首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A colorimetric procedure for quantitative determination of free and substituted glucosamine amino groups in heparin and related polysaccharides has been developed. The total content of hexosamine amino groups is determined by a modification of the method of Tsuji et al. (1969, Chem. Pharm. Bull. 17, 1505-1510); this method involves acid hydrolysis under conditions effecting complete removal of N-acetyl and N-sulfate groups, deaminative cleavage with nitrous acid, and colorimetric analysis of the resultant anhydromannose residues by reaction with 3-methyl-2-benzothiazolinone hydrazone (MBTH). N-sulfated glucosamine residues are cleaved selectively by treatment with nitrous acid at pH approximately 1.5 (J. E. Shively, and H.E. Conrad, 1976, Biochemistry 15, 3932-3942) and quantitated by the MBTH reaction. Under carefully controlled conditions, deamination at pH approximately 1.5 is highly specific for N-sulfated glucosamine residues, but an excess of reagent causes some cleavage of residues with unsubstituted amino groups as well. Deaminative cleavage at pH approximately 4.5 results in preferential degradation of unsubstituted glucosamine residues, but some cleavage (5-8%) of N-sulfated residues also occurs. However, analysis of the content of N-sulfated residues by the specific pH 1.5 procedure allows appropriate corrections to be made. From the value for total hexosamine content and the sum of N-sulfated and unsubstituted residues, the content of N-acetylated residues is calculated by difference. The modified deamination procedures, in combination with product analysis by the MBTH reaction, have been applied to several problems commonly encountered in the analysis and characterization of heparin.  相似文献   

2.
The disaccharide composition of heparins and heparan sulfates   总被引:7,自引:0,他引:7  
Heparin and heparan sulfate can be cleaved selectively at their N-sulfated glucosamine residues by direct treatment with nitrous acid at pH 1.5. These polymers can also be cleaved selectively at their N-acetylated glucosamine residues by first N-deacetylating with hydrazine and then treating the products with nitrous acid at pH 4. These procedures have been combined and optimized for the conversion of these glycosaminoglycan chains into their disaccharide units. A modified hydrazinolysis procedure in which the glycosaminoglycans were heated with hydrazine:water (70:30) containing 1% hydrazine sulfate gave rapid rates of N-deacetylation and minimal conversion of the uronic acid residues to their hydrazide derivatives. Under these conditions, N-deacetylation was complete in 4 h and the beta-eliminative cleavage of the polymer chains that occurs during hydrazinolysis (P. N. Shaklee and H. E. Conrad (1984) Biochem. J. 217, 187-197) was eliminated. Treatment of the N-deacetylated polymer with nitrous acid at pH 3 for 15 h at 25 degrees C then gave simultaneous cleavage at the N-unsubstituted glucosamine residues and the N-sulfated glucosamine residues. These deamination conditions minimized, but did not eliminate, the side reaction in which nitrous acid-reactive glucosamine residues undergo ring contraction without glucosaminide bond cleavage. Thus, the disaccharides were obtained in a yield of 90% of those originally present in the glycosaminoglycan chains. Since the ring contraction side reaction occurs randomly at the diazotized glucosamine residues, the disaccharides formed in the pH 3 nitrous acid reaction were recovered in proportions equal to those in the original glycosaminoglycan chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
1. 3,5-Diaminobenzoic acid reacted rapidly with the product from HNO(2) deamination of heparin, heparan sulphate and 2-amino-2-deoxyhexoses under very mild conditions (pH3.0 and 37 degrees C) to give stable fluorescent derivatives. 2. The fluorescence yield was rectilinearly related to the concentration of heparin etc. Less than 0.1mug of 2-amino-2-deoxyhexose was easily measurable in standard cuvettes. 3. The deamination products of glucosamine and (particularly) galactosamine were labile in the HNO(2) reagent, with half-lives of 20-40min at room temperature. At 0 degrees C they were much more stable. The analogous product from heparin was not so labile. 4. Under the standard conditions, and at room temperature, relative fluorescence yields (d-glucosamine=1.0) were: d-galactosamine, 0.75; d-gulosamine, 0.38; d-mannosamine, approx. 0.20. 5. Neutral sugars, chondroitin sulphates, DNA and N-acetylneuraminic acids did not react, nor did N-acetylamino sugars or non-deaminated hexosamines. 6. It is suggested that the Dische-Borenfreund [Dische & Borenfreund (1950) J. Biol. Chem.184, 517-522] indole method, the Kissane-Robins [Kissane & Robins (1962) J. Biol. Chem.233, 184-188] DNA assay and the proposed amino sugar method are all examples of simple aldehyde reactions. The specificity of the proposed method is considerably greater than that of the Dische-Borenfreund procedure, partly because of the much milder reaction conditions. 7. The proposed method is very reproducible, about 50-100 times as sensitive as the Elson-Morgan reaction, and 10-50 times as sensitive as the Dische-Borenfreund procedures. It is also convenient; acid hydrolysates of amino sugar-containing compounds can be directly neutralized with sodium acetate solution.  相似文献   

4.
Heparin, heparan sulphate, and various derivatives thereof have been oxidised with periodate at pH 3.0 and 4° and at pH 7.0 and 37°. Whereas oxidation under the latter conditions destroys all of the nonsulphated uronic acids, treatment with periodate at low pH and temperature causes selective oxidation of uronic acid residues. The reactivity of uronic acid residues depends on the nature of neighbouring 2-amino-2-deoxyglucose residues. d-Glucuronic acid residues are susceptible to oxidation when flanked by N-acetylated amino sugars, but resistant when adjacent residues are either unsubstituted or N-sulphated. L-Iduronic acid residues in their natural environment (2-deoxy-2-sulphoamino-d-glucose) are resistant to oxidation, whereas removal of N-sulphate groups renders a portion of these residues periodate-sensitive. Oxidised uronic acid residues in heparin-related glycans may be cleaved by alkali, producing a series of oligosaccharide fragments. Thus, periodate oxidation-alkaline elimination provides an additional method for the controlled degradation of heparin.  相似文献   

5.
We have analyzed the content of N-unsubstituted glucosamine in heparan sulfate from glypican-1 synthesized by endothelial cells during inhibition of (a) intracellular progression by brefeldin A, (b) heparan sulfate degradation by suramin, and/or (c) endogenous nitrite formation. Glypican-1 from brefeldin A-treated cells carried heparan sulfate chains that were extensively degraded by nitrous acid at pH 3.9, indicating the presence of glucosamines with free amino groups. Chains with such residues were rare in glypican-1 isolated from unperturbed cells and from cells treated with suramin and, surprisingly, when nitrite-deprived. However, when nitrite-deprived cells were simultaneously treated with suramin, such glucosamine residues were more prevalent. To locate these residues, chains were first cleaved at linkages to sulfated l-iduronic acid by heparin lyase and released fragments were separated from core protein carrying heparan sulfate stubs. These stubs were then cleaved off at sites linking N-substituted glucosamines to d-glucuronic acid. These fragments were extensively degraded by nitrous acid at pH 3.9. When purified proteoglycan isolated from brefeldin A-treated cells was incubated with intact cells, endoheparanase-catalyzed degradation generated a core protein with heparan sulfate stubs that were similarly sensitive to nitrous acid. We conclude that there is a concentration of N-unsubstituted glucosamines to the reducing side of the endoheparanase cleavage site in the transition region between unmodified and modified chain segments near the linkage region to the protein. Both sites as well as the heparin lyase-sensitive sites seem to be in close proximity to one another.  相似文献   

6.
Heparan sulphate, heparin and dermatan sulphate were hydrolysed in 0.5M-H2SO4 at 100 degrees C. At intervals portions of the hydrolysate were removed and treated with HNO2 at pH 4.0 to cleave the glycosidic bonds of the N-unsubstituted hexosamine residues and to convert both free and combined hexosamines into anhydrohexoses. These hydrolysis/deamination mixtures were reduced with NaB3H4 and analysed by radiochromatography for alpha-L-iduronosylanhydrohexose, beta-D-glucuronosylanhydrohexose, and the free uronic acids and anhydrohexose. These data gave a kinetic profile of the cleavage of the alpha-L-iduronosyl and the beta-D-glucuronosyl bonds in these glycosaminoglycans. The beta-D-glucuronosyl bonds showed the expected resistance to acid hydrolysis, but the alpha-L-iduronosyl bonds were found to be as labile to acid as some neutral sugar glycosides. This unusual lability of alpha-D-iduronosyl-anhydromannitol and beta-D-glucuronosylanhydromannitol. The procedures used to follow the kinetics of glycosaminoglycan hydrolysis can also be sued to obtain quantitative analyses of L-iduronic acid, D-glucuronic acid and hexosamine in these polymers.  相似文献   

7.
A new derivatization reagent, tribenzylsilyl isothiocyanate (TBS-ITC), is applied to C-terminal peptide and protein sequencing. It has been successfully used to sequence six C-terminal residues of house apomyoglobin and a synthetic peptide at low nanomole levels. The chemistry involves activation with acetic anhydride, derivatization with TBS-ITC, and cleavage of derivatized C-terminal amino acid thiohydantoin with sodium hydroxide. The tribenzylsilyl is a bulky, electric donor group and is a good leaving group. It facilitates the nucleophilic attack of the NCS–1 in the coupling reaction. The efficiency for C-terminal sequencing by TBS-ITC is about the same as that of acetyl isothiocyanate (AITC), which is a derivatizing reagent for C-terminal sequencing developed by our laboratory. TBS-ITC is much more stable than AITC and trimethylsilyl isothiocyanate (TMS-ITC). TBS-ITC is a solid with relatively long shelf life, whereas AITC and TMS-ITC are liquid and not stable at room temperature.  相似文献   

8.
The conditions and utility of the N-chlorosuccinimide/urea (NCS/urea) reagent for the selective cleavage of tryptophanyl peptide bonds in proteins is demonstrated with cytochrome c. At low concentrations of NCS/urea the oxidation of thioether side chains in cytochrome c is the predominant reaction. Methionyl residues are oxidized to sulfoxide and the heme-thioether bridge is partially cleaved. At 10-fold excess of NCS/urea reagent, cleavage of the tryptophanyl peptide bond is optimal at approximately 50% yield in several species of cytochrome c studied. Analytical data on isolated horse cytochrome c peptide fragments demonstrate lack of modification and cleavage at tyrosyl and histidyl residues. However, at high concentrations of NCS/urea reagent (30-fold) unexpected conversions of methionine to sulfone and cysteine to cysteic acid in intact proteins are observed. This is in contradistinction to the absence of sulfone in NCS/urea-reacted amino acid mixtures. The mechanisms of halogenation and cleavage by N-bromosuccinimide, N-iodosuccinimide, and N-chlorosuccinimide are discussed. It is porposed that the selectivity with respect to halogenation by N-chlorosuccinimide is due to the insignificant participation of molecular chlorine in the NCS/urea reaction. A mechanism of halogenation and cleavage by NCS at tryptophan is also offered.  相似文献   

9.
1. The synthesis of methyl 5-iodopyridine-2-carboximidate and its reaction with amino groups of model compounds and performic acid-oxidized insulin are described. The reagent was designed to introduce heavy atoms into specific sites in proteins. 2. Specific reaction with the amino groups of oxidized insulin can be achieved under reasonably mild conditions giving rise to the corresponding N-monosubstituted amidines. 3. The extent of reaction of this reagent with protein amino groups can be readily determined by difference spectroscopy. Modification of lysine residues inhibits tryptic cleavage at such residues, and this can be of assistance in establishing the site of modification in the primary structure. 4. Evidence is presented to show that methyl 5-iodopyridine-2-carboximidate can react specifically, at pH5.0, with the aromatic amino group of 3-amino-l-tyrosine; the final product of this reaction is a 2-arylbenzoxazole. 5. The use of this reagent as a general method for preparing heavy-atom isomorphous derivatives of proteins is discussed.  相似文献   

10.
A reaction is described that allows the preparation of fluorescent derivatives of a group of related compounds with the basic 4-hydroxyphenethylamine structure. Examination of the reaction shows that it takes place in two stages, which can be considered separately. (1) Reaction of hydrazine with nitrous acid: this is instantaneous at room temperature and involves the reaction of 1 mol of hydrazine with 2 mol of nitrous acid. (2) Reaction with 4-hydroxyphenethylamine compounds: this occurs slowly at room temperature but the rate of reaction is significantly increased at higher temperatures. Ammonium sulphamate is added to remove excess of nitrous acid, found to be detrimental to the reaction. Examination of reagent concentrations necessary for maximum fluoresence yield demonstrated the need for a 40-fold molar excess of the reagent formed in the first stage. The derivatives fluoresce in alkaline solution, the fluorescence of derivatives of 4-hydroxy compounds being stable for over 1h at room temperature, those of 4-hydroxy-3-methoxy compounds being slightly less stable. The derivatives were distinguishable from their parent compounds by t.l.c.  相似文献   

11.
Functional properties of heparan sulfate (HS) are generally ascribed to the sulfation pattern of the polysaccharide. However, recently reported functional implications of rare N-unsubstituted glucosamine (GlcNH(2)) residues in native HS prompted our structural characterization of sequences around such residues. HS preparations were cleaved with nitrous acid at either N-sulfated or N-unsubstituted glucosamine units followed by reduction with NaB(3)H(4). The labeled products were characterized following complementary deamination steps. The proportion of GlcNH(2) units varied from 0.7-4% of total glucosamine in different HS preparations. The GlcNH(2) units occurred largely clustered at the polysaccharide-protein linkage region in intestinal HS, also more peripherally in aortic HS. They were preferentially located within N-acetylated domains, or in transition sequences between N-acetylated and N-sulfated domains, only 20-30% of the adjacent upstream and downstream disaccharide units being N-sulfated. The nearest downstream (toward the polysaccharide-protein linkage) hexuronic acid was invariably GlcUA, whereas the upstream neighbor could be either GlcUA or IdoUA. The highly sulfated but N-unsubstituted disaccharide unit, -IdoUA2S-GlcNH(2)6S-, was detected in human renal and porcine intestinal HS, but not in HS from human aorta. These results are interpreted in terms of a biosynthetic mechanism, whereby GlcNH(2) residues are formed through regulated, incomplete action of an N-deacetylase/N-sulfotransferase enzyme.  相似文献   

12.
1) The reaction of 1 H-diazotetrazole and N-bromosuccinimide with aminoacylase was studied under different conditions. A tenfold molar excess of 1 H-diazotetrazole (2 X 10(-4) M) at pH 5.5 abolishes the catalytic activity of the enzyme while modifying only two tryptophan residues. No other amino acid reacted under these conditions as tested by amino acid analysis. 2) With a 40-fold molar excess of N-bromosuccinimide (8 X 10(-4)M) at pH 5.0, two tryptophan residues of the enzyme were oxidized with complete loss of activity. Under these conditions no significant cleavage of the polypeptide chain was observed. Neither tyrosine nor histidine was modified by this reagent, up to a 100-fold molar excess. 3) Substrates and reversible (N-tosylalanine) and irreversible (TosPheCH2Cl) inhibitors of the enzyme do not protect the two reactive tryptophans against the modification reagents. Under more drastic conditions, lysine, tyrosine and histidine residues are also modified by the reagents.  相似文献   

13.
The Schlack-Kumpf degradation, also called the isothiocyanate method, is thought to be a promising approach to chemical C-terminal sequencing of peptides and proteins. The derivatizing reagent is most crucial to this method. A new derivatizing reagent, triphenylgermanyl isothiocyanate (TPG-ITC), has been synthesized and applied to C-terminal peptide sequencing. The chemistry involves activation with acetic anhydride, derivatization with TPG-ITC, and cleavage of the derivatized C-terminal amino acid thiohydantoin with sodium hydroxide. A series of reaction conditions, including activation reagent volume, activation time, and derivatization temperature and time, have been investigated using a model peptide covalently attached to 1,4-phenylene diisothiocyanate (DITC)-glass beads. This procedure has been successfully used to sequence eight C-terminal residues of a model peptide at low nanomole levels. TPG-ITC is a white solid with relatively long shelf-life. According to our previous article (B. Mo, J. Li, and S. P. Liang, 1997, Anal. Biochem. 252, 169-176), TPG-ITC is a type II derivatizing reagent. Compared with acetyl isothiocyanate and trimethylsilyl isothiocyanate, TPG-ITC is much more stable and efficient for use in peptide C-terminal sequencing.  相似文献   

14.
Commercial low molecular weight heparins (LMWHs) are prepared by several methods including peroxidative cleavage, nitrous acid cleavage, chemical ?-elimination, and enzymatic β-elimination. The disadvantages of these methods are that strong reaction conditions or harsh chemicals are used and these can result in decomposition or modification of saccharide units within the polysaccharide backbone. These side-reactions reduce product quality and yield. Here we show the partial photolysis of unfractionated heparin can be performed in distillated water using titanium dioxide (TiO(2)). TiO(2) is a catalyst that can be easily removed by centrifugation or filtration after the photochemical reaction takes place, resulting in highly pure products. The anticoagulant activity of photodegraded LMWH (pLMWH) is comparable to the most common commercially available LMWHs (i.e., Enoxaparin and Dalteparin). (1)H NMR spectra obtained show that pLMWH maintains the same core structure as unfractionated heparin. This photochemical reaction was investigated using liquid chromatography/mass spectrometry (LC/MS) and unlike other processes commonly used to prepare LMWHs, photochemically preparation affords polysaccharide chains of reduced length having both odd and even of saccharide residues.  相似文献   

15.
J A Cifonelli  J A King 《Biochemistry》1977,16(10):2137-2141
Structural properties of heparan sulfate preparations from hog mucosa and beef lung sources were obtained by application of Smith degradation and nitrous acid reactions. Products formed by these reactions indicated that most of the iduronic acid present in these mucopolysaccharides is ester sulfated, whereas N-sulfated glucosamine residues are ester sulfated much less frequently. Repeating units with sulfated iduronic acid found to occur almost entirely in single sequences. Futhermore, the iduronic acid moieties may be bound to either N-acetylated or N-sulfated glucosamine units, with these occuring at either end of the uronic acid unit.  相似文献   

16.
Hydrazinolysis of heparin and other glycosaminoglycans.   总被引:2,自引:0,他引:2       下载免费PDF全文
Heparin, carboxy-group-reduced heparin, several sulphated monosaccharides and disaccharides formed from heparin, and a tetrasaccharide prepared from chondroitin sulphate were treated at 100 degrees C with hydrazine containing 1% hydrazine sulphate for periods sufficient to cause complete N-deacetylation of the N-acetylhexosamine residues. Under these hydrazinolysis conditions both the N-sulphate and the O-sulphate substituents on these compounds were completely stable. However, the uronic acid residues were converted into their hydrazide derivatives at rates that depended on the uronic acid structures. Unsubstituted L-iduronic acid residues reacted much more slowly than did unsubstituted D-glucuronic acid or 2-O-sulphated L-iduronic acid residues. The chemical modification of the carboxy groups resulted in a low rate of C-5 epimerization of the uronic acid residues. The hydrazinolysis reaction also caused a partial depolymerization of heparin but not of carboxy-group-reduced heparin. Treatment of the hydrazinolysis products with HNO2 at either pH 4 or pH 1.5 or with HIO3 converted the uronic acid hydrazides back into uronic acid residues. The use of the hydrazinolysis reaction in studies of the structures of uronic acid-containing polymers and the implications of the uronic acid hydrazide formation are discussed.  相似文献   

17.
Summary In a reverse mutation system with the haploid, adenine requiring strain, ad6–45, of Saccharomyces cerevisiae it could be demonstrated that N-methyl-nitrosamides are highly mutagenic down to ph 2. By chemical methods it could be shown that nitrosamides decompose into nitrous acid at ph 2.2–2.3. Moreover, in the case of NMG, NMH and NMU, deamination of adenine to hypoxanthine was found to occur at pH 2. These results led to the conclusion that N-methyl-nitrosamides at low pH possibly exert their mutagenicities via deamination by nitrous acid besides the alkylation by diazomethane probably prevailing at higher pH. Mere incubation of yeast cells in buffers of low pH was not mutagenic.  相似文献   

18.
The rate of nitrous acid deamination of labeled cytosine residues in native Escherichia coli deoxyribonucleic acid was monitored in vitro by release of acid-soluble counts after treatment with uracil deoxyribonucleic acid glycosylase. The reaction exhibited a lag and was not stimulate by several agents previously shown to enhance base substitution mutagenesis during nitrous acid treatment of duplex deoxyribonucleic acid. We conclude that a significant proportion of nitrous acid induced mutagenic lesions are novel lesions and not cytosine deaminations.  相似文献   

19.
A method has been developed to measure hydrazine, hydrazides, and their mixtures using a modification of the trinitrobenzenesulfonic acid method [T. Okuyama and K. Satake (1960) J. Biochem. (Tokyo) 47, 654-660]. After incubation of the sample containing hydrazine and hydrazide with trinitrobenzenesulfonate at pH 8.5 at room temperature for 40 min, the reaction mixture was diluted with a Na2CO3-NaHCO3 buffer (0.1 M, pH 10.8) rather than with 0.5 M HCl. Different chromogens were produced from the reaction of hydrazine (lambda max = 570 nm) and hydrazides (lambda max = 385 and 500 nm) with trinitrobenzenesulfonic acid. The method allowed simultaneous determination of hydrazine (5 to 60 nmol) with hydrazide (10 to 120 nmol) in a mixture with a standard deviation of less than 5%. The presence of amino compounds (except for amino sugars) did not interfere with the measurement of hydrazine or hydrazides. Interference by amino sugars in the determination of hydrazine or hydrazides was eliminated by pretreatment of the sample with NaBH4 to reduce the amino sugars to 2-amino-2-deoxy-hexitols.  相似文献   

20.
The dominant part of the O-antigen of Vibrio cholerae is a homopolysaccharide composed of (1→2)-linked 4-amino-4,6-dideoxy-α-d-mannopyranosyl (perosaminyl) residues, the amino groups of which are acylated by 3-deoxy-l-glycero-tetronic acid. Most of the amino sugar is decomposed during acid hydrolysis. Treatment of the polymer with anhydrous hydrogen fluoride, which cleaves the glycosidic linkages but does not cause N-deacylation, followed by acid hydrolysis under mild conditions, produced the monomer in good yield. Treatment of the N-deacylated polysaccharide with nitrous acid caused deamination with concomitant rearrangements, typical of 4-amino-4-deoxyhexopyranosyl residues in which the amino group occupies an equatorial position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号