首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dorsal root ganglion neurons project axons to specific target layers in the gray matter of the spinal cord, according to their sensory modality. Using an in vivo approach, we demonstrate an involvement of the two immunoglobulin superfamily cell adhesion molecules axonin-1/TAG-1 and F11/F3/contactin in subpopulation-specific sensory axon guidance. Proprioceptive neurons, which establish connections with motoneurons in the ventral horn, depend on F11 interactions. Nociceptive fibers, which target to layers in the dorsal horn, require axonin-1 for pathfinding. In vitro NgCAM and NrCAM were shown to bind to both axonin-1 and F11. However, despite this fact and despite their ubiquitous expression in the spinal cord, NgCAM and NrCAM are selective binding partners for axonin-1 and F11 in sensory axon guidance. Whereas nociceptive pathfinding depends on NgCAM and axonin-1, proprioceptive fibers require NrCAM and F11.  相似文献   

2.
The Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins is required for filopodia formation in growth cones and plays a crucial role in guidance cue-induced remodeling of the actin cytoskeleton. In vivo studies with pharmacological inhibitors of actin polymerization have previously provided evidence for the view that filopodia are needed for growth cone navigation in the developing visual pathway. Here we have re-examined this issue using an alternative strategy to generate growth cones without filopodia in vivo by artificially targeting Xena/XVASP (Xenopus homologs of Ena/VASP) proteins to mitochondria in retinal ganglion cells (RGCs). We used the specific binding of the EVH1 domain of the Ena/VASP family of proteins with the ligand motif FP4 to sequester the protein at the mitochondria surface. RGCs with reduced function of Xena/XVASP proteins extended fewer axons out of the eye and possessed dynamic lamellipodial growth cones missing filopodia that advanced slowly in the optic tract. Surprisingly, despite lacking filopodia, the axons navigated along the optic pathway without obvious guidance errors, indicating that the Xena/XVASP family of proteins and filopodial protrusions are non-essential for pathfinding in retinal axons. However, depletion of Xena/XVASP proteins severely impaired the ability of growth cones to form branches within the optic tectum, suggesting that this protein family, and probably filopodia, plays a key role in establishing terminal arborizations.  相似文献   

3.
Retinotopic analysis of the pathways of normal and aberrant retinal axons within the tectum of developing chick embryos was performed by selective labeling of retinal axons with a fluorescent dye, rhodamine-B isothiocyanate. To produce aberrant retinal axons, the presumptive optic chiasma was surgically disorganized at the 3rd day of incubation. At the 11th and 13th days of incubation, more than half of the operated embryos exhibited several aberrant retinal axons which reached ectopic parts of the tectum. The pathways of these aberrant axons within the tectum depended on the position of their initial invasion into the tectum at the diencephalotectal junction, and not on their position of origin within the retina. The aberrant retinal axons did not show any sign of correction of their pathways toward their normal sites of innervation within the tectum. As development proceeded, elimination of the aberrant retinal axons occurred. By the 16th day of incubation, almost all operated embryos lacked aberrant retinal axons and although the total number of axons often appeared reduced, a nearly normal topography of retinotectal projections was established. These findings indicate that the initial invasion of the retinal axons into the tectum is conducted predominantly by nonspecific mechanisms and, thereafter, a selective maintenance of appropriate retinal axons occurs.  相似文献   

4.
Correct targeting of proteins to axons and dendrites is crucial for neuronal function. We showed previously that axonal accumulation of the cell adhesion molecule L1/neuron-glia cell adhesion molecule (NgCAM) depends on endocytosis (Wisco, D., E.D. Anderson, M.C. Chang, C. Norden, T. Boiko, H. Folsch, and B. Winckler. 2003. J. Cell Biol. 162:1317-1328). Two endocytosis-dependent pathways to the axon have been proposed: transcytosis and selective retrieval/retention. We show here that axonal accumulation of L1/NgCAM occurs via nondegradative somatodendritic endosomes and subsequent anterograde axonal transport, which is consistent with transcytosis. Additionally, we identify the neuronal-specific endosomal protein NEEP21 (neuron-enriched endosomal protein of 21 kD) as a regulator of L1/NgCAM sorting in somatodendritic endosomes. Down-regulation of NEEP21 leads to missorting of L1/NgCAM to the somatodendritic surface as well as to lysosomes. Importantly, the axonal accumulation of endogenous L1 in young neurons is also sensitive to NEEP21 depletion. We propose that small endosomal carriers derived from somatodendritic recycling endosomes can serve to redistribute a distinct set of membrane proteins from dendrites to axons.  相似文献   

5.
Anatomical mapping was made of the retinal central pathways from the chiasm to the targets within the tectum in the developing Xenopus tadpoles, after labeling a specific regional population of retinal axons with horseradish peroxidase (HRP). In the tadpoles at stage 50, pathway sorting of retinal axons within the optic tract was clear for the dorsoventral axis of the retina, but not for the nasotemporal axis. Most nasal retinal axons and some dorsal and ventral retinal axons invaded the tectum directly at the diencephalotectal junction, and arrived at their correct sites of innervation after running through ectopic parts of the tectum. These findings indicate that the pathway orientation before targets is not a prerequisite factor for establishment of the orderly map of the retinotectal projection. Rather, a direct interaction between ingrowing retinal axons and tectal cells seems to be a predominant factor for specification of retinal central connections.  相似文献   

6.
Retinotectal projection is precisely organized in a retinotopic manner. In normal projection, temporal retinal axons project to the rostral part of the tectum, and nasal axons to the caudal part of the tectum. The two-dimensional relationship between the retina and the tectum offers a useful experimental system for analysis of neuronal target recognition. We carried out rotation of the tectal primordium in birds at an early stage of development, around the 10-somite stage, to achieve a better understanding of the characteristics of target recognition, especially the rostrocaudal specificity of the tectum. Our results showed that temporal retinal axons projected to the rostral part of the rotated tectum, which was originally caudal, and that nasal axons projected to the caudal part of the rotated tectum, which was originally rostral. Therefore, the tectum that had been rotated at the 10-somite stage received normal topographic projection from the retinal ganglion cells. Rostrocaudal specificity of the tectum for target recognition is not determined by the 10-somite stage and is acquired through interactions between the tectal primordium and its surrounding structures.  相似文献   

7.
Xiao T  Staub W  Robles E  Gosse NJ  Cole GJ  Baier H 《Cell》2011,146(1):164-176
The mechanisms that generate specific neuronal connections in the brain are under intense investigation. In zebrafish, retinal ganglion cells project their axons into at least six layers within the neuropil of the midbrain tectum. Each axon elaborates a single, planar arbor in one of the target layers and forms synapses onto the dendrites of tectal neurons. We show that the laminar specificity of retinotectal connections does not depend on self-sorting interactions among RGC axons. Rather, tectum-derived Slit1, signaling through axonal Robo2, guides neurites to their target layer. Genetic and biochemical studies indicate that Slit binds to Dragnet (Col4a5), a type IV Collagen, which forms the basement membrane on the surface of the tectum. We further show that radial glial endfeet are required for the basement-membrane anchoring of Slit. We propose that Slit1 signaling, perhaps in the form of a superficial-to-deep gradient, presents laminar positional cues to ingrowing retinal axons.  相似文献   

8.
DM-GRASP is an immunoglobulin superfamily cell adhesion molecule that is expressed in both the developing nervous and immune system. Specific populations of neurons respond to DM-GRASP substrates appears to require homophilic interactions between DM-GRASP molecules. We were interested in determining whether DM-GRASP interacts heterophilically with other ligands as well. We have found that eleven proteins from embryonic chick brain membranes consistently bind to and elute from a DM-GRASP-Sepharose affinity column. One of these proteins is DM-GRASP itself, consistent with its known homophilic binding. Another protein, at 130 kD, is immunoreactive with monoclonal antibodies to NgCAM. Other neural cell adhesion molecules were not detected in the eluate. The DM- GRASP-Sepharose eluate also contains a potent neurite stimulating activity, which cannot be accounted for by either DM-GRASP or NgCAM. To investigate the interaction of DM-GRASP and NgCAM, antibodies against DM-GRASP were added to neuronal cultures extending neurites on an NgCAM substrate. The presence of antibodies to DM-GRASP decreased neurite extension on laminin, suggesting that the antibody is not toxic or generally inhibiting motility. We present two possible models for the DM-GRASP-NgCAM association and a hypothesis for neural cell adhesion function that features the dimerization of cell adhesion molecules.  相似文献   

9.
The primary constituent of the amyloid plaque, β‐amyloid (Aβ), is thought to be the causal “toxic moiety” of Alzheimer's disease. However, despite much work focused on both Aβ and its parent protein, amyloid precursor protein (APP), the functional roles of APP and its cleavage products remain to be fully elucidated. Protein–protein interaction networks can provide insight into protein function, however, high‐throughput data often report false positives and are in frequent disagreement with low‐throughput experiments. Moreover, the complexity of the CNS is likely to be under represented in such databases. Therefore, we curated the published work characterizing both APP and Aβ to create a protein interaction network of APP and its proteolytic cleavage products, with annotation, where possible, to the level of APP binding domain and isoform. This is the first time that an interactome has been refined to domain level, essential for the interpretation of APP due to the presence of multiple isoforms and processed fragments. Gene ontology and network analysis were used to identify potentially novel functional relationships among interacting proteins.  相似文献   

10.
Dynamin I, a GTPase involved in the endocytic cycle of synaptic vesicle membranes, is believed to support axonal outgrowth and/or synaptogenesis. To explore the temporal and spatial patterns of dynamin I distribution in neuronal morphogenesis, we compared the developmental expression of dynamin with the expression of presynaptic membrane proteins such as SV2, synaptotagmin, and syntaxin in the chick primary visual pathway. Western blots of retina and tectum revealed a steady increase of synaptotagmin and syntaxin from embryonic Day 7 (E7) to E11, whereas for the same time frame no detectable increase of dynamin was found. Later stages showed increasing amounts of all tested proteins until the first postnatal week. Immunofluorescence revealed that SV2, synaptotagmin, and syntaxin are present in retinal ganglion cell axons from E4 on. In later stages, the staining pattern in the retina and along the visual pathway paralleled the formation and maturation of axons. In contrast, dynamin is not detectable by immunofluorescence in the developing retina and optic tectum before synapse formation. Our data indicate that, in contrast to the early expression of synaptotagmin, SV2, and syntaxin during axonal growth, dynamin is upregulated after synapse formation, suggesting its function predominantly during and after synaptogenesis but not in axonogenesis.(J Histochem Cytochem 47:1297-1306, 1999)  相似文献   

11.
Navigating axons respond to environmental guidance signals, but can also follow axons that have gone before - pioneer axons. Pioneers have been studied extensively in simple systems, but the role of axon-axon interactions remains largely unexplored in large vertebrate axon tracts, where cohorts of identical axons could potentially use isotypic interactions to guide each other through multiple choice points. Furthermore, the relative importance of axon-axon interactions compared with axon-autonomous receptor function has not been assessed. Here, we test the role of axon-axon interactions in retinotectal development, by devising a technique to selectively remove or replace early-born retinal ganglion cells (RGCs). We find that early RGCs are both necessary and sufficient for later axons to exit the eye. Furthermore, introducing misrouted axons by transplantation reveals that guidance from eye to tectum relies heavily on interactions between axons, including both pioneer-follower and community effects. We conclude that axon-axon interactions and ligand-receptor signaling have co-equal roles, cooperating to ensure the fidelity of axon guidance in developing vertebrate tracts.  相似文献   

12.
In neurons, many receptors must be localized correctly to axons or dendrites for proper function. During development, receptors for nerve growth and guidance are targeted to axons and localized to growth cones where receptor activation by ligands results in promotion or inhibition of axon growth. Signaling outcomes downstream of ligand binding are determined by the location, levels and residence times of receptors on the neuronal plasma membrane. Therefore, the mechanisms controlling the trafficking of these receptors are crucial to the proper wiring of circuits. Membrane proteins accumulate on the axonal surface by multiple routes, including polarized sorting in the trans Golgi network, sorting in endosomes and removal by endocytosis. Endosomes also play important roles in the signaling pathways for both growth-promoting and -inhibiting molecules: signaling endosomes derived from endocytosis are important for signaling from growth cones to cell bodies. Growth-promoting neurotrophins and growth-inhibiting Nogo-A can use EHD4/Pincher-dependent endocytosis at the growth cone for their respective retrograde signaling. In addition to retrograde transport of endosomes, anterograde transport to axons in endosomes also occurs for several receptors, including the axon outgrowth-promoting cell adhesion molecule L1/NgCAM and TrkA. L1/NgCAM also depends on EHD4/Pincher-dependent endocytosis for its axonal polarization. In this review, we will focus on receptors whose trafficking has been reported to be modulated by the EHD4/Pincher family of endosomal regulators, namely L1/NgCAM, Trk and Nogo-A. We will first summarize the pathways underlying the axonal transport of these proteins and then discuss the potential roles of EHD4/Pincher in mediating their endocytosis.  相似文献   

13.
Repulsive guidance molecule (RGM) is a recently identified protein implicated in both axonal guidance and neural tube closure. The avoidance of chick RGM in the posterior optic tectum by growing temporal, but not nasal, retinal ganglion cell axons is thought to contribute to visual map formation. In contrast to ephrins, semaphorins, netrins and slits, no receptor mechanism for RGM action has been defined. Here, an expression cloning strategy identified neogenin as a binding site for RGM, with a sub-nanomolar affinity. Consistent with selective axonal responsiveness to RGM, neogenin is expressed in a gradient across the chick retina. Neogenin is known to be one of several netrin-binding proteins but only neogenin interacts with RGM. The avoidance of RGM by temporal retinal axons is blocked by the anti-neogenin antibody and the soluble neogenin ectodomain. Dorsal root ganglion axons are unresponsive to RGM but are converted to a responsive state by neogenin expression. Thus, neogenin functions as an RGM receptor.  相似文献   

14.
An interaction of growth cone axonin-1 with the floor-plate NgCAM-related cell adhesion molecule (NrCAM) was shown to play a crucial role in commissural axon guidance across the midline of the spinal cord. We now provide evidence that axonin-1 mediates a guidance signal without promoting axon elongation. In an in vitro assay, commissural axons grew preferentially on stripes coated with a mixture of NrCAM and NgCAM. This preference was abolished in the presence of anti-axonin-1 antibodies without a decrease in neurite length. Consistent with these findings, commissural axons in vivo only fail to extend along the longitudinal axis when both NrCAM and NgCAM interactions, but not when axonin-1 and NrCAM or axonin-1 and NgCAM interactions, are perturbed. Thus, we conclude that axonin-1 is involved in guidance of commissural axons without promoting their growth.  相似文献   

15.
16.
In the embryonic visual system, EphA receptors are expressed on both temporal and nasal retinal ganglion cell axons. Only the temporal axons, however, are sensitive to the low concentrations of ephrin-A ligands found in the anterior optic tectum. The poor responsiveness of nasal axons to ephrin-A ligands, which allows them to traverse the anterior tectum and reach their targets in the posterior tectum, has been attributed to constitutive activation of the EphA4 receptor expressed in these axons. EphA4 is highly expressed throughout the retina, but is preferentially phosphorylated on tyrosine (activated) in nasal retina. In a screen for EphA4 ligands expressed in chicken embryonic retina, we have identified a novel ephrin, ephrin-A6. Like ephrin-A5, ephrin-A6 has high affinity for EphA4 and activates this receptor in cultured retinal cells. In the embryonic day 8 (E8) chicken visual system, ephrin-A6 is predominantly expressed in the nasal retina and ephrin-A5 in the posterior tectum. Thus, ephrin-A6 has the properties of a ligand that activates the EphA4 receptor in nasal retinal cells. Ephrin-A6 binds with high affinity to several other EphA receptors as well and causes growth cone collapse in retinal explants, demonstrating that it can elicit biological responses in retinal neurons. Ephrin-A6 expression is high at E6 and E8, when retinal axons grow to their tectal targets, and gradually declines at later developmental stages. The asymmetric distribution of ephrin-A6 in retinal cells, and the time course of its expression, suggest that this new ephrin plays a role in the establishment of visual system topography.  相似文献   

17.
Neurofilaments are an important structural component of the axonal cytoskeleton and are made of neuronal intermediate filament (nIF) proteins. During axonal development, neurofilaments undergo progressive changes in molecular composition. In mammals, for example, highly phosphorylated forms of the middle- and high-molecular-weight neurofilament proteins (NF-M and NF-H, respectively) are characteristic of mature axons, whereas nIF proteins such as α-internexin are typical of young axons. Such changes have been proposed to help growing axons accommodate varying demands for plasticity and stability by modulating the structure of the axonal cytoskeleton. Xefiltin is a recently discovered nIF protein of the frog Xenopus laevis, whose nervous system has a large capacity for regeneration and plasticity. By amino acid identity, xefiltin is closely related to two other nIF proteins, α-internexin and gefiltin. α-Internexin is found principally in embryonic axons of the mammalian brain, and gefiltin is expressed primarily in goldfish retinal ganglion cells and has been associated with the ability of the goldfish optic nerve to regenerate. Like gefiltin in goldfish, xefiltin in Xenopus is the most abundantly expressed nIF protein of mature retinal ganglion cells. In the present study, we used immunocytochemistry to study the distribution of xefiltin during optic nerve development and regeneration. During development, xefiltin was found in optic axons at stage 35/36, before they reach the tectum at stage 37/38. Similarly, after an orbital crush injury, xefiltin first reemerged in optic axons after the front of regeneration reached the optic chiasm, but before it reached the tectum. Thus, during both development and regeneration, xefiltin was present within actively growing optic axons. In addition, aberrantly projecting retinoretinal axons expressed less xefiltin than those entering the optic tract, suggesting that xefiltin expression is influenced by interactions between regenerating axons and cells encountered along the visual pathway. These results support the idea that changes in xefiltin expression, along with those of other nIF proteins, modulate the structure and stability of actively growing optic axons and that this stability is under the control of the pathway which growing axons follow. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 811–824, 1997  相似文献   

18.
The topographic positioning of retinal axons in the optic tectum is regulated, at least in part, by ephrinA/EphA repulsive interactions. Temporal axons, expressing high levels of EphA receptors, project to the ephrinA5-poor anterior tectum and avoid the ephrinA5-rich posterior tectum. To examine the dynamic behavior of temporal growth cones when they first encounter ephrinA, we manipulated ephrinA-coated beads with a laser tweezer into desired positions around the growth cones of chick retinal axons in culture. At high concentrations of ephrinA5 on the beads, growth cones typically collapsed on contacting the bead. At low concentrations, however, growth cones showed heterogeneous responses with some growth cones showing repulsive turning and others showing attractive turning after contacting the bead. Experiments with two beads indicate that retinal axons integrate guidance information that is provided simultaneously at two discrete locations. When a time-delay was introduced between exposure to the first and the second bead, individual axons exhibited a stereotyped response to the repeated stimuli, either responding with attraction followed by attraction, or showing repulsion followed by repulsion or collapse. Our results suggest the existence of at least two retinal subpopulations from the temporal retina, one being attracted, another being repelled by low levels of ephrinA5. These findings demonstrate that temporal retinal axons are not universally repelled by ephrinA5 and suggest that their ability to respond differentially to low concentrations may help them to map in a continuous manner over the surface of the anterior tectum.  相似文献   

19.
Mutation in the tubby gene causes adult‐onset obesity, progressive retinal, and cochlear degeneration with unknown mechanism. In contrast, mutations in tubby‐like protein 1 (Tulp1), whose C‐terminus is highly homologous to tubby, only lead to retinal degeneration. We speculate that their diverse N‐terminus may define their distinct disease profile. To elucidate the binding partners of tubby, we used tubby N‐terminus (tubby‐N) as bait to identify unknown binding proteins with open‐reading‐frame (ORF) phage display. T7 phage display was engineered with three improvements: high‐quality ORF phage display cDNA library, specific phage elution by protease cleavage, and dual phage display for sensitive high throughput screening. The new system is capable of identifying unknown bait‐binding proteins in as fast as ~4–7 days. While phage display with conventional cDNA libraries identifies high percentage of out‐of‐frame unnatural short peptides, all 28 tubby‐N‐binding clones identified by ORF phage display were ORFs. They encode 16 proteins, including 8 nuclear proteins. Fourteen proteins were analyzed by yeast two‐hybrid assay and protein pull‐down assay with ten of them independently verified. Comparative binding analyses revealed several proteins binding to both tubby and Tulp1 as well as one tubby‐specific binding protein. These data suggest that tubby‐N is capable of interacting with multiple nuclear and cytoplasmic protein binding partners. These results demonstrated that the newly‐engineered ORF phage display is a powerful technology to identify unknown protein–protein interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The topographic positioning of retinal axons in the optic tectum is regulated, at least in part, by ephrinA/EphA repulsive interactions. Temporal axons, expressing high levels of EphA receptors, project to the ephrinA5‐poor anterior tectum and avoid the ephrinA5‐rich posterior tectum. To examine the dynamic behavior of temporal growth cones when they first encounter ephrinA, we manipulated ephrinA‐coated beads with a laser tweezer into desired positions around the growth cones of chick retinal axons in culture. At high concentrations of ephrinA5 on the beads, growth cones typically collapsed on contacting the bead. At low concentrations, however, growth cones showed heterogeneous responses with some growth cones showing repulsive turning and others showing attractive turning after contacting the bead. Experiments with two beads indicate that retinal axons integrate guidance information that is provided simultaneously at two discrete locations. When a time‐delay was introduced between exposure to the first and the second bead, individual axons exhibited a stereotyped response to the repeated stimuli, either responding with attraction followed by attraction, or showing repulsion followed by repulsion or collapse. Our results suggest the existence of at least two retinal subpopulations from the temporal retina, one being attracted, another being repelled by low levels of ephrinA5. These findings demonstrate that temporal retinal axons are not universally repelled by ephrinA5 and suggest that their ability to respond differentially to low concentrations may help them to map in a continuous manner over the surface of the anterior tectum. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号