首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rapid activation of the IkappaB kinase (IKK) complex is considered an obligatory step in the activation of nuclear factor-kappaB (NF-kappaB) in response to diverse stimuli. Since oxidants have been implicated in the regulation of NF-kappaB, the focus of the present study was the activation of IKK by tumor necrosis factor alpha (TNFalpha) in the presence or absence of hydrogen peroxide (H(2)O(2)). Exposure of mouse alveolar epithelial cells to H(2)O(2) was not sufficient to activate IKK, degrade IkappaBalpha, or activate NF-kappaB. In contrast, TNFalpha induced IKK activity rapidly and transiently resulting in IkappaBalpha degradation and NF-kappaB activation. Importantly, in the presence of H(2)O(2), the ability of TNFalpha to induce IKK activity was markedly decreased and resulted in prevention of IkappaBalpha degradation and NF-kappaB activation. Neither tyrosine kinases nor phosphatidylinositol 3-kinases, known regulators of NF-kappaB by oxidants, were involved in IKK inhibition by H(2)O(2). Direct addition of H(2)O(2) to the immunoprecipitated IKK complex inhibited enzyme activity. Inhibition of IKK activity by H(2)O(2) was associated with direct oxidation of cysteine residues present in the IKK complex and occurred only in enzymatically active IKK. In contrast to previously published observations, our findings demonstrate that the oxidant H(2)O(2) reduces NF-kappaB activation by inhibiting activated IKK activity.  相似文献   

3.
4.
5.
6.
Cytokine-stimulated IkappaBalpha degradation is impaired in HT-29 and primary intestinal epithelial cells. To gain more insight into the mechanism of this defect, we dissected cytokine-induced NF-kappaB signaling pathway in HT-29 cells. IL-1beta and TNF, alone or in combination with IFNgamma, failed to induce IkappaBalpha or IkappaBbeta degradation in HT-29 cells. Despite similar 125I-IL-1beta binding, HT-29 cells displayed no IRAK degradation, a 75% reduction of IKK activity, and decreased IkappaBalpha phosphorylation, NF-kappaB DNA binding activity and IL-8 mRNA accumulation in response to IL-1beta compared to Caco-2 cells. Selective activation of NF-kappaB pathway by adenoviral delivery of NF-kappaB-inducing kinase (Ad5NIK) or IKKbeta (Ad5IKKbeta) strongly activated IKK activity (>20 fold) in HT-29 cells with concomitant endogenous IkappaBalpha serine 32 phosphorylation and total IkappaBalpha degradation. In addition, NF-kappaB DNA binding activity and IL-8 secretion is higher in Ad5NIK-infected than in IL-1beta-stimulated HT-29 cells. These data show that altered NF-kappaB signaling is associated with impaired stimulation of an upstream IKK activator.  相似文献   

7.
8.
Kamata H  Manabe T  Oka Si  Kamata K  Hirata H 《FEBS letters》2002,519(1-3):231-237
The cellular redox state regulates nuclear factor-kappaB (NF-kappaB) signaling systems. We investigated the effects of H2O2 on inhibitor of NF-kappaB (IkappaB) kinases (IKKalpha and IKKbeta), which phosphorylate IkappaB leading to its degradation and NF-kappaB activation. Tumor necrosis factor (TNF) stimulation increased IKK activity within 10 min, and then IKK activity decreased gradually within 30 min in HeLa cells. Stimulation of the cells with H2O2 induced a slight activation of IKK within 30 min. Furthermore, co-stimulation with TNF suppressed the downregulation of IKK and sustained the activation for more than 30 min. H2O2 also markedly activated IKK in cells that were pretreated with TNF or phorbol myristate acetate. Electrophoretic mobility shift assay revealed that H2O2 enhanced TNF-induced NF-kappaB activation. Studies using IKK mutants and an antibody against phosphorylated IKK proteins revealed that phosphorylation of serine residues, Ser180 of IKKalpha and Ser181 of IKKbeta, in the activation loops was essential for the H2O2-mediated activation of IKK. H2O2-induced activation of IKKalpha and IKKbeta was reduced by IKKbeta and IKKalpha kinase-negative mutants, respectively, indicating that IKKalpha and IKKbeta were stimulated by H2O2 in an interdependent manner. These results suggest that oxidative radical stress has stimulatory effects on NF-kappaB through the activation of IKK, which is mediated by the phosphorylation of serine residues in the activation loops.  相似文献   

9.
10.
Kutuk O  Basaga H 《Free radical research》2003,37(12):1267-1276
The classical pathway of nuclear factor-kappa B (NF-kappaB) activation by several inducers mainly involves the phosphorylation of IkappaBalpha by a signalsome complex composed of IkappaBalpha kinases (IKKalpha and IKKbeta). However, in some cell types hydrogen peroxide (H2O2) has been shown to activate an alternative pathway that does not involve the classical signalsome activation process. In this study, we demonstrate that H2O2 induced NF-kappaB activation in HeLa cells through phosphorylation and degradation of IkappaB proteins as shown by immunblot analysis. Our studies reveal that a commonly used non-steroid anti-inflammatory drug, acetylsalicylic acid (aspirin) prevents H2O2-induced NF-kappaB activation in a dose-dependent manner through inhibition of phosphorylation and degradation of IkappaBalpha and IkappaBbeta. Differential staining and DNA fragmentation analysis also show that aspirin preloading of HeLa cells also prevents H2O2-induced apoptosis in a dose-dependent manner with maximum efficiency at 10 mM concentration. Additionally, aspirin effectively prevents caspase-3 and caspase-9 (cysteinyl aspartate-specific proteases) activation by H2O2. These results suggest that NF-kappaB activation is involved in H2O2-induced apoptosis and aspirin may inhibit both processes simultaneously.  相似文献   

11.
12.
13.
Acetyl-11-keto-beta-boswellic acid (AKBA), a component of an Ayurvedic therapeutic plant Boswellia serrata, is a pentacyclic terpenoid active against a large number of inflammatory diseases, including cancer, arthritis, chronic colitis, ulcerative colitis, Crohn's disease, and bronchial asthma, but the mechanism is poorly understood. We found that AKBA potentiated the apoptosis induced by TNF and chemotherapeutic agents, suppressed TNF-induced invasion, and inhibited receptor activator of NF-kappaB ligand-induced osteoclastogenesis, all of which are known to require NF-kappaB activation. These observations corresponded with the down-regulation of the expression of NF-kappaB-regulated antiapoptotic, proliferative, and angiogenic gene products. As examined by DNA binding, AKBA suppressed both inducible and constitutive NF-kappaB activation in tumor cells. It also abrogated NF-kappaB activation induced by TNF, IL-1beta, okadaic acid, doxorubicin, LPS, H2O2, PMA, and cigarette smoke. AKBA did not directly affect the binding of NF-kappaB to the DNA but inhibited sequentially the TNF-induced activation of IkappaBalpha kinase (IKK), IkappaBalpha phosphorylation, IkappaBalpha ubiquitination, IkappaBalpha degradation, p65 phosphorylation, and p65 nuclear translocation. AKBA also did not directly modulate IKK activity but suppressed the activation of IKK through inhibition of Akt. Furthermore, AKBA inhibited the NF-kappaB-dependent reporter gene expression activated by TNFR type 1, TNFR-associated death domain protein, TNFR-associated factor 2, NF-kappaB-inducing kinase, and IKK, but not that activated by the p65 subunit of NF-kappaB. Overall, our results indicated that AKBA enhances apoptosis induced by cytokines and chemotherapeutic agents, inhibits invasion, and suppresses osteoclastogenesis through inhibition of NF-kappaB-regulated gene expression.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号