首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthetic opioid peptide analog Dmt-D-Arg-Phe-Lys-NH(2) ([Dmt(1)]DALDA; [Dmt= 2',6'-dimethyltyrosine) is a highly potent and selective mu opioid-receptor agonist. A very sensitive and robust capillary liquid chromatography/nanospray ion-trap (IT) mass spectrometry method has been developed to quantify [Dmt(1)]DALDA in ovine plasma, using deuterated [Dmt(1)]DALDA as the internal standard. The standard MS/MS spectra of d(0)- and d(5)-[Dmt(1)]DALDA were obtained, and the collision energy was experimentally optimized to 25%. The product ion [ M + 2H-NH(3)](2+) (m/z 312.2) was used to identify and to quantify the synthetic opioid peptide analog in ovine plasma samples. The MS/MS detection sensitivity for [Dmt(1)]DALDA was 625 amol. A calibration curve was constructed, and quantitative analysis was performed on a series of ovine plasma samples.  相似文献   

2.
H-Dmt-D-Arg-Phe-Lys-NH2 (Dmt=2',6'-dimethyltyrosine) ([Dmt1] DALDA) is a highly potent and selective micro opioid peptide agonist capable of producing an antinociceptive effect after systemic administration. Fluorescent analogues of [Dmt1] DALDA containing either beta-dansyl-L-alpha,beta-diaminopropionic acid [Dap(dns)] or beta-anthraniloyl-L-alpha,beta-diaminopropionic acid [Dap(atn)] in place of Lys4 were synthesized. Both analogues retained subnanomolar mu opioid receptor binding affinity, very high mu opioid agonist activity in the guinea pig ileum assay and extraordinarily high antinociceptive activity in the mouse tail-flick test (intrathecal administration). The maxima of the fluorescence emission spectra recorded in Tris-HCl buffer (pH 6.6) indicated a completely aqueous environment of the fluorophore in both peptides. The high fluorescence quantum yield (phi=0.358) of the [Dap(atn)4] analogue was particularly remarkable. These fluorescent [Dmt1] DALDA analogues represent valuable pharmacological tools for various applications, including studies on the binding to receptors and other biopolymers, cellular uptake and intracellular distribution, and tissue distribution.  相似文献   

3.
Endurance exercise provides cardioprotection against ischemia-reperfusion-induced myocardial stunning and infarction. A recent study demonstrates that an exercise-induced increase in myocardial manganese superoxide dismutase (MnSOD) activity is essential to protect the heart against infarction. It is unknown if an elevation in cardiac MnSOD is also a prerequisite to achieve exercise-induced protection against myocardial stunning. Therefore, this study determined if an exercise-induced increase in myocardial MnSOD activity is a requirement to achieve protection against myocardial stunning. Adult male rats remained sedentary or performed successive bouts of endurance exercise. Hearts were exposed to 25 min of global ischemia followed by reperfusion in an isolated working heart preparation. Postischemic recovery of cardiac external work during reperfusion was significantly higher (84 +/- 3 vs. 67 +/- 4%) in exercised animals compared with sedentary controls. Furthermore, prevention of exercise-induced expression of myocardial MnSOD via antisense oligonucleotides did not retard this exercise-induced protection against myocardial stunning. These data demonstrate that exercise-induced increases in cardiac MnSOD activity are not essential to achieve exercise-mediated protection against myocardial stunning. Therefore, we conclude that different mediators are responsible for exercise-induced cardioprotection against myocardial stunning and infarction.  相似文献   

4.
Dansylated analogues of the potent and selective micro opioid peptide agonist [Dmt(1)]DALDA (H-Dmt-D-Arg-Phe-Lys-NH(2); Dmt = 2',6'-dimethyltyrosine) were prepared either by substitution of N(beta)-dansyl-alpha,beta-diaminopropionic acid or N(epsilon)-dansyllysine for Lys(4), or by attachment of a dansyl group to the C-terminal carboxamide function via a linker. All three analogues displayed high micro agonist potency in vitro and the C-terminally dansylated one retained significant micro receptor selectivity. The three analogues showed interesting differences in their fluorescence emission maxima and quantum yields, indicating that the dansyl group in two of them was engaged in intramolecular hydrophobic interactions. These dansylated [Dmt(1)]DALDA analogues represent valuable tools for binding studies, cellular uptake and intracellular distribution studies, and tissue distribution studies.  相似文献   

5.
We had previously reported that activation of histamine H(3)-receptors (H(3)R) on cardiac adrenergic nerve terminals decreases norepinephrine (NE) overflow from ischemic hearts and alleviates reperfusion arrhythmias. Thus, we used transgenic mice lacking H(3)R (H(3)R(-/-)) to investigate whether ischemic arrhythmias might be more severe in H(3)R(-/-) hearts than in hearts with intact H(3)R (H(3)R(+/+)). We report a greater incidence and longer duration of ventricular fibrillation (VF) in H(3)R(-/-) hearts subjected to ischemia. VF duration was linearly correlated with NE overflow, suggesting a possible cause-effect relationship between magnitude of NE release and severity of reperfusion arrhythmias. Thus, our findings strengthen a protective antiarrhythmic role of H(3)R in myocardial ischemia. Since malignant tachyarrhythmias cause sudden death in ischemic heart disease, attenuation of NE release by selective H(3)R agonists may represent a new approach in the prevention and treatment of ischemic arrhythmias.  相似文献   

6.
The dermorphin-derived tetrapeptide H-Dmt-d-Arg-Phe-Lys-NH(2) (Dmt = 2',6'-dimethyltyrosine) ([Dmt(1)]DALDA) is a highly potent and selective mu-opioid agonist capable of crossing the blood-brain barrier and producing a potent, centrally mediated analgesic effect when given systemically. For the purpose of biodistribution studies by fluorescence techniques, [Dmt(1)]DALDA analogues containing various fluorescent labels [dansyl, anthraniloyl (atn), fluorescein, or 6-dimethylamino-2'-naphthoyl] in several different locations of the peptide were synthesized and characterized in vitro in the guinea-pig ileum and mouse vas deferens assays, and in mu-, delta- and kappa-opioid receptor-binding assays. The analogues showed various degrees of mu receptor-binding selectivity, but all of them were less mu-selective than the [Dmt(1)]DALDA parent peptide. Most analogues retained potent, full mu-agonist activity, except for one with fluorescein attached at the C-terminus (3a) (partial mu-agonist) and one containing beta-(6'-dimethylamino-2'-naphthoyl)alanine (aladan) in place of Phe(3) (4) (mu- and kappa-antagonist). The obtained data indicate that the receptor-binding affinity, receptor selectivity and intrinsic efficacy of the prepared analogues vary very significantly, depending on the type of fluorescent label used and on its location in the peptide. The results suggest that the biological activity profile of fluorescence-labeled peptide analogues should always be carefully determined prior to their use in biodistribution studies or other studies. One of the analogues containing the atn group (2a) proved highly useful in a study of cellular uptake and intracellular distribution by confocal laser scanning microscopy.  相似文献   

7.
Reactive oxygen species (ROS) have been implicated in the mechanism of postischemic contractile dysfunction, known as myocardial stunning. In this study, we examined protective effects of antioxidant enzymes, superoxide dismutase (SOD) and catalase, against ischemia/reperfusion-induced cardiac dysfunction and inhibition of Na+,K+-ATPase activity. Isolated Langendorff-perfused rabbit hearts were subjected to 15 min of global normothermic ischemia followed by 10 min reperfusion. The hearts treated with SOD plus catalase did not show significant recovery of left ventricular (LV) end-diastolic pressure compared with untreated ischemic reperfused hearts. Treatment with antioxidants had no protective effects on developed LV pressure or its maximal positive and negative first derivatives (+/-LVdP/dt). Myocardial stunning was accompanied by significant loss in sarcolemmal Na+,K+-ATPase activity and thiol group content. Inhibition of enzyme activity and oxidation of SH groups were not prevented by antioxidant enzymes. These results suggest that administration of SOD and catalase in perfusate do not protect significantly against cardiac dysfunction in stunned rabbit myocardium.  相似文献   

8.
Recent studies have demonstrated that increased expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 2a improves myocardial contractility and Ca2+ handling at baseline and in disease conditions, including myocardial ischemia-reperfusion (I/R). Conversely, it has also been reported that pharmacological inhibition of SERCA might improve postischemic function in stunned hearts or in isolated myocardium following I/R. The goal of this study was to test how decreases in SERCA pump level/activity affect cardiac function following I/R. To address this question, we used a heterozygous SERCA2a knockout (SERCA2a+/-) mouse model with decreased SERCA pump levels and studied the effect of myocardial stunning (20-min ischemia followed by reperfusion) and infarction (30-min ischemia followed by reperfusion) following 60-min reperfusion. Our results demonstrate that postischemic myocardial relaxation was significantly impaired in SERCA2a+/- hearts with both stunning and infarction protocols. Interestingly, postischemic recovery of contractile function was comparable in SERCA2a+/- and wild-type hearts subjected to stunning. In contrast, following 30-min ischemia, postischemic contractile function was reduced in SERCA2a+/- hearts with significantly larger infarction. Rhod-2 spectrofluorometry revealed significantly higher diastolic intracellular Ca2+ in SERCA2a+/- hearts compared with wild-type hearts. Both at 30-min ischemia and 2-min reperfusion, intracellular Ca2+ levels were significantly higher in SERCA2a+/- hearts. Electron paramagnetic resonance spin trapping showed a similar extent of postischemic free-radical generation in both strains. These data provide direct evidence that functional SERCA2a level, independent of oxidative stress, is crucial for postischemic myocardial function and salvage during I/R.  相似文献   

9.
Bilirubin is a potent antioxidant generated intracellularly during the degradation of heme by the enzyme heme oxygenase. The purpose of this study was to determine the role of increased cardiac bilirubin in protection against postischemic myocardial dysfunction. Rat hearts were isolated and perfused according to the Langendorff technique to evaluate the recovery of myocardial function after 30 min of global ischemia and 60 min of reperfusion. We found that upregulation of the inducible isoform of heme oxygenase (HO-1) by treatment of animals with hemin 24 h before ischemia ameliorated myocardial function and reduced infarct size (tetrazolium staining) on reperfusion of isolated hearts. Tin protoporphyrin IX, an inhibitor of heme oxygenase activity, completely abolished the improved postischemic myocardial performance observed after hemin-mediated HO-1 induction. Likewise, cardiac tissue injury was exacerbated by treatment with tin protoporphyrin IX. Increased cardiac HO-1 expression and heme oxygenase activity were associated with enhanced tissue bilirubin content and an increased rate of bilirubin release into the perfusion buffer. Furthermore, exogenously administered bilirubin at concentrations as low as 100 nanomolar significantly restored myocardial function and minimized both infarct size and mitochondrial damage on reperfusion. Our data provide strong evidence for a primary role of HO-1-derived bilirubin in cardioprotection against reperfusion injury.  相似文献   

10.
Acute effects of triiodothyronine (T3) on postischemic myocardial stunning and intracellular Ca2+ contents were studied in the isolated working hearts of streptozotocin-induced diabetic rats and age-matched controls. After two weeks of diabetes, serum T3 and T4 levels were decreased to 62.5% and 33.9% of control values. Basal preischemic cardiac performance did not differ between diabetic and control rats. In contrast, during reperfusion after 20-min ischemia, diabetic rats exhibited an impaired recovery of heart rate (at 30-min reperfusion 57.5% of baseline vs. control 88.5%), left ventricular (LV) systolic pressure (44.1% vs. 89.5%), and cardiac work (23.1% vs. 66.0%). When 1 and 100 nM T3 was added before ischemia, heart rate was recovered to 77.2% and 81.8% of baseline, LV systolic pressure to 68.3% and 81.9%, and cardiac work to 50.8% and 59.0%, respectively. Diabetic rat hearts showed a higher Ca2+ content in the basal state and a further increase after reperfusion (4.96+/-1.17 vs. control 3.78+/-0.48 micromol/g, p<0.01). In diabetic hearts, H+ release was decreased after reperfusion (5.24+/-2.21 vs. 8.70+/-1.41 mmol/min/g, p<0.05). T3 administration caused a decrease in the postischemic Ca2+ accumulation (lnM T3 4.66+/-0.41 and 100 nM T3 3.58+/-0.36) and recovered the H+ release (lnM T3 16.2+/-3.9 and 100 nM T3 11.6+/-0.9). T3 did not alter myocardial O2 consumption. Results suggest that diabetic rat hearts are vulnerable to postischemic stunning, and T3 protects the myocardial stunning possibly via inhibiting Ca2+ overload.  相似文献   

11.
5-Amino-4-imidazolecarboxamide riboside (AICAr) or acadesine has been proposed to exert cardioprotection by enhancing adenosine production in ischemic myocardium. However, there are conflicting reports on acadesine's effects in ischemic myocardium and few studies in which myocardial adenosine levels have been measured. The purpose of this study was to determine whether acadesine increases interstitial fluid adenosine levels and attenuates myocardial stunning or potentiates the effects of adenosine in the intact pig. In pentobarbital-anesthetized pigs, myocardial stunning was induced by 10 min left anterior descending coronary artery occlusion and 90 min reperfusion. Regional ventricular function was assessed by measuring systolic wall thickening, and interstitial nucleosides were estimated by cardiac microdialysis. Control hearts were compared with hearts treated with acadesine, adenosine, and adenosine plus acadesine. Adenosine pretreatment (100 microg x kg(-1) x min(-1), intracoronary) immediately prior to ischemia increased interstitial adenosine levels 9-fold and improved postischemic functional recovery from a control value of 17.6 +/- 4.1% to 43.6 +/- 3.4% of preischemic systolic wall thickening. In contrast, acadesine (20 mg/kg i.v. bolus 10 min prior to ischemia + 0.5 mg x kg (-1) x min(-1), i.v. infusion through 60 min reperfusion) had no effect on interstitial fluid adenosine levels or the recovery of regional function (21.5 +/- 5.9% recovery), nor were the functional effects of adenosine potentiated by acadesine. These findings indicate that acadesine does not enhance myocardial adenosine levels, attenuate myocardial stunning, or potentiate the cardioprotective effects of adenosine in the pig.  相似文献   

12.
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α(2)-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α(2)-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α(2)-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α(2)-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α(2)-adrenergic receptor stimulation.  相似文献   

13.
Zhu HF  Dong JW  Zhu WZ  Ding HL  Zhou ZN 《Life sciences》2003,73(10):1275-1287
The aim of this study was to investigate the protection afforded by intermittent hypoxia (IH) against ischemia/reperfusion injury and its effects on calcium homeostasis during ischemia/reperfusion. The roles of KATP channels in these two actions were to be explored. Isolated hearts from IH and normoxic rats were subjected to 30 min global ischemia followed by 30 min reperfusion. Cardiac function was less deteriorated during ischemia and reperfusion in the IH rat hearts compared to normoxia rat hearts. Amplitude of the maximal contracture during ischemia was lower, while time to maximal contracture was extended in IH hearts. Post-ischemic recovery of left ventricular developed pressure and +/-dP/dtmax were higher in IH hearts than in normoxic hearts. KATP antagonist glibenclamide (10 microM) completely abolished these protective effects of IH, but had no appreciable influence on normoxic hearts. In cardiomyocytes isolated from normoxic hearts, [Ca2+]i, measured as arbitrary units of fluorescence ratio (340 nm/380 nm) of fura-2, gradually increased during 20 min simulated ischemia and kept at high level during 30 min reperfusion (1.081 +/- 0.004 and 1.088 +/- 0.006 respectively, p<0.01 vs pre-ischemia perfusion). However, in cardiomyocytes isolated from IH hearts, [Ca2+]i kept at normal level during ischemia and reperfusion (1.012 +/- 0.006 and 1.021 +/- 0.002 respectively, P>0.05 vs pre-ischemia perfusion). 10 microM glibenclamide and 100 microM 5-hydroxydecanoate (a selective mitochondria KATP antagonist) respectively abolished this effect of IH; calcium overloading reappeared during ischemia (1.133 +/- 0.007 and 1.118 +/- 0.007 respectively, P<0.01) and reperfusion (1.091 +/- 0.004 and 1.095 +/- 0.012 respectivly, P<0.01). However they had no effects on simulated ischemia and reperfusion-induced calcium overloading in normoxic myocytes. 50 microM pinacidil, a KATP opener, attenuated calcium overloading during ischemia and reperfusion in normoxic myocytes, but had no effect on [Ca2+]i change in IH myocytes. These results suggested that KATP channels contributed to the cardiac protection induced by IH against ischemia/reperfusion injury; the elimination of calcium overloading during ischemia/reperfusion by IH might underlie the mechanism of protection.  相似文献   

14.
To investigate the mechanism underlying postischemic contractile dysfunction (myocardial stunning) we examined myocardial sulfhydryl group content, myofibrillar Ca2+-dependent Mg2+-ATPase activity and protein profile after global ischemia and reperfusion. The Langerdorff-perfused rabbit hearts were subjected to 15 min normothermic ischemia followed by 10 min reperfusion and myofibrils were isolated from homogenates of left ventricular tissues. Depressed contractile function during reperfusion was accompanied by a decrease in total sulfhydryl group content. However, myofibrillar protein profile was unchanged and Western immunoblotting analysis showed no significant differences in troponin I immunoreactive bands between control and stunned hearts. Likewise, myofibrillar Mg2+-ATPase activity was unaltered after ischemia and reperfusion. We conclude that myocardial stunning is not caused by altered myofibrillar function and protein degradation but may be partly due to the oxidative modification of as yet undefined proteins.  相似文献   

15.
16.
The aims of the present study were to establish if myocardial ischemia/reperfusion is associated with altered eNOS activity and if myocardial eNOS detection depends on its activity. We determined detectable eNOS in (1) myocardium of isolated perfused rat hearts subjected to either global or regional ischemia and (2) in left ventricular biopsies from patients undergoing two different methods of myocardial protection (i.e., intermittent cold blood cardioplegia and continuous coronary perfusion with warm, beta-blocker-enriched blood) during coronary artery surgery. NOS detection was performed by NADPH-d staining and three eNOS-antibodies against different eNOS epitopes. In addition, activity dependent alteration of detectable eNOS was proofed by bradykinin treatment for 2 to 10 min. Ischemic and receptor mediated eNOS activation increased NADPH-d reactivity and eNOS immunoreaction as measured by antibodies against either amino acids of a central bovine eNOS domain or the human eNOS N-terminal end. In contrast, the antibody against the human eNOS C-terminal end exhibited no alteration of eNOS immunoreaction. The transient eNOS activation was associated with increased cGMP content. In human myocardium subjected to ischemia during cardiac surgery we found that early reperfusion increases eNOS activity. These data demonstrate a strong association between myocardial ischemia/reperfusion and increased eNOS activity as measured by immunocytochemical staining against specific eNOS epitopes. It appears that eNOS activation and subsequent NO release may act as a regulatory system to counter balance the potentially deleterious effects of myocardial ischemia/reperfusion.  相似文献   

17.
The effects of myocardial stunning and ischemic preconditioning on left-ventricular developed pressure and end-diastolic pressure (diastolic stiffness) as well as on coronary-perfusion pressure were examined in isolated isovolumic rabbit hearts. The isovolumic relaxation was evaluated, and the time constant of pressure decay during the isovolumic period was calculated. Our experimental protocol comprised: 1) myocardial stunning-global ischemia (15 min) followed by reperfusion (30 min); 2) myocardial stunning-global ischemia (20 min) followed by reperfusion (30 min); and 3) ischemic preconditioning — a single cycle of brief global ischemia and reperfusion (5 min each), before a second ischemic period, of 20-min duration. There was no effect upon systolic and diastolic parameters when 15 and 20 minutes of ischemia were evaluated. In both stunned groups the left ventricular developed pressure first recovered to near control values, but then stabilized at only 60% of the control values. Whereas the isovolumic relaxation time constant was increased after 5 min of reperfusion, and return to control values at late reperfusion, the end diastolic pressure remained elevated during the entire period. Values of dP/dV calculated at common pressure levels, were used as a second index of diastolic stiffness. They were increased after stunning, as also was the coronary perfusion pressure. When the heart was preconditioned with a single episode of ischemia, the systolic and diastolic alterations were completely abolished. We thus concluded that diastolic abnormalities incurred by myocardial stunning consist in both an increase in diastolic stiffness and an early impairment of isovolumic relaxation. The increase in stiffness cannot result from incomplete relaxation since these two parameters become temporally dissociated during the reperfusion period.  相似文献   

18.
It has been shown that mu-opioid receptor stimulation by intravenous administration of the selective mu receptor agonist DALDA in a dose of 0.1 mg/kg prevented ischemic and reperfusion arrhythmias in rats subjected to coronary artery occlusion (10 min) and reperfusion (10 min), and also increased the ventricular fibrillation threshold in rats with postinfarction cardiac fibrosis. These effects were abolished by pre-treatment with the selective mu receptor antagonist CTAP in a dose of 0.5 mg/kg or by prior injection of the opioid receptor antagonist naloxone methiodide (2 mg/kg) which does not penetrate the blood-braib barrier. Both antagonists by themselves had no effect on the incidence of occlusion or reperfusion-induced arrhythmias or on the ventricular fibrillation threshold. Pre-treatment with ATP-sensitive K+ channel (KATP channel) blocker glibenclamide in a dose of 0.3 mg/kg completely abolished the antiarrhythmic effect of DALDA. We believe that DALDA prevents occurrence of electrical instability during ischemia and reperfusion and increases the ventricular fibrillation threshold in rats with postinfarction cardiac fibrosis via stimulation of peripheral mu-opioid receptor which appear to be coupled to the KATP channel.  相似文献   

19.
The N-terminal tetrapeptide segments of dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH(2)) and deltorphin (Tyr-D-Ala-Phe-Asp/Glu-Val-Val-Gly-NH(2)) are agonists at the opioid receptors micro and delta, respectively. [D-Arg(2), Lys(4)]-dermorphin-(1-4) amide (Tyr-D-Arg-Phe-Lys-NH(2), DALDA) and [Dmt(1)]DALDA (where Dmt is 2',6'-dimethyltyrosine) are among the most potent and selective micro-agonists reported to date, both in vitro (having picomolar micro receptor affinity) and in vivo. In this communication, conformation-activity studies of the following four cyclic analogs of DALDA are presented and discussed: the lead peptide S(2),S(4)-cyclo (Tyr-D-Cys-Phe-Cys-NH(2)), constrained by means of an S(4.2)--S(4.4) disulfide between Cys(2) and Cys(4); its two cis and trans C(4.2)--C(4.4)-olefinic dicarba analogs, and the product of saturation of them both. They are potent nonselective or moderately micro-selective opioid agonists in vitro.They have been synthesized and tested earlier [Berezowska I, Chung NN, Lemieux C, Wilkes BC, and Schiller PW, Acta Biochim Polon 53, 2006, 73-76]. We have studied their conformations using NMR and molecular dynamics. With major conformational constraints imposed by the 11-membered ring spanning residues 2-4, they show well defined conformations of this ring, while the exocylic Tyr(1) and Phe(3) side chains still have significant conformational freedom. The more active and selective micro versus delta disulfide and saturated dicarba agonists seem to have in common: (i) their ring structures more flexilble than those of the other two and (ii) their ring structures similar to each other and more diverse than those in the other two. Given this and the small size of the peptides having confirmed bioactivity profiles, there is a chance that their conformations determined in solution approach receptor-bound conformations. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
Summary Pretreatment with thaliporphine before ischemia affords cardioprotective effects against reperfusion injury via antioxidant activity. This study evaluated whether thaliporphine administered at a certain period after myocardial ischemia conferred the same cardioprotection and assessed its possible new mechanism. The left main coronary artery of anaesthetized rats was occluded for 1 h and then reperfused for 2 h. Thaliporphine was administered at 10 min before reperfusion. Controls received saline only. Morphine, a nonselective opioid receptor agonist, was used as reference compound at 0.3 mg/kg. Thaliporphine at 0.05 and 0.5 mg/kg were found to reduce the infarct size. Recovery of cardiac function was higher in thaliporphine (0.5 mg/kg) group, as assessed by a significant improvement in the rates of pressure development (+dp/dt max). This compound also reduced plasma creatine kinase and cardiac MPO activity. These protective effects afforded by thaliporphine were diminished by the opioid receptor antagonists (naloxone or naltrexone) and by the mitochondrial KATP blocker 5HD. In comparison, morphine reduced infarct size and MPO activity in the myocardium but produced slightly improvement in cardiac function after ischemia-reperfusion. These results demonstrate that reperfusion therapy with thaliporphine protect cardiac injury through further mechanism via activation of opioid receptor and opening of mitochondrial KATP channels as morphine but with stronger activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号