首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have shown that the diversity of flowering plants can enhance pollinator richness and visitation frequency and thereby increase the resilience of pollination. It is assumed that flower traits explain these effects, but it is still unclear which flower traits are responsible, and knowing that, if pollinator richness and visitation frequency are more driven by mass‐ratio effects (mean trait values) or by trait diversity. Here, we analyse a three‐year data set of pollinator observations collected in a European grassland plant diversity experiment (The Jena experiment). The data entail comprehensive flower trait measurements, including reward traits (nectar and pollen amount), morphological traits (height, symmetry, area, colour spectra) and chemical traits (nectar‐amino acid and nectar‐sugar concentration). We test if pollinator species richness and visitation frequency of flower communities depend on overall functional diversity combining all flower traits within a community, single trait diversities (within trait variation) and community‐weighted means of the single traits, using Bayesian inference. Overall functional diversity did not affect pollinator species richness, but reduced visitation frequency. When looking at individual flower traits separately, we found that single trait diversity of flower reflectance and flower morphology were important predictors of pollinator visitation frequency. Moreover, independent of total flower abundance, community‐weighted means of flower height, area, reflectance, nectar‐sugar concentration and nectar‐amino acid concentration strongly affected both pollinator species richness and visitation frequency. Our results, challenge the idea that functional diversity always positively affects ecosystem functions. Nonetheless, we demonstrate that both single trait diversity and mass‐ratio effects of flower traits play an important role for diverse and frequent flower visits, which underlines the functionality of flower traits for pollination services.  相似文献   

2.
Understanding the functional consequences of biodiversity loss is a major goal of ecology. Animal-mediated pollination is an essential ecosystem function and service provided to mankind. However, little is known how pollinator diversity could affect pollination services. Using a substitutive design, we experimentally manipulated functional group (FG) and species richness of pollinator communities to investigate their consequences on the reproductive success of an obligate out-crossing model plant species, Raphanus sativus. Both fruit and seed set increased with pollinator FG richness. Furthermore, seed set increased with species richness in pollinator communities composed of a single FG. However, in multiple-FG communities, highest species richness resulted in slightly reduced pollination services compared with intermediate species richness. Our analysis indicates that the presence of social bees, which showed roughly four times higher visitation rates than solitary bees or hoverflies, was an important factor contributing to the positive pollinator diversity–pollination service relationship, in particular, for fruit set. Visitation rate at different daytimes, and less so among flower heights, varied among social bees, solitary bees and hoverflies, indicating a niche complementarity among these pollinator groups. Our study demonstrates enhanced pollination services of diverse pollinator communities at the plant population level and suggests that both the niche complementarity and the presence of specific taxa in a pollinator community drive this positive relationship.  相似文献   

3.
Ongoing biodiversity decline impairs ecosystem processes, including pollination. Flower visitation, an important indicator of pollination services, is influenced by plant species richness. However, the spatio‐temporal responses of different pollinator groups to plant species richness have not yet been analyzed experimentally. Here, we used an experimental plant species richness gradient to analyze plant–pollinator interactions with an unprecedented spatio‐temporal resolution. We observed four pollinator functional groups (honeybees, bumblebees, solitary bees, and hoverflies) in experimental plots at three different vegetation strata between sunrise and sunset. Visits were modified by plant species richness interacting with time and space. Furthermore, the complementarity of pollinator functional groups in space and time was stronger in species‐rich mixtures. We conclude that high plant diversity should ensure stable pollination services, mediated via spatio‐temporal niche complementarity in flower visitation.  相似文献   

4.
Insect pollination improves the yield and quality of many crops, yet there is increasing evidence of insufficient insect pollinators limiting crop production. Effective Integrated Crop Pollination (ICP) involves adaptable, targeted and cost-effective management of crop pollination and encourages the use of both wild and managed pollinators where appropriate. In this study we investigate how the addition of honeybee hives affects the community of insects visiting oilseed rape, and if hive number and location affect pollinator foraging and oilseed rape pollination in order to provide evidence for effective ICP. We found that introducing hives increased overall flower visitor numbers and altered the pollinator community, which became dominated by honeybees. Furthermore a greater number of hives did not increase bee numbers significantly but did result in honeybees foraging further into fields. The timing of surveys and proximity to the field edge influenced different pollinators in different ways and represents an example of spatial and temporal complementarity. For example dipteran flower visitor numbers declined away from the field edge whereas honeybees peaked at intermediate distances into the field. Furthermore, no significant effects of survey round on wild bees overall was observed but honeybee numbers were relatively lower during peak flowering and dipteran abundance was greater in later survey rounds. Thus combining diverse wild pollinators and managed species for crop pollination buffers spatial and temporal variation in flower visitation. However we found no effect of insect pollination on seed set or yield of oilseed rape in our trial, highlighting the critical need to understand crop demand for insect pollination before investments are made in managing pollination services.  相似文献   

5.
《Acta Oecologica》2008,33(3):262-268
Pollen limitation through insufficient pollen deposition on stigmas caused by too infrequent pollinator visitation may influence the reproductive outcome of plants. In this study we investigated how pollinator visitation rate, the degree of pollen limitation, and flower longevity varied spatially among three sites at different altitudes within a population of the dwarf shrub Dryas octopetala L. in alpine southern Norway. Significant pollen limitation on seed set only occurred at the mid-elevation site, while seed set at the other sites appeared to be mainly resource limited, thus indicating a spatial variation in pollen limitation. There was no association between the spatial variation in the extent of pollen limitation and pollinator visitation rate to flowers. However, pollinator visitation rates were related to flower longevity of Dryas; sites with low visitation rates had long-lived flowers and vice versa. Thus, our results suggest within-population spatial co-variation between pollinator visitation rates, pollen limitation, and a developmental response to these factors, flower longevity.  相似文献   

6.
Pollen limitation through insufficient pollen deposition on stigmas caused by too infrequent pollinator visitation may influence the reproductive outcome of plants. In this study we investigated how pollinator visitation rate, the degree of pollen limitation, and flower longevity varied spatially among three sites at different altitudes within a population of the dwarf shrub Dryas octopetala L. in alpine southern Norway. Significant pollen limitation on seed set only occurred at the mid-elevation site, while seed set at the other sites appeared to be mainly resource limited, thus indicating a spatial variation in pollen limitation. There was no association between the spatial variation in the extent of pollen limitation and pollinator visitation rate to flowers. However, pollinator visitation rates were related to flower longevity of Dryas; sites with low visitation rates had long-lived flowers and vice versa. Thus, our results suggest within-population spatial co-variation between pollinator visitation rates, pollen limitation, and a developmental response to these factors, flower longevity.  相似文献   

7.
Differences among plant species in visitation rate and seed set within a community may be explained both by the species’ floral traits and the community context. Additionally, the importance of species’ floral traits vs. community context on visitation rate and seed set may vary among communities. In communities where the pollinator-to-flower ratio is low, floral traits may be more important than community context, as pollinators may have the opportunity to be choosier when visiting plant species. In this study we investigated whether species’ floral traits (flower shape, size and number, and flowering duration) and community context (conspecific and heterospecific flower density, and pollinator abundance) could explain among-species variation in visitation rate and seed set. For this, we used data on 47 plant species from two Norwegian plant communities differing in pollinator-to-flower ratio. Differences among species in visitation rate and seed set within a community could be explained by similar variables as those explaining visitation rate and seed set within species. As expected, we found floral traits to be more important than community context in the community with a lower pollinator-to-flower ratio; whereas in the community with a higher pollinator-to-flower ratio, community context played a bigger role. Our study gives significant insights into the relative importance of floral traits on species’ visitation rate and seed set, and contributes to our understanding of the role of the community context on the fitness of plant species.  相似文献   

8.
Ørjan Totland 《Oikos》2004,106(3):558-564
The preference for certain floral phenotypes by flower visiting animals may fuel the evolution of floral traits because variation in flower visitation rates may lead to fitness variation within a population. Here, I examine the importance of flower size for pollinator visitation rate, seed set, and seed mass in two alpine populations of the insect-pollinated herb Ranunculus acris L. during two seasons. There was no pollen limitation of seed set or mass. Pollinators discriminated strongly against flowers experimentally reduced in size. Despite this, there were no signs of any significant impact of flower size on female reproductive success. The results show that although pollinators discriminate strongly among floral phenotypes, this may not always result in female fitness differences within a population because seed set or mass is not limited by pollen availability alone. Probably abiotic environmental constraints prevent plants with high pollinator visitation from capitalizing on the high pollen deposition.  相似文献   

9.
Long‐term variation in the population density of honey bees Apis mellifera across landscapes has been shown to correlate with variation in the floral traits of plant populations in these landscapes, suggesting that variations in pollinator population density and foraging rates can drive floral trait evolution of their host plants. However, it remained to be determined whether this variation in plant traits is associated with adaptive variation in plant reproductive strategies under conditions of high and low pollinator densities. Here we conducted a reciprocal transplant experiment to examine how this variation in floral traits, under conditions of either high and low pollinator density, impacted seed production in the Tibetan lotus Saussurea nigrescens. In 2014 and 2015, we recorded the floral traits, pollinator visitation rates, and seed production of S. nigrescens populations grown in both home sites and foreign sites, where sites varied in honey bee population density. Our results demonstrated that the floral traits reflected those of their original population, regardless of their current location. However, seed production varied with both population origin and transplant site. Seed number was positively correlated with flower abundance in the pollinator‐rich sites, but with nectar production in the pollinator‐poor sites. Pollinator visitation rate was also positively correlated with flower number at pollinator‐rich sites, and with nectar volume at pollinator‐poor sites. Overall, the local genotype had higher seed production than nonlocal genotypes in home sites. However, when pollen is hand‐supplemented, plants from pollinator‐rich populations had higher seed production than plants from pollinator‐poor populations, regardless of whether they were transplanted to pollinator‐rich or ‐poor sites. These results suggest that the plant genotypic differences primarily drive variation in pollinator attraction, and this ultimately drives variation in seed: ovule ratio. Thus, our results suggest that flowering plant species use different reproductive strategies to respond to high or low pollinator densities.  相似文献   

10.
Among plants visited by many pollinator species, the relative contribution of each pollinator to plant reproduction is determined by variation in both pollinator and plant traits. Here we evaluate how pollinator movement among plants, apparent pollen carryover, ovule number, resource limitation of seed set, and pollen output affect variation in contribution of individual pollinator species to seed set in Lithophragma parviflorum (Saxifragaceae), a species visited by a broad spectrum of visitors, including beeflies, bees and a moth species. A previous study demonstrated differences among visitor species in their single-visit pollination efficacy but did not evaluate how differences in visitation patterns and pollen carryover affect pollinator efficacy. Incorporation of differential visitation patterns and pollen carryover effects —commonly cited as potentially important in evaluating pollinator guilds — had minor effects (0–0.6% change) on the estimates of relative contribution based on visit frequency and single-visit efficacy alone. Beeflies visited significantly more flowers per inflorescence than the bees and the moth. Seed set remained virtually constant during the first three visited flowers for beeflies and larger bees, indicating that apparent pollen carryover did not reduce per-visit efficacy of these taxa. In contrast, Greya moth visits showed a decrease in seed set by 55.4% and the smaller bees by 45.4% from first to second flower. The larger carryover effects in smaller bees and Greya were diminished in importance by their small overall contribution to seed set. Three variable plant traits may affect seed set: ovule number, resource limitation on seed maturation, and pollen output. Ovule number per flower declined strongly with later position within inflorescences. Numbers were much higher in first-year greenhouse-grown plants than in field populations, and differences increased during 3 years of study. Mean pollen count by position varied 7-fold among flowers; it paralleled ovule number variation, resulting in a relatively stable pollen:ovule ratio. Resource limitation of seed set increased strongly with later flowering, with seed set in hand-pollinated flowers ranging from 66% in early flowers to 0% in the last two flowers of all plants. Variation in ovule number and resource limitation of seed maturation jointly had a strong effect on the number of seeds per flower. Visitation to early flowers had the potential to cause more seed set than visitation to later flowers. Overall, the most important sources of variation to seed production contribution were differences among pollinators in abundance and absolute efficacy (ovules fertilized on a single visit) and potentially differential phenology among visitor species. These effects are likely to vary among populations and years.  相似文献   

11.
Biodiversity buffers pollination from changes in environmental conditions   总被引:1,自引:0,他引:1  
A hypothesized underlying principle of the diversity‐functioning relationship is that functional groups respond differently to environmental change. Over 3 years, we investigated how pollinator diversity contributes to the magnitude of pollination service through spatial complementarity and differential response to high winds in California almond orchards. We found honey bees preferentially visited the top sections of the tree. Where wild pollinators were present, they showed spatial complementarity to honey bees and visited the bottom tree sections more frequently. As wind speed increased, honey bees' spatial preference shifted toward the bottom tree sections. In high winds (>2.5 m s?1), orchards with low pollinator diversity (honey bees only) received almost no flower visits. In orchards with high pollinator diversity, visitation decreased to a lesser extent as wild bee visitation was unaffected by high winds. Our results demonstrate how spatial complementarity in diverse communities can help buffer pollination services to environmental changes like wind speed.  相似文献   

12.
Biotic and abiotic factors may individually or interactively disrupt plant–pollinator interactions, influencing plant fitness. Although variations in temperature and precipitation are expected to modify the overall impact of predators on plant–pollinator interactions, few empirical studies have assessed if these weather conditions influence anti-predator behaviors and how this context-dependent response may cascade down to plant fitness. To answer this question, we manipulated predation risk (using artificial spiders) in different years to investigate how natural variation in temperature and precipitation may affect diversity (richness and composition) and behavioral (visitation) responses of flower-visiting insects to predation risk, and how these effects influence plant fitness. Our findings indicate that predation risk and an increase in precipitation independently reduced plant fitness (i.e., seed set) by decreasing flower visitation. Predation risk reduced pollinator visitation and richness, and altered species composition of pollinators. Additionally, an increase in precipitation was associated with lower flower visitation and pollinator richness but did not alter pollinator species composition. However, maximum daily temperature did not affect any component of the pollinator assemblage or plant fitness. Our results indicate that biotic and abiotic drivers have different impacts on pollinator behavior and diversity with consequences for plant fitness components. Even small variation in precipitation conditions promotes complex and substantial cascading effects on plants by affecting both pollinator communities and the outcome of plant–pollinator interactions. Tropical communities are expected to be highly susceptible to climatic changes, and these changes may have drastic consequences for biotic interactions in the tropics.  相似文献   

13.
Large‐scale spatial variability in plant–pollinator communities (e.g. along geographic gradients, across different landscapes) is relatively well understood. However, we know much less about how these communities vary at small scales within a uniform landscape. Plants are sessile and highly sensitive to microhabitat conditions, whereas pollinators are highly mobile and, for the most part, display generalist feeding habits. Therefore, we expect plants to show greater spatial variability than pollinators. We analysed the spatial heterogeneity of a community of flowering plants and their pollinators in 40 plots across a 40‐km2 area within an uninterrupted Mediterranean scrubland. We recorded 3577 pollinator visits to 49 plant species. The pollinator community (170 species) was strongly dominated by honey bees (71.8% of the visits recorded). Flower and pollinator communities showed similar beta‐diversity, indicating that spatial variability was similar in the two groups. We used path analysis to establish the direct and indirect effects of flower community distribution and honey bee visitation rate (a measure of the use of floral resources by this species) on the spatial distribution of the pollinator community. Wild pollinator abundance was positively related to flower abundance. Wild pollinator visitation rate was negatively related to flower abundance, suggesting that floral resources were not limiting. Pollinator and flower richness were positively related. Pollinator species composition was weakly related to flower species composition, reflecting the generalist nature of flower–pollinator interactions and the opportunistic nature of pollinator flower choices. Honey bee visitation rate did not affect the distribution of the wild pollinator community. Overall, we show that, in spite of the apparent physiognomic uniformity, both flowers and pollinators display high levels of heterogeneity, resulting in a mosaic of idiosyncratic local communities. Our results provide a measure of the background of intrinsic heterogeneity within a uniform habitat, with potential consequences on low‐scale ecosystem function and microevolutionary patterns.  相似文献   

14.
1. The introduction of livestock in natural areas is a common disturbance that affects both plant and pollinator diversity and might affect their interaction. Understanding whether livestock affect a food resource for pollinators (i.e. flower abundance) and/or a pollinator assemblage (i.e. abundance and richness) has important implications for plant–pollinator interactions and still needs deeper investigation. 2. This study investigated how pollinator communities and flower abundance determined floral visitation frequency along a grazing gradient, using seven large paddocks in Patagonian Monte Desert that varied in livestock densities. Pollinator visitation frequency was measured in five of the most abundant native plant species of the region, present in all the paddocks, but that differed in reproductive strategy ranging from insect‐pollinated self‐compatible and self‐incompatible to wind‐pollinated. The influence of livestock density, insect, and flower abundance on visitation frequency was evaluated using D‐separation hierarchical path models. 3. Intermediate stocking densities showed the highest insect richness and abundance. Livestock density showed a negative quadratic relationship with insect richness; hymenopterans being the main insect group in the region. Flower density decreased with the increase in livestock density. The five plant species shared several pollinator species although each one supported a distinct assemblage. 4. The path model showed that livestock was not directly associated with pollinator visitation frequency; however, this apparent lack of association was as a result of opposite forces acting together. An increase in livestock density reduced visitation frequency through a decrease in insect abundance, yet, livestock simultaneously increased the pollinator visitation rate through decreased flower abundance. 5. This study describes how changes in the density of exotic mammals can affect pollinator and flower abundance, resulting in contrasting effects on flower visitation rates with, apparently, neutral net consequences. This illustrates the complexity of responses to plant–pollinator interactions to anthropogenic disturbances that alter the ecological context.  相似文献   

15.
1.  Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness.
2.  A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants' overall reproductive success and long-term survival. Understanding the relationship between plant population size and/or isolation and pollination limitation is of fundamental importance for plant conservation.
3.  We examined flower visitation and seed set of 10 different plant species from five European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation.
4.  We found evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations.
5.   Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.  相似文献   

16.
  • Pollinator guilds may change throughout extended flowering periods, affecting plant reproductive output, especially in seasonal climates. We hypothesised a seasonal shift in pollinator guild and an autumn reduction in pollinator abundance, especially in small and sparse populations.
  • We recorded pollinator identity, abundance and behaviour in relation to flower density from plant to population throughout the extended flowering of Ononis tridentata. We evaluated female reproductive output by recording pollination success and pre‐dispersal seed predation in eight populations of contrasting size and density. Offspring quality was also characterised through seed weight and germination.
  • A diverse guild of insects visited O. tridentata in spring, while only Apis mellifera was observed in autumn. Visitation frequency did not vary seasonally, but the number of flowers per foraging bout was lower, and seeds were heavier and had a higher germination rate in autumn. Plant and neighbourhood flowering display were not related to pollinator visitation frequency or behaviour. However, the rate of fertilised ovules, seed set and autumn flowering display size were positively related to population density.
  • The maintenance of pollination in autumn enhances the reproductive performance of O. tridentata due to higher quality of autumn seed, and to a large reduction in seed predator pressure. We also suggest that observed changes in pollinator behaviour could be one of the processes behind seasonal variation in seed performance, since geitonogamous crosses were less likely to occur in autumn.
  相似文献   

17.
The rate of pollen exchange within and among flowers may depend on pollinator attraction traits such as floral display size and flowering plant density. Variations in these traits may influence pollinator movements, pollen receipt, and seed number. To assess how floral display size and flowering plant density affect parameters of pollinator visitation rate, pollen receipt per flower, seed number per fruit and the between-plant pollinator movements, we studied the self-incompatible plant, Nierembergia linariifolia. Per-flower pollinator visitation rate and bout length increased linearly with increasing floral display size. Pollen receipt per flower increased linearly with increasing flowering plant density. For seed number per fruit, a polynomial model describing an increased seed number per fruit at low density and a decreased seed number per fruit at high density provided a significant fit. Per-flower pollinator visitation rate was not associated with pollen receipt per flower and seed number per fruit. Bees visited plants located near to the center of the population more frequently than plants located at the periphery. Increases in both floral display size and flowering plant density led to an increased chance of a plant being chosen as the center of the pollinator foraging area. These results suggest that even though large floral displays and high flowering plant density are traits that attract more pollinators, they may also reduce potential mate diversity by restricting pollen movement to conspecific mates that are closely located.  相似文献   

18.
Land-use changes can alter the spatial population structure of plant species, which may in turn affect the attractiveness of flower aggregations to different groups of pollinators at different spatial scales. To assess how pollinators respond to spatial heterogeneity of plant distributions and whether honeybees affect visitation by other pollinators we used an extensive data set comprising ten plant species and their flower visitors from five European countries. In particular we tested the hypothesis that the composition of the flower visitor community in terms of visitation frequencies by different pollinator groups were affected by the spatial plant population structure, viz. area and density measures, at a within-population (‘patch’) and among-population (‘population’) scale. We found that patch area and population density were the spatial variables that best explained the variation in visitation frequencies within the pollinator community. Honeybees had higher visitation frequencies in larger patches, while bumblebees and hoverflies had higher visitation frequencies in sparser populations. Solitary bees had higher visitation frequencies in sparser populations and smaller patches. We also tested the hypothesis that honeybees affect the composition of the pollinator community by altering the visitation frequencies of other groups of pollinators. There was a positive relationship between visitation frequencies of honeybees and bumblebees, while the relationship with hoverflies and solitary bees varied (positive, negative and no relationship) depending on the plant species under study. The overall conclusion is that the spatial structure of plant populations affects different groups of pollinators in contrasting ways at both the local (‘patch’) and the larger (‘population’) scales and, that honeybees affect the flower visitation by other pollinator groups in various ways, depending on the plant species under study. These contrasting responses emphasize the need to investigate the entire pollinator community when the effects of landscape change on plant–pollinator interactions are studied.  相似文献   

19.
Hegland SJ  Totland Ø 《Oecologia》2005,145(4):586-594
Knowledge about plant–plant interactions for pollinator service at the plant community level is still scarce, although such interactions may be important to seed production and hence the population dynamics of individual plant species and the species compositions of communities. An important step towards a better understanding of pollination interactions at the community level is to assess if the variation in floral traits among plant species explain the variation in flower visitation frequency among those species. We investigated the relative importance of various floral traits for the visitation frequency of all insects, and bumblebees and flies separately, to plant species by measuring the visitation frequency to all insect-pollinated species in a community during an entire flowering season. Visitation frequency was identified to be strongly positive related to the visual display area and the date of peak flowering of plant species. Categorical variables, such as flower form and symmetry, were important to the visitation frequency of flies only. We constructed floral similarity measures based on the species’ floral traits and found that the floral similarity for all species’ traits combined and the continuous traits separately were positively related to individual visitation frequency. On the other hand, plant species with similar categorical floral traits did not have similar visitation frequencies. In conclusion, our results show that continuous traits, such as flower size and/or density, are more important for the variation in visitation frequency among plant species than thought earlier. Furthermore, differences in visitation frequency among pollinator groups give a poor support to the expectations derived from the classical pollination syndromes.  相似文献   

20.
Gong YB  Huang SQ 《Oecologia》2011,166(3):671-680
A traditional view of diverse floral traits is that they reflect differences in foraging preferences of pollinators. The role of pollinators in the evolution of floral traits has been questioned recently by broad community surveys, especially studies concerning variation in pollinator assemblages and visitation frequency, which suggest a diminished role of pollinators in floral evolution. Here, we investigate the relationships between six categories of floral traits of 29 species and 10 pollinator functional groups in an alpine meadow in the Hengduan Mountains of China, over three consecutive years. Simpson’s diversity index was used to estimate the level of pollinator generalization of each plant species by considering both pollinator groups and their relative visitation frequencies. Multivariate analyses indicated that eight of the ten pollinator groups showed constant preferences for at least two floral traits, leading to a relatively stable level of ecological generalization for most floral traits (two out of three categories), despite the fact that the level of generalization of the entire community varied across years. Shape preferences of butterflies, honeybees and beeflies varied such that open flowers exhibited a lower level of ecological generalization in 2007 than closed flowers, in contrast with the other 2 years. These results suggest that temporally stabilized preferences of diverse pollinators may contribute to the evolution of specialized versus generalized floral traits; however, their role may be moderated by variation in community structure, including both the composition and abundance of plants and pollinators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号