella pneumoniae and Azotobacter vinelandii can be obtained by superimposing their amino acid sequences upon the crystallographically determined structure of the long-chain flavodoxin from Anacystis nidulans. This procedure is validated by secondary structure predictions based on the sequence alone and by the distribution of polar and hydrophobic residues. It reveals, among other things, a distinctive distribution of surface charge peculiar to the nitrogenase flavodoxins, which is probably important in determining the kinetics of electron transfer with their physiological redox partners. The most likely positions of the phosphodiester bridge which has been described in the A. vinelandii molecule can also be assessed.  相似文献   

10.
11.
12.
13.
14.
N-terminal sequence analysis of diol dehydratase and its constituent subunits shows that the ratio of the 60K:51K:29K:15K subunits in the native enzyme is 2:1:2:2. From the amino acid compositions of the individual subunits diol dehydratase appears to be a peripheral membrane protein.  相似文献   

15.
16.
The amino-terminal sequences and amino acid compositions of the three major and two minor polypeptides constituting the filaments of Spirochaeta aurantia periplasmic flagella were determined. The amino-terminal sequence of the major 37.5-kDa outer layer polypeptide is identical to the sequence downstream of the proposed signal peptide of the protein encoded by the S. aurantia flaA gene. However, the amino acid composition of the 37.5-kDa polypeptide is not in agreement with that inferred from the sequence of flaA. The 34- and 31.5-kDa major filament core polypeptides and the 33- and 32-kDa minor core polypeptides show a striking similarity to each other, and the amino-terminal sequences of these core polypeptides show extensive identity with homologous proteins from members of other genera of spirochetes. An additional 36-kDa minor polypeptide that occurs occasionally in preparations of S. aurantia periplasmic flagella appears to be mixed with the 37.5-kDa outer layer polypeptide or a degradation product of this polypeptide.  相似文献   

17.
The biosynthesis of alginic acid by Azotobacter vinelandii.   总被引:20,自引:0,他引:20       下载免费PDF全文
The sequence of reactions by which alginic acid is biosynthesized from sucrose in Azotobacter vinelandii was determined both by feeding radioactive individual enzymes involved. Results indicate that the first polymeric substance formed in the synthesis is polymannuronic acid and that mannuronic acid units are epimerized to guluronic acid at the polymer level. Guluronic acid does not appear to be formed at the monomer level, either free or in combination with GDP.  相似文献   

18.
An amino acid sequence is proposed for the cytochrome c4 from the bacterium Azotobacter vinelandii strain OP. It is a single polypeptide chain of 190 residues, with two sets of haem-attachment cysteine residues at positions 14/17 and 119/122. Proteins with similar sequences are also present in denitrifying pseudomonads. There is similarity in sequence between the two halves of the cytochrome c4 molecule, and each half also shows similarity to the sequences of certain monohaem cytochromes c isolated from organisms that are not obviously closely related to A. vinelandii. Detailed evidence for the amino acid sequence of the protein has been deposited as Supplementary Publication SUP 50125 (17 pages) at the British Library Lending Division, Boston Spa, West Yorkshire LS23 7BQ, U.K., from whom copies are available on prepayment.  相似文献   

19.
The properties of Azotobacter vinelandii deoxyribonucleic acid (DNA) and folded chromosomes were studied and compared to those of Escherichia coli as a standard. Based on melting temperature and buoyant density measurements, the guanosine + cytosine content of purified A. vinelandii DNA was 65%, whereas that of E. coli DNA was 50%. The results of renaturation studies showed that the unique DNA sequence lengths of the two organisms were similar with Cot1/2 values of 7.3 +/- 0.4 mol.s/liter and 7.5 +/- 0.3 mol.s/liter, respectively, for A. vinelandii and E. coli. Folded chromosomes of A. vinelandii sedimented in a centrifugal field at a rate identical to those derived from E. coli, 1,600 to 1,700S. Based on the DNA content per cell and the mass of a single genome, A. vinelandii contains at least 40 chromosomes per cell.  相似文献   

20.
Analyses of resting cells of Azotobacter vinelandii revealed that numerous phospholipids were present that did not concentrate in the membranous R(3) fraction which carried out electron transport function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号