首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ilse Storch 《Oecologia》1993,95(2):257-265
The use of habitat by female and male adult capercaillie Tetrao urogallus during summer and autumn was studied by comparing the distribution of radio locations of birds with the availability of habitat at forest stand, home range and landscape level in an area of the Bavarian Alps, Germany. Capercaillie preferred forests with structural features typical of their main distribution range, the boreal forest: they selected large patches of old forest with moderate canopy cover of about 50%, and a well developed field layer with high proportions of bilberry Vaccinium myrtillus. Hens selected both home ranges and sites within home ranges in old forest. Ranges selected by cocks did not differ from availability in the study area, but they preferred old forest within their ranges. The size of home ranges was negatively related to bilberry cover both in hens and cocks. The distribution of bilberry also determined habitat use by capercaillie at the landscape scale. The study demonstrated that bilberry is the major determinant of the selection of habitat by capercaillie in landscapes with sparse and fragmentary cover of ericaceous shrubs, such as central Europe.  相似文献   

2.
The Cantabrian capercaillie Tetrao urogallus cantabricus, a subspecies of the western capercaillie, is endemic to the Cantabrian Mountains of northwest Spain. The range is separated from its nearest neighbouring capercaillie population by a distance of more than 300 km. High genetic differentiation compared to capercaillie elsewhere qualifies the subspecies as an Evolutionarily Significant Unit. An assessment according to the IUCN Red List categories and criteria showed that the subspecies qualifies as Endangered due to rapid population declines, small population size, and severely fragmented range. The implementation of a range-wide recovery plan is vital for the survival of this subspecies.  相似文献   

3.
The low-latitude limits of species ranges are thought to be particularly important as long-term stores of genetic diversity and hot spots for speciation. The Iberian Peninsula, one of the main glacial refugia in Europe, houses the southern distribution limits of a number of boreal species. The capercaillie is one such species with a range extending northwards to cover most of Europe from Iberia to Scandinavia and East to Siberia. The Cantabrian Range, in North Spain, constitutes the contemporary south-western distribution limit of the species. In contrast to all other populations, which live in pure or mixed coniferous forests, the Cantabrian population is unique in inhabiting pure deciduous forests. We have assessed the existence of genetic differentiation between this and other European populations using microsatellite and mitochondrial DNA (mtDNA) extracted from capercaillie feathers. Samples were collected between 2001 and 2004 across most of the current distribution of the Cantabrian population. Mitochondrial DNA analysis showed that the Cantabrian birds form a distinct clade with respect to all the other European populations analysed, including the Alps, Black Forest, Scandinavia and Russia, which are all members of a discrete clade. Microsatellite DNA from Cantabrian birds reveals the lowest genetic variation within the species in Europe. The existence of birds from both mtDNA clades in the Pyrenees and evidence from microsatellite frequencies for two different groups, points to the existence of a Pyrenean contact zone between European and Cantabrian type birds. The ecological and genetic differences of the Cantabrian capercaillies qualify them as an Evolutionarily Significant Unit and support the idea of the importance of the rear edge for speciation. Implications for capercaillie taxonomy and conservation are discussed.  相似文献   

4.
Ecological features and conservation requirements of populations at the latitudinal limits of a species’ geographical range frequently differ from those in other parts of the range. Identifying such differences is key to implementing effective conservation strategies for threatened range‐edge populations especially, in the context of rapid global warming, at the lower‐latitude range edge. We studied habitat selection and diet of the endangered Cantabrian Capercaillie Tetrao urogallus cantabricus in a recently discovered population at the southernmost edge of the sub‐species’ range. This is the only Western Capercaillie population in the Mediterranean biogeographical region. We combined non‐systematic surveys based on questionnaires, reports and field sampling with data from radiotracking to assess habitat selection. Diet was surveyed by micro‐histological methods from droppings collected in the new population, which inhabits Pyrenean Oak Quercus pyrenaica forests and Scots Pine Pinus sylvestris plantations, and in two Cantabrian populations inhabiting Eurosiberian forests. Capercaillie preferred large (> 500 ha) and medium‐sized (100–500 ha) Pyrenean Oak forest fragments and large Scots Pine plantations. Forest fragments smaller than 100 ha and non‐forested habitats were always avoided. Diet differed markedly between Mediterranean and Eurosiberian populations. Bilberry Vaccinium myrtillus is common in the diet of most Capercaillie populations but was scarce in the study area and so was rare in the diet of the new population. Instead, Rockrose Halimium lasianthum was described for the first time as a major food resource for the Capercaillie and was consumed in autumn and winter. Pine needles were also heavily consumed in winter. We document for the first time the strong preference of Capercaillie for Pyrenean Oak forests and a moderately high consumption of the leaves, buds and acorns of this tree species throughout the year. Habitat selection and diet of this Mediterranean population differ from those of the core Cantabrian and other populations. Our results suggest a wider environmental tolerance (phenotypic plasticity) in the species than previously recognized. We advocate specific protection for this unique range‐edge Capercaillie population and its Pyrenean Oak forest habitat.  相似文献   

5.
The Western capercaillie (Tetrao urogallus) is a keystone species of Palearctic boreal and altitude coniferous forests. With the increase of mountain leisure activities and habitat loss, populations are declining in most mountain ranges in Western Europe. Recent work has shown that the populations from the Pyrenees and Cantabrian Mountains survived a severe bottleneck during the 19th century, and are still considered as threatened due to habitat fragmentation and isolation with other populations. We present an extensive phylogeographic study based on mitochondrial DNA sequence (control region) extracted non-invasively from faeces collected throughout the species range (from western European mountains to central and eastern Europe, Fenno-Scandia, Russia and Siberia). We also compared our results with DNA sequences of closely related black-billed capercaillie (T. parvirostris). We found that populations from Pyrenees and Cantabrians are closely related but are different from all other capercaillie populations that form a homogenous clade. Therefore, we consider that these South-Western populations should be considered as forming an Evolutionary Significant Unit that needs an appropriate management at a local scale. We also discuss the possible locations of glacial refugia and subsequent colonisation routes in Eurasia, with a Western “aquitanus” lineage from Iberia and Balkans, and an Eastern “urogallus” lineage from Southern Asia. This work might have important implication for capercaillie conservation strategies to define important areas for conservation, and to prevent possible exchange or introductions of individuals originated from other lineages. Electronic Supplementary Material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

6.
Although intraspecific variability is now widely recognized as affecting evolutionary and ecological processes, our knowledge on the importance of intraspecific variability within invasive species is still limited. This is despite the fact that understanding the linkage between within‐population morphological divergences and the use of different trophic or spatial resources (i.e., resource polymorphism) can help to better predict their ecological impacts on recipient ecosystems. Here, we quantified the extent of resource polymorphism within populations of a worldwide invasive crayfish species, Procambarus clarkii, in 16 lake populations by comparing their trophic (estimated using stable isotope analyses) and morphological characteristics between individuals from the littoral and pelagic habitats. Our results first demonstrated that crayfish occured in both littoral and pelagic habitats of seven lakes and that the use of pelagic habitat was associated with increased abundance of littoral crayfish. We then found morphological (i.e., body and chelae shapes) and trophic divergence (i.e., reliance on littoral carbon) among individuals from littoral and pelagic habitats, highlighting the existence of resource polymorphism in invasive populations. There was no genetic differentiation between individuals from the two habitats, implying that this resource polymorphism was stable (i.e., high gene flow between individuals). Finally, we demonstrated that a divergent adaptive process was responsible for the morphological divergence in body and chela shapes between habitats while difference in littoral reliance neutrally evolved under genetic drift. These findings demonstrated that invasive P. clarkii can display strong within‐population phenotypic variability in recent populations, and this could lead to contrasting ecological impacts between littoral and pelagic individuals.  相似文献   

7.
Understanding the ecological role of species with overlapping distributions is central to inform ecosystem management. Here we describe the diet, trophic level and habitat use of three sympatric stingrays, Hypanus guttatus, H. marianae and H. berthalutzae, through combined stomach content and stable isotope (δ13C and δ15N) analyses. Our integrated approach revealed that H. guttatus is a mesopredator that feeds on a diverse diet of benthic and epibenthic marine and estuarine organisms, principally bivalve molluscs, Alpheus shrimp and teleost fishes. Isotopic data supported movement of this species between marine and estuarine environments. H. berthalutzae is also a marine generalist feeder, but feeds primarily on teleost fishes and cephalopods, and consequently occupies a higher trophic level. In contrast, H. marianae is a mesopredator specialized on shrimps and polychaetas occurring only in the marine environment and occupying a low niche breadth. While niche overlap occurred, the three stingrays utilized the same prey resources at different rates and occupied distinct trophic niches, potentially limiting competition for resources and promoting coexistence. These combined data demonstrate that these three mesopredators perform different ecological roles in the ecosystems they occupy, limiting functional redundancy.  相似文献   

8.
Recent research reports that many populations of species showing a wide trophic niche (generalists) are made up of both generalist individuals and individuals with a narrow trophic niche (specialists), suggesting trophic specializations at an individual level. If true, foraging strategies should be associated with individual quality and fitness. Optimal foraging theory predicts that individuals will select the most favourable habitats for feeding. In addition, the “landscape heterogeneity hypothesis” predicts a higher number of species in more diverse landscapes. Thus, it can be predicted that individuals with a wider realized trophic niche should have foraging territories with greater habitat diversity, suggesting that foraging strategies, territory quality and habitat diversity are inter-correlated. This was tested for a population of common kestrels Falco tinnunculus. Diet diversity, territory occupancy (as a measure of territory quality) and habitat diversity of territories were measured over an 8-year period. Our results show that: 1) territory quality was quadratically correlated with habitat diversity, with the best territories being the least and most diverse; 2) diet diversity was not correlated with territory quality; and 3) diet diversity was negatively correlated with landscape heterogeneity. Our study suggests that niche generalist foraging strategies are based on an active search for different prey species within or between habitats rather than on the selection of territories with high habitat diversity.  相似文献   

9.
Invasive fish species impact aquatic ecosystems and modify native communities, often leading to a decline in local species. These ecological impacts include the transmission of pathogens, predation, competition as well as hybridization. Two invasive fish species, the common bleak Alburnus alburnus and the topmouth gudgeon Pseudorabora parva, have both been recently found co-occurring in several regions of southern Europe, such as the Italian Arno River. Nonetheless, the trophic relationships among invasive fish species, especially cyprinids, remain poorly understood, and no studies have reported the trophic interaction between these two species. This study compared length–weight relationship and used stomach content and stable isotope analysis of two co-occurring populations in the Arno River to characterize the growth and overlap of potential trophic niches. It also found similar allometric growth in both species, a wider generalist trophic niche for P. parva and a more specialized niche for A. alburnus. A considerable niche overlap was found, suggesting that feeding competition can occur if resources were to be limited. Moreover, the niche of P. parva was more likely to overlap with that of A. alburnus than vice versa, suggesting that P. parva can be considered as a potential over competitor. Nonetheless, the authors found in the overlapping populations no evidence of realized competition, probably avoided through a combination of fine-scale mechanisms. They also highlighted that these two invasive species can co-exist and share resources, at least in an open ecosystem like a river, thus potentially doubling up their trophic impact on local communities.  相似文献   

10.
  1. Intraspecific trophic variability has important ecological and evolutionary implications, and is driven by multiple interacting factors. Functional traits and environmental conditions are important in mediating the trophic niche of individuals because they determine their ability to consume certain prey, their energetic requirements, and resource availability. In this study, we aimed at investigating the interacting effects of functional traits and environmental conditions on several attributes of trophic niche in natural populations.
  2. Here, we quantified intraspecific variability in the trophic niche of 12 riverine populations of European minnow (Phoxinus phoxinus) using stable isotope analyses. Functional traits (i.e. morpho-anatomical traits) and environmental conditions (i.e. upstream–downstream gradient, forest cover) were quantified to identify the determinants of (1) trophic position and resource origin, (2) trophic niche size, and (3) trophic differentiation (β-diversity) among populations.
  3. We demonstrated that trophic position and resource origin covaried with functional traits related to body size and locomotion performance, and that the strength and shape of these relationships varied according to local environmental conditions. The trophic niche size also differed among populations, although no determinant was identified. Finally, trophic β-diversity was correlated to environmental differentiation among sites.
  4. Overall, the determinants of intraspecific variability in trophic niche appeared highly context-dependent, and related to the interactions between functional traits and environmental conditions. Because populations are currently facing important environmental changes, understanding this context-dependency is important for predicting food web structure and ecosystem dynamics in a changing world.
  相似文献   

11.
12.
The endangered Cantabrian capercaillie (Tetrao urogallus cantabricus) lives at the southern edge of tetraonids’ distribution range, in entirely deciduous forests. Its conservation planning has been always lek-centred. There is very little information about the specific habitat requirements of hens and broods, even though reproductive success appears to be a limiting factor. We analysed summer surveys from 1997 to 2004, carried out to estimate the reproductive success of the population. We compared the habitat characteristics at different spatial scales of hens with broods, broodless hens, and cocks in summer, with the better known spring habitat in display areas. Summer habitat showed higher proportion of open areas and was associated with more rugged zones at moderate spatial scales (78 ha) than spring habitat at display areas. Cocks and hens showed summer habitat partitioning; hens were associated with higher proportions of open and shrubby habitats. Furthermore, broodless hens preferred areas with higher slope variability than the display and summer areas preferred by cocks. These differences may reflect the sexual dimorphism of the species in reproductive role, energetic demands and conspicuousness. At larger spatial scales a previously developed habitat suitability model performed well to predict good brood-rearing areas. Hens with broods were located in the best-preserved areas in the range, mainly characterized by higher proportion of forest cover at a large (50 km2) scale. We suggest that these characteristics indicate refuge habitats where Cantabrian capercaillie can still breed successfully.  相似文献   

13.
Trophic generalists tolerate greater habitat change than specialists; however, few studies explore how generalist trophic ecology is affected. We established how the trophic ecology of an extreme generalist, Rhabdomys pumilio, changed in relation to a directionally changing woody‐encroached savannah in Eastern Cape, South Africa by investigating (a) foraging behaviour, (b) trophic niche and (c) feedback effects. (a) Giving‐up densities showed that R. pumilio preferred foraging in subcanopy microhabitat during the night as a result of lower thermoregulatory costs, but had similar preferences for sub‐ and intercanopy microhabitats during the day. (b) An isotope analysis revealed that the dietary composition and trophic niche occupied by R. pumilio differed among tree canopy cover levels (0%, 30% and 80%), which appeared to be related to changes in C4 grass material and invertebrate availability. (c) Artificial seed patches suggested that R. pumilio was a potentially important postdispersal seed predator of the woody‐encroaching species, Vachellia karroo. Thus, an increase in tree canopy cover altered the trophic niche of R. pumilio by reducing foraging costs at night and providing alternative food resources in terms of availability and source. These findings demonstrate how an extreme generalist adapted to human‐induced habitat change through changes in its trophic ecology.  相似文献   

14.
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype‐environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large‐scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi.  相似文献   

15.
Ecological niche theory predicts that coexistence is facilitated by resource partitioning mechanisms that are influenced by abiotic and biotic interactions. Alternative hypotheses suggest that under certain conditions, species may become phenotypically similar and functionally equivalent, which invokes the possibility of other mechanisms, such as habitat filtering processes. To test these hypotheses, we examined the coexistence of the giant redfin Pseudobarbus skeltoni, a newly described freshwater fish, together with its congener Pseudobabus burchelli and an anabantid Sandelia capensis by assessing their scenopoetic and bionomic patterns. We found high habitat and isotope niche overlaps between the two redfins, rendering niche partitioning a less plausible sole mechanism that drives their coexistence. By comparison, environment–trait relationships revealed differences in species–environment relationships, making habitat filtering and functional equivalence less likely alternatives. Based on P. skeltoni's high habitat niche overlap with other species, and its large isotope niche width, we inferred the likelihood of differential resource utilization at trophic level as an alternative mechanism that distinguished it from its congener. In comparison, its congener P. burchelli appeared to have a relatively small trophic niche, suggesting that its trophic niche was more conserved despite being the most abundant species. By contrast, S. capensis was distinguished by occupying a higher trophic position and by having a trophic niche that had a low probability of overlapping onto those of redfins. Therefore, trophic niche partitioning appeared to influence the coexistence between S. capensis and redfins. This study suggests that coexistence of these fishes appears to be promoted by their differences in niche adaptation mechanisms that are probably shaped by historic evolutionary and ecological processes.  相似文献   

16.
  1. To adapt to ecological and environmental conditions, species can change their ecological niche (e.g., interactions among species) and function (e.g., prey‐predation, diet competition, and habitat segregation) at the species and guild levels. Stable isotope analysis of bulk carbon and nitrogen of organisms has conventionally been used to evaluate such adaptabilities in the scenopoetic and bionomic views as the isotopic niche width.
  2. Compound‐specific stable isotope analysis (CSIA) of nitrogen within amino acids provides trophic information without any disruption of scenopoetic views in the isotope ratios, unlike conventional bulk isotope analysis provides both information and therefore frequently hinders its usefulness for trophic information.
  3. We performed CSIA of amino acids to understand the trophic variability of the pike gudgeon Pseudogobio esocinus and largemouth bass Micropterus salmoides as representative specialist and generalist fish species, respectively, from 16 ecologically variable habitats in the four major rivers of Korea.
  4. There was little variation (1σ) in the trophic position (TP) among habitats for P. esocinus (± 0.2); however, there was considerably large variation for M. salmoides (± 0.6). The TP of M. salmoides was negatively correlated with the benthic invertebrate indices of the habitats, whereas the TP of P. esocinus showed no significant correlation with any indices. Thus, these two representative fish species have different trophic responses to ecological conditions, which is related to known differences in the trophic niche between specialists (i.e., small niche width) and generalists (i.e., large niche width).
  5. Over the past four decades, the conventional bulk isotope analysis has not been capable of deconvoluting “scenopoetic” and “bionomic” information. However, in the present study, we demonstrated that the CSIA of amino acids could isolate trophic niches from the traditional ecological niche composed of trophic and habitat information and evaluated how biological and ecological indices influence the trophic response of specialists and generalists.
  相似文献   

17.
李云凯  徐敏  贡艺 《生态学报》2022,42(13):5295-5302
物种对食物资源利用方式的差异,即营养生态位分化是物种共存的先决条件之一,对种间营养生态位的比较研究有助于了解同域分布物种的共存机制。脂肪酸组成可反映生物较长时间尺度的摄食信息,对探讨物种间营养生态位分化具有重要指示作用。热带东太平洋主要栖息有8种大型中上层鲨鱼,大青鲨(Prionace glauca)、大眼长尾鲨(Alopias superciliosus)、镰状真鲨(Carcharhinus falciformis)、长鳍真鲨(Carcharhinus longimanus)、浅海长尾鲨(Alopias pelagicus)、尖吻鲭鲨(Isurus oxyrinchus)、路氏双髻鲨(Sphyrna lewini)和锤头双髻鲨(Sphyrna zygaena),通过比较其肌肉脂肪酸组成,分析种间食性差异,营养关系及营养生态位分化。结果表明,尖吻鲭鲨营养级相对较高,大青鲨相对较低。3种鼠鲨与5种真鲨存在食性差异或栖息地隔离。浅海长尾鲨与大眼长尾鲨营养生态位重叠程度较高,存在激烈的资源竞争。大青鲨与镰状真鲨生态位宽度较大,表征其对环境的可塑性较强;尖吻鲭鲨和路氏双髻鲨生态位宽度较小,表现为其食性的特化。本研究解释了脂肪酸组成分析在鲨鱼摄食研究中的潜在应用,对分析大洋性鲨鱼的营养生态位分化,资源分配方式及同域共存机制有一定的应用价值。  相似文献   

18.
Lizards are ideal for studying colour polymorphism, because some species are polymorphic and the morphs often have different ecological or reproductive strategies. We studied the feeding habits of six polymorphic populations of Podarcis muralis to test whether morphs differed in their diet. Some taxa were selected in a similar way by all morphs, but selection on other taxa varied and was characteristic of each morph. Diet was most different for the red and yellow morphs. Two hypotheses could explain these differences: active segregation in the trophic niche or active segregation in space dependent on spatial heterogeneity in prey availability. The former is improbable because P. muralis is considered an opportunistic feeder, whereas the latter could occur if the morphs adopted alternative territorial strategies with consequent spatial segregation.  相似文献   

19.
Fish trophic niches reflect important ecological interactions and provide insight into the structure of mangrove food webs. Few studies have been conducted in mangrove fish predators to investigate interpopulation trophic niches and ontogenetic shifts. Using stable isotope analysis and two complementary approaches, the authors investigated trophic niche patterns within and between two ontogenetic groups (juveniles and sub-adults) of a generalist predator (Acentrogobius viridipunctatus) in four mangroves with heterogeneous environmental conditions (e.g., tidal regimes, salinity fluctuations and mangrove tree community). The authors hypothesized that the trophic niche between populations would vary regionally and trophic position would increase consistently from juvenile to sub-adult stages. The results revealed that both δ13C and δ15N values varied greatly across populations and between ontogenetic groups, and complex spatio-ontogenetic variations were expressed by Layman's metrics. They also found some niche separation in space, which is most likely related to resource availability in spatially diverse ecosystems. In addition, trophic niche position increased consistently from juveniles to sub-adults, indicating ontogenetic feeding shifts. The isotopic plasticity index and Fulton's condition index also showed significant spatial-ontogenetic variation, which is consistent with optimal foraging theory. The findings highlight that trophic plasticity has a high adaptive value for mangrove fish predators in dynamic ecosystems.  相似文献   

20.
舟山长白海域主要游泳动物生态位及其分化研究   总被引:4,自引:0,他引:4  
基于2016年10月(秋季)和2017年4月(春季)舟山长白海域的渔业资源调查数据,运用生态位宽度、生态位重叠及冗余分析等方法,研究了主要游泳动物的生态位,种间生态关系及生态位分化。结果显示:春、秋季主要游泳动物分别11种与8种,两季生态位宽度值差异均较大,其中春季广生态位种、中生态位种均为3种,而秋季均为2种,窄生态位种分别为5种与4种。相对重要性指数(IRI)与生态位宽度值(Bi)之间呈显著正相关。生态位重叠程度不均衡,秋季主要游泳动物的生态位重叠程度较高,Oik > 0.6的种对数占总种对数的42.86%;春季的重叠程度较低,仅占总种对数的21.82%。RDA分析得出温度、盐度为影响主要游泳动物分布的直接因素,而溶解氧、悬浮物和pH等则为重要因素,主要游泳动物在这些资源维上存在生态分化现象。综上,分布在毗邻杭州湾口且位于著名的岱衢洋的主要游泳动物种类总体营养级较低却生态宽度值较大,大黄鱼(Larimichthys crocea)、黄姑鱼(Nibea albiflora)等一些传统的高营养级、典型特色经济种类却沦为生态位宽度极小的一般种或少有种,群落种类显著减少,资源量下降,群落结构与功能退化,稳定性下降。因此,加强游泳动物资源修复、保护与管理十分迫切且具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号