首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnesium-dependent hypocalcaemia (HSH), a rare inherited disease, is caused by selective disorders of magnesium absorption. Both X-linked and autosomal recessive modes of inheritance have been reported for HSH; this suggests a genetically heterogeneous condition. A balanced de novo t(X;9)(p22;q12) translocation has been reported in a female manifesting hypomagnesemia with secondary hypocalcemia. In a lymphoblastoid cell line, derived from this patient, the normal X chromosome is preferentially inactivated, suggesting that the patient's phenotype is caused by disruption of an HSH gene in Xp22. In an attempt to define more precisely the position of the X breakpoint, we have constructed a hybrid cell line retaining the der(X)(Xqter-Xp22.2::9q12-9qter) in the absence of the der(9) and the normal X chromosome. Southern blot analysis of this hybrid and in situ hybridization on metaphase chromosomes have localized the breakpoint between DXS16 and the cluster (DXS207, DXS43), in Xp22.2. Thus, if a gene involved in HSH resides at or near the translocation breakpoint, our findings should greatly facilitate its isolation.  相似文献   

2.
We have performed in situ hybridization of a probe for the lambda IGLC constant region to metaphase spreads from two DiGeorge syndrome (DGS)-related chromosomal rearrangements with breakpoints in 22q11. In this study we have demonstrated that the breakpoints are proximal to the lambda IGLC constant region cluster. Thus, at the molecular level, DGS-related breakpoints can be distinguished from the 22q11 breakpoint of CML, but not from the 8;22 translocation of Burkitt lymphoma or from the 21;22 translocations that we have previously studied.  相似文献   

3.
X;autosome translocations in females with Duchenne muscular dystrophy (DMD) provide an opportunity to study the mechanisms responsible for chromosomal rearrangements that occur in the germ line. We describe here a detailed molecular analysis of the translocation breakpoints of an X;autosome reciprocal translocation, t(X;5)(p21;q31.1), in a female with DMD. Cosmid clones that contained the X-chromosome breakpoint region were identified, and subclones that hybridized to the translocation junction fragment in restriction digests of the patient's DNA were isolated and sequenced. Primers designed from the X-chromosomal sequence were used to obtain the junction fragments on the der(X) and the der(5) by inverse PCR. The resultant clones were also cloned and sequenced, and this information used to isolate the chromosome 5 breakpoint region. Comparison of the DNA sequences of the junction fragments with those of the breakpoint regions on chromosomes X and 5 revealed that the translocation arose by nonhomologous recombination with an imprecise reciprocal exchange. Four and six base pairs of unknown origin are inserted at the exchange points of the der(X) and der(5), respectively, and three nucleotides are deleted from the X-chromosome sequence. Two features were found that may have played a role in the generation of the translocation. These were (1) a repeat motif with an internal homopyrimidine stretch 10 bp upstream from the X-chromosome breakpoint and (2) a 9-bp sequence of 78% homology located near the breakpoints on chromosomes 5 and X.  相似文献   

4.
The Lowe oculocerebrorenal syndrome (OCRL) is characterized by congenital cataract, mental retardation, and renal tubular dysfunction. We are using the approaches of linkage analysis, mapping with somatic cell hybrids, and long-range restriction mapping to determine the order of Xq24-q26 markers with respect to each other and to the OCRL locus. DXS42 and DXS100 are proximal to the translocation breakpoint in a female patient with OCRL and a de novo translocation t(X;3)(q25;q27). DXS10, DXS86, HPRT, and DXS177 are distal to the breakpoint. These flanking markers show tight linkage to the disease locus in 11 families segregating for OCRL. Results from field inversion gel analysis show that DXS86 and DXS10 share a 460-kb BssHII fragment. Multipoint analysis to determine the position of HPRT with respect to (DXS10,DXS86) suggests that HPRT is proximal to (DXS10,DXS86). We propose the following order for markers in Xq24-q26: Xcen-(DXS42,DXS37,DXS100)-OCRL-DXS53 -HPRT-[(DXS10,DXS86),DXS177]-Xqter. The identification of additional tightly linked flanking markers extends the number of markers available for use in genetic counseling and begins to define the physical map of the region containing the gene for OCRL.  相似文献   

5.
The gene responsible for Menkes syndrome has been assigned to Xq13 by a combination of comparative mapping and linkage analysis. A previous report has mapped the translocation breakpoint associated with the disease in a female patient to an interval delimited by PGK1 and a group of six more proximal Xq13 markers, including DXS56. We have characterized a number of PGK1- or DXS56-positive YACs, from which we have generated six new markers. One of them identifies a small overlap region between a PGK1-positive YAC and three DXS56-positive YACs, distal to the Menkes breakpoint. A 560-kb region covered by a DXS56-positive YAC has been restriction-mapped and subcloned, disclosing a 187-kb MluI fragment astride the breakpoint. A probe mapping distal to the rearrangement in the same interval reveals altered PGFE fragments in a hybrid constructed from the translocation patient's DNA. We describe the development of a cosmid contig extending 150 kb from a nearby CpG island across the breakpoint. This contig includes four adjacent clones displaying cross-specific hybridization.  相似文献   

6.
Chronic myelogenous leukaemia (CML) has a special phenomenon of chromosome translocation, which is called Philadelphia chromosome translocation. However, the detailed connection of this structure is troublesome and expensive to be identified. Low‐coverage whole genome sequencing (LCWGS) could not only detect the previously unknown chromosomal translocation, but also provide the breakpoint candidate small region (with an accuracy of ±200 bases). Importantly, the sequencing cost of LCWGS is about US$300. Then, with the Sanger DNA sequencing, the precise breakpoint can be determined at a single base level. In our project, with LCWGS, BCR and ABL1 are successfully identified to be disrupted in three CML patients (at chr22:23,632,356 and chr9:133,590,450; chr22:23,633,748 and chr9:133,635,781; chr22: 23,631,831 and chr9:133,598,513, respectively). Due to the reconnection after chromosome breakage, classical fusion gene (BCR::ABL1) was found in bone marrow and peripheral blood. The precise breakpoints were helpful to investigate the pathogenic mechanism of CML and could better guide the classification of CML subtypes. This LCWGS method is universal and can be used to detect all diseases related to chromosome variation, such as solid tumours, liquid tumours and birth defects.  相似文献   

7.
Summary In lymphocytes of a human female carrier of a balanced X;3 translocation, 46,X,t(X;3)(q28;q21), late replication of the structurally normal X chromosome only was previously described (de la Chapelle and Schröder 1973). We have now confirmed this finding using a fresh blood sample. Examining the chromosomes of this individual in fibroblasts we observed that either the normal X or the Xq+ chromosome could replicate late and show inactivity after fusion with heteroploid mouse cells. The replication patterns of chromosomes in human X;autosome translocations have so far almost exclusively been analyzed in lymphocytes. Our findings stress that results based on these cells are not representative for all cell types.  相似文献   

8.
The search for the gene for choroideremia (MIM 30310), a rare retinal dystrophy, has been of great interest due to the existence of several choroideremia patients with well-defined structural chromosome aberrations, thus providing the basis for a reverse genetics approach to the isolation of this disease gene. This report details our molecular studies of a woman with choroideremia and a de novo X; 13 translocation. Pulsed-field gel electrophoresis using a contour-clamped homogeneous electric field apparatus has allowed detection of the translocation breakpoint with the anonymous DNA marker p1bD5 (DXS165) and the mapping of this probe to within 120 kb of the breakpoint. In addition, we have used this probe to isolate a clone (pCH4) from a 100-kb jumping library which has crossed a rare-cutting restriction site (XhoI) between DXS165 and the choroideremia gene and detects the translocation breakpoint using this enzyme. Although DXS165 lies within 120 kb of the breakpoint and Cremers et al. (1987, Clin. Genet. 32: 421-423; 1989, PNAS 86: 7510-7514) have detected deletions of DXS165 in 3 of 30 choroideremia probands, we have detected no deletions of this marker or of pCH4 in 42 unrelated probands with this retinal disease.  相似文献   

9.
The Lowe oculocerebrorenal syndrome (OCRL) is characterized by congenital cataract, mental retardation, and defective renal tubular function. A map assignment of OCRL to Xq24-q26 has been made previously by linkage analysis with DXS42 at Xq24-q26 (theta = 0, z = 5.09) and with DXS10 at Xq26 (theta = 0, z = 6.45). Two additional families were studied and three additional polymorphisms were identified at DXS42 by using a 35-kb sequence isolated with the probe detecting the original polymorphism at DXS42. With additional OCRL families made informative for DXS42, theta remained 0 with z = 6.63; and for DXS10 theta = 0.03 and z = 7.07. Evidence for placing OCRL at Xq25 also comes from a female with Lowe syndrome and an X;3 translocation. We have used the Xq25 breakpoint in this patient to determine the position of OCRL relative to the two linked markers. Each derivative chromosome was isolated away from its normal counterpart in somatic cell hybrids. DXS42 was mapped to the derivative chromosome X containing Xpterq25, and DXS10 was mapped to the derivative chromosome 3 containing Xq25-qter. The markers DXS10 and DXS42 therefore show tight linkage with OCRL in six families and flank the Xq25 breakpoint in a female patient with an X;3 translocation. Linkage analysis with flanking markers was used to assess OCRL carrier status in women at risk. Results, when compared with carrier determination by ophthalmologic examination, indicated that the slit-lamp exam can be a sensitive and specific method of carrier determination in many cases.  相似文献   

10.
Tourette syndrome is a neuropsychiatric disorder characterized by the presence of multiple, involuntary motor and vocal tics. Associated pathologies include attention deficit disorder and obsessive-compulsive disorder (OCD). Extensive linkage analysis based on an autosomal dominant mode of transmission with reduced penetrance has failed to show linkage with polymorphic markers, suggesting either locus heterogeneity or a polygenic origin for Tourette syndrome. An individual diagnosed with Tourette syndrome has been described carrying a constitutional (7;18) chromosome translocation (Comings et al. 1986). Other family members carrying the translocation exhibit features seen in Tourette syndrome including motor tics, vocal tics, and OCD. Since the disruption of specific genes by a chromosomal rearrangement can elicit a particular phenotype, we have undertaken the physical mapping of the 7;18 translocation such that genes mapping at the site of the breakpoint can be identified and evaluated for a possible involvement in Tourette syndrome. Using somatic cell hybrids retaining either the der(7) or the der(18), a more precise localization of the breakpoints on chromosomes 7 and 18 have been determined. Furthermore, physical mapping has identified two YAC clones that span the translocation breakpoint on chromosome 18 as determined by FISH. These YAC clones will be useful for the eventual identification of genes that map to chromosomes 7 and 18 at the site of the translocation.  相似文献   

11.
Menkes syndrome is a rare X-linked recessive disorder characterized by an inability to metabolize copper. A female patient with both this disease and an X; autosome translocation with karyotype 46,X,t(X;2)(q13;q32.2) has previously been described. The translocation breakpoint in Xq13 coincides with a previous assignment of the Menkes gene at Xq13 by linkage data in humans and by analogy to the mottled mutations which are models for Menkes disease in the mouse. Therefore, this translocation probably interrupts the gene for Menkes syndrome in band Xq13. We describe here experiments to precisely map the translocation breakpoint within this chromosomal band. We have established a lymphoblastoid cell line from this patient and have used it to isolate the der(2) translocation chromosome (2pter----2q32::Xq13----Xqter) in human/hamster somatic cell hybrids. Southern blot analyses using a number of probes specific for chromosomes X and 2 have been studied to define precisely the location of the translocation breakpoint. Our results show that the breakpoint in this patient--and, therefore, likely the Menkes gene--maps to a small subregion of band Xq13.2-q13.3 proximal to the PGK1 locus and distal to all other Xq13 loci tested.  相似文献   

12.
A combination of Southern blot analysis on a panel of tumor-derived somatic cell hybrids and fluorescence in situ hybridization (FISH) techniques was used to map a series of DNA markers relative to the 1q21 breakpoint of the renal cell carcinoma (RCC)-associated (X;1)(p11;q21) translocation. This breakpoint maps between several members of the S100 family which are clustered in the 1q21 region and a conserved region between man and mouse containing the markers SPTA1-CRP-APCS-FcER1A-ATP1A2-APOA2. The location of the breakpoint coincides with the transition of a region of synteny of human chromosome 1 with mouse chromosomes 3 and 1. Received: 10 November 1995 / Revised: 3 February 1996  相似文献   

13.
Smith-Lemli-Opitz syndrome (SLOS) is a mental retardation/multiple congenital anomaly syndrome. The gene(s) involved has not been mapped or cloned, but, recently, a biochemical abnormality in cholesterol biosynthesis has been shown to occur in most SLOS patients. The defect is suspected to occur in the penultimate step of the cholesterol pathway, involving the enzyme 7-dehydrocholesterol reductase, which has not been isolated. On the basis of the hypothesis that a de novo balanced translocation [t(7;20)(q32.1;q13.2)] in an SLOS patient directly interrupts the SLOS gene, positional cloning techniques are being employed to localize and identify the SLOS gene. We report the identification of a chromosome 7-specific YAC that spans the translocation breakpoint, as detected by FISH. This is the first study narrowing a candidate SLOS region and placing it on physical and genetic maps of the human genome.  相似文献   

14.
15.
Summary An abnormally large X chromosome was found in a girl with Turner's syndrome, and was identified as a X/X translocation (karyotype 45,X/46,X,-X,+t(XqXp)).Aided by contract No. 20. 122 F.W.G.O., Belgium.  相似文献   

16.
The pattern of X chromosome inactivation in X autosome translocation carries in a herd of Limousin-Jersey crossbred cattle was studied using the reverse banding technique consisting of 5-bromodeoxyuridine incorporation and acridine orange staining and autoradiography on cultures of solid tissues and blood samples exposed to tritiated thymidine. The late-replicating X chromosome was noted to be the normal X in strikingly high proportions of cells in cultures of different tissues from all translocation carriers. It is suggested that the predominance of cells in which the normal X is inactivated may be the result of a post-inactivation selection process. Such a selection process during the prenatal life favouring cells in which the genes of the normal X chromosome remain unexpressed in translocation carrier females may be the mechanism that helps these conceptuses escape the adverse effects of functional aneuploidy. Based on the observation that the translocation carriers of this line of cattle are exclusively females and that there is a higher than expected rate of pregnancy loss, it is also postulated that the altered X chromosome may be lethal to all male conceptuses and to some of their female counterparts.  相似文献   

17.
We report on a 13-month-old girl showing dysmorphic features and a delay in psychomotor development. She was diagnosed with a balancedde novo translocation 46, X, t(X;13)(p11. 2;p13) and non-random inactivation of the X chromosome. FISH analysis, employing the X chromosome centromere andXIST-region-specific probes, showed that theXIST locus was not involved in the translocation. Selective inactivation of paternal X, which was involved in translocation, was revealed by the HUMARA assay. The pattern of methylation of 5 genes located within Xp, which are normally silenced on an inactive X chromosome, corresponded to an active (unmethylated) X chromosome. These results revealed that in our proband the X chromosome involved in translocation (Xt) was preferentially inactivated. However, genes located on the translocated Xp did not includeXIST. This resulted in functional Xp disomy, which most probably accounts for the abnormal phenotype in our patient.  相似文献   

18.
19.
Summary A new case of X/autosome translocation in a male patient is described. Azoospermia and Klinefelter like stigmata can be explained as a consequence of the balanced translocation, or by disturbed X-chromosomal inactivation during spermiogenesis.
Zusammenfassung Es wird über einen neuen Fall einer X/Autosom-Translokation beim Mann berichtet. Azoospermie und Klinefelter-ähnliche Stigmata können unmittelbar auf die balancierte Translokation zurückgeführt werden oder Folge einer durch die Translokation gestörten X-chromosomalen Inaktivierung während der Spermiogenese sein.
  相似文献   

20.
Rett syndrome is a neurologic disorder characterized by early normal development followed by regression, acquired deceleration of head growth, autism, ataxia, and stereotypic hand movements. The exclusive occurrence of the syndrome in females and the occurrence of a few familial cases with inheritance through maternal lines suggest that this disorder is most likely secondary to a mutation on the X chromosome. To address this hypothesis and to identify candidate regions for the Rett syndrome gene locus, genotypic analysis was performed in two families with maternally related affected half-sisters by using 63 DNA markers from the X chromosome. Maternal and paternal X chromosomes from the affected sisters were separated in somatic cell hybrids and were examined for concordance/discordance of maternal alleles at the tested loci. Thirty-six markers were informative in at least one of the two families, and 25 markers were informative in both families. Twenty loci were excluded as candidates for the Rett syndrome gene, on the basis of discordance for maternal alleles in the half-sisters. Nineteen of the loci studied were chosen for multipoint linkage analysis because they have been previously genetically mapped using a large number of meioses from reference families. Using the exclusion criterion of a lod score less than -2, we were able to exclude the region between the Duchenne muscular dystrophy locus and the DXS456 locus. This region extends from Xp21.2 to Xq21-q23. The use of the multipoint linkage analysis approach outlined in this study should allow the exclusion of additional regions of the X chromosome as new markers are analyzed. This in turn will result in a defined region of the X chromosome that should be searched for candidate sequences for the Rett syndrome gene in both familial and sporadic cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号