首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caspase-3 is a prototypic executioner caspase that plays a central role in apoptosis. Aza-peptide epoxides are a novel class of irreversible inhibitors that are highly specific for clan CD cysteine proteases. The five crystal structures of caspase-3-aza-peptide epoxide inhibitor complexes reported here reveal the structural basis for the mechanism of inhibition and the specificities at the S1' and the S4 subsites. Unlike the clan CA cysteine proteases, the catalytic histidine in caspase-3 plays a critical role during protonation and subsequent ring opening of the epoxide moiety and facilitates the nucleophilic attack by the active site cysteine. The nucleophilic attack takes place on the C3 carbon atom of the epoxide and results in an irreversible alkylation of the active site cysteine residue. A favorable network of hydrogen bonds involving the oxyanion hole, catalytic histidine, and the atoms in the prime site of the inhibitor enhance the binding affinity and specificity of the aza-peptide epoxide inhibitors toward caspase-3. The studies also reveal that subtle movements of the N-terminal loop of the beta-subunit occur when the P4 Asp is replaced by a P4 Ile, whereas the N-terminal loop and the safety catch Asp179 are completely disordered when the P4 Asp is replaced by P4 Cbz group.  相似文献   

2.
Caspases are cysteine proteases that play a critical role in the initiation and regulation of apoptosis. These enzymes act in a cascade to promote cell death through proteolytic cleavage of intracellular proteins. Since activation of apoptosis is implicated in human diseases such as cancer and neurodegenerative disorders, caspases are targets for drugs designed to modulate their action. Active caspases are heterodimeric enzymes with two symmetrically arranged active sites at opposite ends of the molecule. A number of crystal structures of caspases with peptides or proteins bound at the active sites have defined the mechanism of action of these enzymes, but molecular information about the active sites before substrate engagement has been lacking. As part of a study of peptidyl inhibitors of caspase-3, we crystallized a complex where the inhibitor did not bind in the active site. Here we present the crystal structure of the unoccupied substrate-binding site of caspase-3. No large conformational differences were apparent when this site was compared with that in enzyme-inhibitor complexes. Instead, the 1.9 A structure reveals critical side chain movements in a hydrophobic pocket in the active site. Notably, the side chain of tyrosine204 is rotated by approximately 90 degrees so that the phenol group occupies the S2 subsite in the active site. Thus, binding of substrate or inhibitors is impeded unless rotation of this side chain opens the area. The positions of these side chains may have important implications for the directed design of inhibitors of caspase-3 or caspase-7.  相似文献   

3.
Caspase-3在roscovitine诱发PC12细胞凋亡中发挥重要作用   总被引:6,自引:0,他引:6  
Gao JX  Zhou YQ  Zhang RH  Ma XL  Liu KJ 《生理学报》2005,57(6):755-760
我们已证实周期蛋白激酶(cyclin-dependent kinases)cdk2、cdc2和cdk5抑制剂roscovitine诱导PC12细胞凋亡。本实验应用caspase-3免疫细胞化学与hoechst 33342荧光化学双标、MTT比色法细胞活性测定和Western blot方法,研究了caspase-3在roscovitine所致PC12细胞凋亡中的作用。结果显示,roscovitine(50μmol/L)处理PC12细胞12h,细胞核染色质凝缩及核碎片形成,同时胞浆中出现caspase-3阳性标志,caspase-3阳性细胞占细胞总数的42%。非特异性caspases抑制剂Z-VAD-FMK(50μmol/L)和caspase-3特异性抑制剂Z-DEVD-FMK(100μmol/L)可部分降低roscovitine所致的细胞死亡,使细胞存活率分别由29.03%(roscovitine)增至58.06%(Z-VAD-FMK+roscovitine)和45.16%(Z-DEVD-FMK+roscovitine):用单克隆non-erythroid α-spectrin抗体检测roscovitine处理组细胞匀浆提取液,表明caspase-3裂解的特异性spectfin 120kDa蛋白产物较对照组显著增加。提示细胞凋亡成分caspases参与roscovitine所敛的细胞凋亡,其中caspase-3发挥重要作用。  相似文献   

4.
beta-D-Xylosidases are glycoside hydrolases that catalyze the release of xylose units from short xylooligosaccharides and are engaged in the final breakdown of plant cell-wall hemicellulose. Here we describe the enzyme-substrate crystal structure of an inverting family 43 beta-xylosidase, from Geobacillus stearothermophilus T-6 (XynB3). Each XynB3 monomeric subunit is organized in two domains: an N-terminal five-bladed beta-propeller catalytic domain, and a beta-sandwich domain. The active site possesses a pocket topology, which is mainly constructed from the beta-propeller domain residues, and is closed on one side by a loop that originates from the beta-sandwich domain. This loop restricts the length of xylose units that can enter the active site, consistent with the exo mode of action of the enzyme. Structures of the enzyme-substrate (xylobiose) complex provide insights into the role of the three catalytic residues. The xylose moiety at the -1 subsite is held by a large number of hydrogen bonds, whereas only one hydroxyl of the xylose unit at the +1 subsite can create hydrogen bonds with the enzyme. The general base, Asp15, is located on the alpha-side of the -1 xylose sugar ring, 5.2 Angstroms from the anomeric carbon. This location enables it to activate a water molecule for a single-displacement attack on the anomeric carbon, resulting in inversion of the anomeric configuration. Glu187, the general acid, is 2.4 Angstroms from the glycosidic oxygen atom and can protonate the leaving aglycon. The third catalytic carboxylic acid, Asp128, is 4 Angstroms from the general acid; modulating its pK(a) and keeping it in the correct orientation relative to the substrate. In addition, Asp128 plays an important role in substrate binding via the 2-O of the glycon, which is important for the transition-state stabilization. Taken together, these key roles explain why Asp128 is an invariant among all five-bladed beta-propeller glycoside hydrolases.  相似文献   

5.
CED3 protein, the product of a gene necessary for programmed cell death in the nematode Caenorhabditis elegans, is related to a highly specific cysteine protease family i.e., caspases. A tertiary-structural model has been constructed of a complex of the CED3 protein with tetrapeptide-aldehyde inhibitor, Ac-DEVD-CHO. The conformation of CED3 protein active site and the general binding features of inhibitor residues are similar to those observed in other caspases. The loop segment (Phe380-Pro387) binds with the P4 Asp in a different fashion compared to caspase-3. The comparative modeling of active sites from caspase-3 and CED3 protein indicated that although these enzymes require Asp at the position P4, variation could occur in the binding of this residue at the S4 subsite. This model allowed the definition of substrate specificity of CED3 protein from the structural standpoint and provided insight in designing of mutants for structure-function studies of this classical caspase homologue.  相似文献   

6.
Scytalidoglutamic peptidase (SGP) from Scytalidium lignicolum is the founding member of the newly discovered\ family of peptidases, G1, so far found exclusively in fungi. The crystal structure of SGP revealed a previously undescribed fold for peptidases and a unique catalytic dyad of residues Gln53 and Glu136. Surprisingly, the beta-sandwich structure of SGP is strikingly similar to members of the carbohydrate-binding concanavalin A-like lectins/glucanases superfamily. By analogy with the active sites of aspartic peptidases, a mechanism employing nucleophillic attack by a water molecule activated by the general base functionality of Glu136 has been proposed. Here, we report the first crystal structures of SGP in complex with two transition state peptide analogs designed to mimic the tetrahedral intermediate of the proteolytic reaction. Of these two analogs, the one containing a central S-hydroxyl group is a potent sub-nanomolar inhibitor of SGP. The inhibitor binds non-covalently to the concave surface of the upper beta-sheet and enables delineation of the S4 to S3' substrate specificity pockets of the enzyme. Structural differences in these pockets account for the unique substrate preferences of SGP among peptidases having an acidic pH optimum. Inhibitor binding is accompanied by a structuring of the region comprising residues Tyr71-Gly80 from being mostly disordered in the apoenzyme and leading to positioning of crucial active site residues for establishing enzyme-inhibitor contacts. In addition, conformational rearrangements are seen in a disulfide bridged surface loop (Cys141-Cys148), which moves inwards, partially closing the open substrate binding cleft of the native enzyme. The non-hydrolysable scissile bond analog of the inhibitor is located in the active site forming close contacts with Gln53 and Glu136. The nucleophilic water molecule is displaced and a unique mode of binding is observed with the S-OH of the inhibitor occupying the oxyanion binding site of the proposed tetrahedral intermediate. Details of the enzyme-inhibitor interactions and mechanistic interpretations are discussed.  相似文献   

7.

Background

Studies have shown the existence of p21 induction in a p53-dependent and -independent pathway. Our previous study indicates that DOX-induced p65 is able to bind the p21 promoter to activate its transactivation in the cells.

Methods

Over-expression and knock-down experiments were performed in Human Pancreatic Carcinoma (PANC1) cells. Cell cycle and cell death related proteins were assessed by Western Blotting. Cytotoxicity assay was checked by CCK-8 kit. Cell growth was analyzed by flow cytometers.

Results

Here we showed that over-expression of p65 decreased the cytotoxic effect of DOX on PANC1 cells, correlating with increased induction of cytoplasmic p21. We observed that pro-caspase-3 physically associated with cytoplasmic p21, which may be contribution to prevent p21 translocation into the nucleus. Our data also suggested that no clear elevation of nuclear p21 by p65 provides a survival advantage by progression cell cycle after treatment of DOX. Likewise, down-regulation of p65 expression enhanced the cytotoxic effect of DOX, due to a significant decrease of mRNA levels of anti-apoptotic genes, such as the cellular inhibitor of apoptosis-1 (c-IAP1), and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2), leading to efficient induction of caspase-3 cleavage in the cells. More, we present evidence that over-expression of p53 or p53/p65 in the PANC1 cells were more sensitive to DOX treatment, correlated with activation of caspase-3 and clear elevation of nuclear p21 level. Our previous data suggested that expression of p21 increases Gefitinib-induced cell death by blocking the cell cycle at the G1 and G2 phases. The present findings here reinforced this idea by showing p21''s ability of potentiality of DOX-induced cell death correlated with its inhibition of cell cycle progression after over-expression of p53 or p53/p65.

Conclusion

Our data suggested p65 could increase p53-mediated cell death in response to DOX in PANC1 cells. Thus, it is worth noting that in p53 null or defective tumors, targeting in down-regulation of p65 may well be useful, leading to the potentiality of chemotherapeutic drugs.  相似文献   

8.
M N James  A R Sielecki 《Biochemistry》1985,24(14):3701-3713
The X-ray crystal structures of native penicillopepsin and of its complex with a synthetic analogue of the inhibitor pepstatin have been refined recently at 1.8-A resolution. These highly refined structures permit a detailed examination of peptide hydrolysis in the aspartic proteinases. Complexes of penicillopepsin with substrate and catalytic intermediates were modeled, by using computer graphics, with minimal perturbation of the observed inhibitor complex. A thallium ion binding experiment shows that the position of solvent molecule O39, between Asp-33(32) and Asp-213(215) in the native structure, is favorable for cations, a fact that places constraints on possible mechanisms. A mechanism for hydrolysis is proposed in which Asp-213(215) acts as an electrophile by protonating the carbonyl oxygen of the substrate, thereby polarizing the carbon-oxygen bond, a water molecule bound to Asp-33(32) (O284 in the native structure) attacks the carbonyl carbon as the nucleophile in a general-base mechanism, the newly pyramidal peptide nitrogen is protonated, either from the solvent after nitrogen inversion or by an internal proton transfer via Asp-213(215) from a hydroxyl of the tetrahedral carbon, and the tetrahedral intermediate breaks down in a manner consistent with the stereoelectronic hypothesis. The models permit the rationalization of observed subsite preferences for substrates and may be useful in predicting subsite preferences of other aspartic proteinases.  相似文献   

9.
BACKGROUND: Previous work has shown that teratogens such as hyperthermia (HS), 4-hydroperoxycyclophosphamide (4CP), and staurosporine (ST) induce cell death in day 9 mouse embryos by activating the mitochondrial apoptotic pathway. Key to the activation of this pathway is the activation of a caspase cascade involving the cleavage-induced activation of an initiator procaspase, caspase-9, and the downstream effector procaspase, caspase-3. For example, procaspase-3, an inactive proenzyme of 32 kDa is cleaved by activated caspase-9 to generate a large subunit of approximately 17 kDa and a small subunit of approximately 10 kDa. In turn, caspase-3 is known to target a variety of cellular proteins for proteolytic cleavage as part of the process by which dying cells are eliminated. Previous work has also shown that neuroepithelial cells are sensitive to teratogen-induced activation of this pathway and subsequent cell death whereas cells of the heart are resistant. Although caspase-3 is a key effector caspase activated by teratogens, two other effector caspases, caspase-6 and caspase-7, are known; however, their role in teratogen-induced cell death is unknown. METHODS: Because cleavage-induced generation of specific subunits is the most specific assay for activation of caspases, we have used antibodies that recognize the procaspase and one of its active subunits and a Western blot approach to assess the activation of caspase-6 and caspase-7 in day 9 mouse embryos (or heads, hearts and trunks isolated from whole embryos) exposed to HS, 4CP, and ST. To probe the relationship between teratogen-induced activation of caspase-9/caspase-3 and the activation of caspase-6/caspase-7, we used a mitochondrial-free embryo lysate with or without the addition of cytochrome c, recombinant active caspase-3, or recombinant active caspase-9. RESULTS: Western blot analyses show that these three teratogens, HS, 4CP, and ST, induce the activation of procaspase-6 (appearance of the 13 kDa subunit, p13) and caspase-7 (appearance of the 19 kDa subunit, p19) in day 9 mouse embryos. In vitro studies showed that both caspase-6 and caspase-7 could be activated by the addition of cytochrome c to a lysate prepared from untreated embryos. In addition, caspase-6 could be activated by the addition of either recombinant caspase-3 or caspase-9 to a lysate prepared from untreated embryos. In contrast, caspase-7 could be activated by addition of recombinant caspase-3 but only minimally by recombinant caspase-9. Like caspase-9/caspase-3, caspase-6 and caspase-7 were not activated in hearts isolated from embryos exposed to these three teratogens. CONCLUSIONS: HS, 4CP and ST induce the cleavage-dependent activation of caspase-6 and caspase-7 in day 9 mouse embryos. Results using DEVD-CHO, a caspase-3 inhibitor, suggest that teratogen-induced activation of caspase-6 is mediated by caspase-3. In addition, our data suggest that caspase-7 is activated primarily by caspase-3; however, we cannot rule out the possibility that this caspase is also activated by caspase-9. Finally, we also show that teratogen-induced activation of caspase-6 and caspase-7 are blocked in the heart, a tissue resistant to teratogen-induced cell death.  相似文献   

10.
A computer model of a noncovalent complex of HIV-1 aspartyl protease with substrate-like inhibitor JG-365 was a priori constructed by using the approaches of theoretical conformational analysis and molecular mechanics. The root mean square deviation of the calculated conformation of the inhibitor from the X-ray diffraction analysis data was 0.87 A. These results enabled the a priori calculation of the structure of noncovalent complex of HIV-1 protease with a hexapeptide fragment of its native specific substrate Ser-Gln-Asn-Tyr-Pro-Ile-Val. The only possible orientation of the cleavable peptide bond in this and the nucleophilic water molecule relative to the catalytically active Asp residues of the enzyme (Asp25 and Asp125) was found that provides for the chemical transformation of the substrate to a tetrahedral intermediate. An action mechanism of enzymes of this class was proposed on the basis of the analysis of calculated distances. We showed that neither steric distortion of the cleavable bond nor the formation of unfavorable contacts in molecules of the enzymes and their substrates accompany the optimum orientation of substrate molecules at the active sites of HIV-1 aspartyl proteases and rhizopuspepsin.  相似文献   

11.
Coxsackievirus B3-induced apoptosis and caspase-3   总被引:11,自引:0,他引:11  
Yuan JP  Zhao W  Wang HT  Wu KY  Li T  Guo XK  Tong SQ 《Cell research》2003,13(3):203-209
  相似文献   

12.
Glycosyltrehalose trehalohydrolase (GTHase) is an α-amylase that cleaves the α-1,4 bond adjacent to the α-1,1 bond of maltooligosyltrehalose to release trehalose. To investigate the catalytic and substrate recognition mechanisms of GTHase, two residues, Asp252 (nucleophile) and Glu283 (general acid/base), located at the catalytic site of GTHase were mutated (Asp252→Ser (D252S), Glu (D252E) and Glu283→Gln (E283Q)), and the activity and structure of the enzyme were investigated. The E283Q, D252E, and D252S mutants showed only 0.04, 0.03, and 0.6% of enzymatic activity against the wild-type, respectively. The crystal structure of the E283Q mutant GTHase in complex with the substrate, maltotriosyltrehalose (G3-Tre), was determined to 2.6-Å resolution. The structure with G3-Tre indicated that GTHase has at least five substrate binding subsites and that Glu283 is the catalytic acid, and Asp252 is the nucleophile that attacks the C1 carbon in the glycosidic linkage of G3-Tre. The complex structure also revealed a scheme for substrate recognition by GTHase. Substrate recognition involves two unique interactions: stacking of Tyr325 with the terminal glucose ring of the trehalose moiety and perpendicularly placement of Trp215 to the pyranose rings at the subsites −1 and +1 glucose.  相似文献   

13.
In our previous studies, programmed cell death (PCD) was induced in human periodontal ligament (PDL) cells, through activation of caspase-3 and upregulation of CASP5 gene (encoding caspase-5 protein), in response to mechanical stretch loading. The aim of this study is to explore the relationship between the inflammatory caspase, caspase-5, and the apoptotic executioner protein, caspase-3, in human PDL cells. Here, we found that cyclic stretching upregulated the activity and the protein expression level of caspase-3 and -5 and the addition of the caspase-3 inhibitor or caspase-5 inhibitor significantly inhibited the stretch-induced PCD. Meanwhile, the inhibition of caspase-5 inhibited the activation of caspase-3 and vice versa. The result of coimmunoprecipitation also demonstrated that the expression of caspase-3 was immunoprecipitated with caspase-5. Thus, our study revealed that the in vitro application of cyclic stretching induced PCD by activation of caspase-3 and -5 in human PDL cells, and these two caspases could interact with each other after mechanical stretch loading. The study may facilitate further studies on the mechanism of stretch-induced PCD and help us understand the force-related periodontal homeostasis and remodeling better.  相似文献   

14.
Many apoptotic pathways culminate in the activation of caspase cascades usually triggered by the apical caspases-8 or -9. We describe a paradigm where apoptosis is initiated by the effector caspase-3. Diethylmaleate (DEM)-induced apoptotic damage in Jurkat cells was blocked by the anti-apoptotic protein Bcl-2, whereas, a peptide inhibitor of caspase-3 but not caspase-9 blocked DEM-induced mitochondrial damage. Isogenic Jurkat cell lines deficient for caspase-8 or the adaptor FADD (Fas associated death domain) were not protected from DEM-induced apoptosis. Caspase-3 activation preceded that of caspase-9 and initial processing of caspase-3 was regulated independent of caspase-9 and Bcl-2. However, inhibitors of caspase-9 or caspase-6 regulated caspase-3 later in the pathway. We explored the mechanism by which caspase-3 processing is regulated in this system. DEM triggered a loss of Erk-1/2 phosphorylation and XIAP (X-linked inhibitor of apoptosis protein) expression. The phorbol ester PMA activated a MEK-dependent pathway to block caspase-3 processing and cell death. Constitutively active MEK-1 (CA-MEK) upregulated XIAP expression and exogenous XIAP inhibited DEM-induced apoptotic damage. Thus, we describe a pathway where caspase-3 functions to initiate apoptotic damage and caspase-9 and caspase-6 amplify the apoptotic cascade. Further, we show that MEK may regulate caspase-3 activation via the regulation of XIAP expression in these cells.  相似文献   

15.
蛋白激酶C-δ(protein kinase C-δ, PKC-δ)是细胞内重要的信号转导分子,在动物体内广泛表达,具有多种重要的细胞功能,如细胞增殖、死亡和免疫等,尤其在细胞凋亡中扮演重要的角色。在细胞凋亡过程中,PKC-δ可通过构象变化或天冬氨酸特异性半胱氨酸蛋白酶-3(caspase-3)剪切等过程被激活。激活的PKC-δ由细胞质向线粒体或细胞核进行转位。被caspase-3切割的PKC-δ,产生具有激酶活性的催化片段(PKC-δ-catalytic fragment, PKC-δ-CF),作用于下游底物蛋白质,活化促凋亡相关的调控因子,促进细胞凋亡;同时PKC-δ还具有抗凋亡的调控功能。本文对PKC-δ在细胞凋亡中的作用与分子机制及在肿瘤发生与治疗中的作用进行综述,以期为进一步明确PKC-δ在细胞凋亡中的作用机制提供资料。  相似文献   

16.
Caspase-12 is activated when the cells are exposed to excess levels of various stimuli, which cause endoplasmic reticulum (ER) stress. Protein kinase C (PKC) plays an important role in many signaling pathways in cells, and the activation of PKC has multiple actions in the signaling function of the ER. This study examined whether or not phorbol 12, 13-dibutyrate (PDBu)-induced PKC activation modulates caspase-12 cleavage and its processing, using a wild type caspase-12 overexpressing neuronal cell line, known as Cas-12 cells. The thapsigargin treatment induced caspase-12 fragmentation in the Cas-12 cells. This was inhibited by PKC, which had previously been stimulated by PDBu. The PDBu treatment attenuated the ER stress-induced translocation of caspase-12 from the ER to the cytoplasm. The caspase-3 specific inhibitor blocked caspase-12 fragmentation, and purified caspase-12 was cleaved by the active caspase-3 in vitro, suggesting thatcaspase-12 might be a substrate for caspase-3. In addition, the PDBu treatment influenced the decrease of active caspase-3 fragment. These results suggest that an ER stress induces the activation of caspase-12 via caspase-3, and that PKC regulates both caspase-12 and caspase-3 activations in Cas-12 cells  相似文献   

17.
The structure of the complex of bovine trypsin and bovine pancreatic trypsin inhibitor has been determined by crystal structure analysis at 2.8 Å resolution. The structure is closely similar to the model predicted from the structures of the components. The complex is a tetrahedral adduct with a covalent bond between the carbonyl carbon of Lys-15I of the inhibitor and the γ-oxygen of Ser-195 of the enzyme. The imidazole of His-57 is hydrogen-bonded to Asp-102 and the bound seryl γ-oxygen in accord with the histidine being charged. The negatively charged carbonyl oxygen of Lys-15I forms two hydrogen bonds with the amide nitrogens of Gly-193 and Ser-195. Protonation of the leaving group N-H of Ala-16I to form an acyl-complex requires a conformational change of the imidazole of His-57. The tetrahedral adduct is further stabilized by hydrogen bonds between groups at the leaving group side and inhibitor and enzyme, which would be weakened in the acyl-enzyme. The kinetic data of inhibitor-enzyme interaction are reconciled with the structural model, and relations between enzyme-inhibitor interaction and productive enzyme-substrate interaction are proposed.  相似文献   

18.
Glomerular mesangial cells play an important role in the development of glomerulosclerosis. Mesangial cell apoptosis has been shown to be involved in different stages of development of glomerulonephritis. The aim of the present study was to evaluate the effect of inhibition of serine/threonine phosphatases by okadaic acid, a shell fish toxin, on rat mesangial cell apoptosis and to examine the molecular mechanisms particularly the role of caspases. Okadaic acid significantly induced mesangial cell apoptosis, as measured by an increase in cytoplasmic nucleosome-associated DNA fragmentation. The induction of apoptosis was dependent on protein synthesis, because cyclohexamide, a protein synthesis inhibitor, blocked okadaic acid-induced apoptosis. In addition, okadaic acid stimulated caspase activities (as measured by caspase substrate peptide hydrolysis) in cultured rat mesangial cells at different time points. After 12 h treatment, okadaic acid caused a modest increase in caspase-8 (IETD-pNAse)(159.3 ± 6.7%) activity, while after 18 h treatment, okadaic acid caused a significant increase in caspase-3 (DEVD-pNAse)(906 ± 245%) activity. Okadaic acid-stimulated caspase-3 activity was inhibited by Z-IETD-FMK (caspase-8 inhibitor) suggesting that the caspase-3 activity is downstream of caspase-8 activity. Both caspase-3 and caspase-8 inhibitors blocked okadaic acid-stimulated apoptosis. These data suggest that inhibition of protein phosphatases by okadaic acid induces apoptosis in rat mesangial cells by activating caspase-3- and -8-like activities and that caspase-3-like activity is downstream of caspase-8-like activity.  相似文献   

19.
Phosphotyrosine hydrolysis by protein tyrosine phosphatases (PTPs) involves substrate binding by the PTP loop and closure over the active site by the WPD loop. The E loop, located immediately adjacent to the PTP and WPD loops, is conserved among human PTPs in both sequence and structure, yet the role of this loop in substrate binding and catalysis is comparatively unexplored. Hematopoietic PTP (HePTP) is a member of the kinase interaction motif (KIM) PTP family. Compared to other PTPs, KIM-PTPs have E loops that are unique in both sequence and structure. In order to understand the role of the E loop in the transition between the closed state and the open state of HePTP, we identified a novel crystal form of HePTP that allowed the closed-state-to-open-state transition to be observed within a single crystal form. These structures, which include the first structure of the HePTP open state, show that the WPD loop adopts an ‘atypically open’ conformation and, importantly, that ligands can be exchanged at the active site, which is critical for HePTP inhibitor development. These structures also show that tetrahedral oxyanions bind at a novel secondary site and function to coordinate the PTP, WPD, and E loops. Finally, using both structural and kinetic data, we reveal a novel role for E-loop residue Lys182 in enhancing HePTP catalytic activity through its interaction with Asp236 of the WPD loop, providing the first evidence for the coordinated dynamics of the WPD and E loops in the catalytic cycle, which, as we show, is relevant to multiple PTP families.  相似文献   

20.
BACKGROUND: In the initial stages of Fas-mediated apoptosis the cysteine protease caspase-8 is recruited to the cell receptor as a zymogen (procaspase-8) and is incorporated into the death-signalling complex. Procaspase-8 is subsequently activated leading to a cascade of proteolytic events, one of them being the activation of caspase-3, and ultimately resulting in cell destruction. Variations in the substrate specificity of different caspases have been reported. RESULTS: We report here the crystal structure of a complex of the activated human caspase-8 (proteolytic domain) with the irreversible peptidic inhibitor Z-Glu-Val-Asp-dichloromethylketone at 2.8 A resolution. This is the first structure of a representative of the long prodomain initiator caspases and of the group III substrate specificity class. The overall protein architecture resembles the caspase-1 and caspase-3 folds, but shows distinct structural differences in regions forming the active site. In particular, differences observed in subsites S(3), S(4) and the loops involved in inhibitor interactions explain the preference of caspase-8 for substrates with the sequence (Leu/Val)-Glu-X-Asp. CONCLUSIONS: The structural differences could be correlated with the observed substrate specificities of caspase-1, caspase-3 and caspase-8, as determined from kinetic experiments. This information will help us to understand the role of the various caspases in the propagation of the apoptotic signal. The information gained from this investigation should be useful for the design of specific inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号