首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The functional consequences of the R92Q mutation in cardiac troponin T (cTnT), linked to familial hypertrophic cardiomyopathy in humans, are not well understood. We have studied steady- and pre-steady-state mechanical activity of detergent-skinned fiber bundles from a transgenic (TG) mouse model in which 67% of the total cTnT in the heart was replaced by the R92Q mutant cTnT. TG fibers were more sensitive to Ca(2+) than nontransgenic (NTG) fibers [negative logarithm of half maximally activating molar Ca(2+) (pCa(50)) = 5.84 +/- 0.01 and 6.12 +/- 0.01 for NTG and TG fibers, respectively]. The shift in pCa(50) caused by increasing the sarcomere length from 1.9 to 2.3 microm was significantly higher for TG than for NTG fibers (DeltapCa(50) = 0.13 +/- 0.01 and 0.29 +/- 0.02 for NTG and TG fibers, respectively). The relationships between rate of ATP consumption and steady-state isometric tension were linear, and the slopes were the same in NTG and TG fibers. Rate of tension redevelopment was more sensitive to Ca(2+) in TG than in NTG fibers (pCa(50) = 5.71 +/- 0.02 and 6.07 +/- 0.02 for NTG and TG fibers, respectively). We concluded that overall cross-bridge cycling kinetics are not altered by the R92Q mutation but that altered troponin-tropomyosin interactions could be responsible for the increase in myofilament Ca(2+) sensitivity in TG myofilaments.  相似文献   

2.
We investigated the initiation of Ca2+waves underlying triggered propagated contractions (TPCs) occurring in rat cardiac trabeculae under conditions that simulate the functional non-uniformity caused by mechanical or ischemic local damage of the myocardium. A mechanical discontinuity along the trabeculae was created by exposing the preparation to a small constant flow jet of solution with a composition that reduces excitation–contraction coupling in myocytes within that segment. Force was measured and sarcomere length as well as [Ca2+]i were measured regionally. When the jet-contained Caffeine, BDM or Low-[Ca2+], muscle-twitch force decreased and the sarcomeres in the exposed segment were stretched by shortening of the normal regions outside the jet. During relaxation the sarcomeres in the exposed segment shortened rapidly. Short trains of stimulation at 2.5 Hz reproducibly caused Ca2+-waves to rise from the borders exposed to the jet. Ca2+-waves started during force relaxation of the last stimulated twitch and propagated into segments both inside and outside of the jet. Arrhythmias, in the form of non-driven rhythmic activity, were triggered when the amplitude of the Ca2+-wave increased by raising [Ca2+]o. The arrhythmias disappeared when the muscle uniformity was restored by turning the jet off. We have used the four state model of the cardiac cross bridge (Xb) with feedback of force development to Ca2+ binding by Troponin-C (TnC) and observed that the force–Ca2+ relationship as well as the force–sarcomere length relationship and the time course of the force and Ca2+ transients in cardiac muscle can be reproduced faithfully by a single effect of force on deformation of the TnC·Ca complex and thereby on the dissociation rate of Ca2+. Importantly, this feedback predicts that rapid decline of force in the activated sarcomere causes release of Ca2+ from TnC.Ca2+,which is sufficient to initiate arrhythmogenic Ca2+ release from the sarcoplasmic reticulum. These results show that non-uniform contraction can cause Ca2+-waves underlying TPCs, and suggest that Ca2+ dissociated from myofilaments plays an important role in the initiation of arrhythmogenic Ca2+-waves.  相似文献   

3.
Mutations in amyloid precursor protein (APP), and presenilin‐1 and presenilin‐2 (PS1 and PS2) have causally been implicated in Familial Alzheimer’s Disease (FAD), but the mechanistic link between the mutations and the early onset of neurodegeneration is still debated. Although no consensus has yet been reached, most data suggest that both FAD‐linked PS mutants and endogenous PSs are involved in cellular Ca2+ homeostasis. We here investigated subcellular Ca2+ handling in primary neuronal cultures and acute brain slices from wild type and transgenic mice carrying the FAD‐linked PS2‐N141I mutation, either alone or in the presence of the APP Swedish mutation. Compared with wild type, both types of transgenic neurons show a similar reduction in endoplasmic reticulum (ER) Ca2+ content and decreased response to metabotropic agonists, albeit increased Ca2+ release induced by caffeine. In both transgenic neurons, we also observed a higher ER–mitochondria juxtaposition that favors increased mitochondrial Ca2+ uptake upon ER Ca2+ release. A model is described that integrates into a unifying hypothesis the contradictory effects on Ca2+ homeostasis of different PS mutations and points to the relevance of these findings in neurodegeneration and aging.  相似文献   

4.
Activation of protein kinase C (PKC) in heart muscle signals hypertrophy and may also directly affect contractile function. We tested this idea using a transgenic (TG) mouse model in which conditionally expressed PKCbeta was turned on at 10 wk of age and remained on for either 6 or 10 mo. Compared with controls, TG cardiac myocytes demonstrated an increase in the peak amplitude of the Ca(2+) transient, an increase in the extent and rate of shortening, and an increase in the rate of relengthening at both 6 and 10 mo of age. Phospholamban phosphorylation and Ca(2+)-uptake rates of sarcoplasmic reticulum vesicles were the same in TG and control heart preparations. At 10 mo, TG skinned fiber bundles demonstrated the same sensitivity to Ca(2+) as controls, but maximum tension was depressed and there was increased myofilament protein phosphorylation. Our results differ from studies in which PKCbeta was constitutively overexpressed in the heart and in studies that reported a depression of myocyte contraction with no change in the Ca(2+) transient.  相似文献   

5.
Effects of epidermal growth factor (EGF) on the intracellular Ca(2+) ([Ca(2+)](i)) responses to nucleotides, Ca(2+) release from thapsigargin-sensitive stores and capacitative Ca(2+) entry were investigated in cultured mouse mammary epithelial cells. EGF treatment induced proliferation of mammary epithelial cells. We checked for mitotic activity by immunocytochemistry with an anti-PCNA (proliferating cell nuclear antigen) antibody, which stains nuclei of the cells in S-phase of cell cycle. EGF treatment apparently increased the number of PCNA-stained cells compared to those treated with differentiating hormones (insulin, prolactin and cortisol) or without any hormone. Application of EGF did not induce any acute [Ca(2+)](i) response. EGF treatment for 1-2 days in culture, however, enhanced [Ca(2+)](i) responses including [Ca(2+)](i) increase by ATP, UTP and other nucelotides, Ca(2+) release from thapsigargin-sensitive stores, as well as capacitative Ca(2+) entry. Genistein, a tyrosine kinase inhibitor, prevented EGF-induced cell proliferation and the [Ca(2+) ](i) responses in a dose-dependent manner. These results indicate that EGF treatment enhances Ca(2+) mobilization and capacitative Ca(2+) entry, well correlated with cellular proliferation in mammary epithelial cells.  相似文献   

6.
Owing in part to their interactions with membrane proteins, polyamines (e.g., spermine, spermidine, and putrescine) have been identified as potential modulators of membrane excitability and Ca(2+) homeostasis in cardiac myocytes. To investigate whether polyamines also affect cardiac myofilament proteins, we assessed the effects of polyamines on contractility using rat myocytes and trabeculae that had been permeabilized with Triton X-100. Spermine, spermidine, and putrescine reversibly increased the [Ca(2+)] required for half-maximal tension (i.e., right-shifted tension pCa curves), with the following order of efficacy: spermine (+4) > spermidine (+3) > putrescine (+2). However, synthetic analogs that differed from spermine in charge distribution were not as effective as spermine in altering isometric tension. None of the polyamines had a significant effect on maximal tension, except at high concentrations. After flash photolysis of DM-Nitrophen (a caged Ca(2+) chelator), spermine accelerated the rate of tension development at low and intermediate but not high [Ca(2+)]. These results indicate that polyamines, especially spermine, interact with myofilament proteins to reduce apparent Ca(2+) binding affinity and speed cross-bridge cycling kinetics at submaximal [Ca(2+)].  相似文献   

7.
Ryanodine, a plant alkaloid, is one of the most widely used pharmacological probes for intracellular Ca(2+) signaling in a variety of muscle and non-muscle cells. Upon binding to the Ca(2+) release channel (ryanodine receptor), ryanodine causes two major changes in the channel: a reduction in single-channel conductance and a marked increase in open probability. The molecular mechanisms underlying these alterations are not well understood. In the present study, we investigated the gating behavior and Ca(2+) dependence of the wild type (wt) and a mutant cardiac ryanodine receptor (RyR2) after being modified by ryanodine. Single-channel studies revealed that the ryanodine-modified wt RyR2 channel was sensitive to inhibition by Mg(2+) and to activation by caffeine and ATP. In the presence of Mg(2+), the ryanodine-modified single wt RyR2 channel displayed a sigmoidal Ca(2+) dependence with an EC(50) value of 110 nm, whereas the ryanodine-unmodified single wt channel exhibited an EC(50) of 120 microm for Ca(2+) activation, indicating that ryanodine is able to increase the sensitivity of the wt RyR2 channel to Ca(2+) activation by approximately 1,000-fold. Furthermore, ryanodine is able to restore Ca(2+) activation and ligand response of the E3987A mutant RyR2 channel that has been shown to exhibit approximately 1,000-fold reduction in Ca(2+) sensitivity to activation. The E3987A mutation, however, affects neither [(3)H]ryanodine binding to, nor the stimulatory and inhibitory effects of ryanodine on, the RyR2 channel. These results demonstrate that ryanodine does not "lock" the RyR channel into an open state as generally believed; rather, it sensitizes dramatically the channel to activation by Ca(2+).  相似文献   

8.
The purpose of the present study was to examine the role of G(i2)alpha in Ca(2+) channel regulation using G(i2)alpha gene knockout mouse ventricular myocytes. The whole cell voltage-clamp technique was used to study the effects of the muscarinic agonist carbachol (CCh) and the beta-adrenergic agonist isoproterenol (Iso) on cardiac L-type Ca(2+) currents in both 129Sv wild-type (WT) and G(i2)alpha gene knockout (G(i2)alpha-/-) mice. Perfusion with CCh significantly inhibited the Ca(2+) current in WT cells, and this effect was reversed by adding atropine to the CCh-containing solution. In contrast, CCh did not affect Ca(2+) currents in G(i2)alpha-/- ventricular myocytes. Addition of CCh to Iso-containing solutions attenuated the Iso-stimulated Ca(2+) current in WT cardiomyocytes but not in G(i2)alpha-/- cells. These findings demonstrate that, whereas the Iso-G(s)alpha signal pathway is intact in G(i2)alpha gene knockout mouse hearts, these cells lack the inhibitory regulation of Ca(2+) channels by CCh. Therefore, G(i2)alpha is necessary for the muscarinic regulation of Ca(2+) channels in the mouse heart. Further studies are needed to delineate the possible interaction of G(i) and other cell signaling proteins and to clarify the level of interaction of G protein-coupled regulation of L-type Ca(2+) current in the heart.  相似文献   

9.
A rise in intracellular free Ca(2+) concentration ([Ca(2+)](i)) is required to activate sperm of all organisms studied. Such elevation of [Ca(2+)](i) can occur either by influx of extracellular Ca(2+) or by release of Ca(2+) from intracellular stores. We have examined these sources of Ca(2+) in sperm from the sea squirt Ascidia ceratodes using mitochondrial translocation to evaluate activation and the Ca(2+)-sensitive dye fura-2 to monitor [Ca(2+)](i) by bulk spectrofluorometry. Sperm activation artificially evoked by incubation in high-pH seawater was inhibited by reducing seawater [Ca(2+)], as well as by the presence of high [K(+)](o) or the Ca channel blockers pimozide, penfluridol, or Ni(2+), but not nifedipine or Co(2+). The accompanying rise in [Ca(2+)](i) was also blocked by pimozide or penfluridol. These results indicate that activation produced by alkaline incubation involves opening of plasmalemmal voltage-dependent Ca channels and Ca(2+) entry to initiate mitochondrial translocation. Incubation in thimerosal or thapsigargin, but not ryanodine (even if combined with caffeine pretreatment), evoked sperm activation. Activation by thimerosal was insensitive to reduced external calcium and to Ca channel blockers. Sperm [Ca(2+)](i) increased upon incubation in high-pH or thimerosal-containing seawater, but only the high-pH-dependent elevation in [Ca(2+)](i) could be inhibited by pimozide or penfluridol. Treatment with the protonophore CCCP indicated that only a small percentage of sperm could release enough Ca(2+) from mitochondria to cause activation. Inositol 1,4,5-trisphosphate (IP(3)) delivered by liposomes or by permeabilization increased sperm activation. Both of these effects were blocked by heparin. We conclude that high external pH induces intracellular alkalization that directly or indirectly activates plasma membrane voltage-dependent Ca channels allowing entry of external Ca(2+) and that thimerosal stimulates release of Ca(2+) from IP(3)-sensitive intracellular stores.  相似文献   

10.
Ca(2+) sparks are spatially localized intracellular Ca(2+) release events that were first described in 1993. Sparks have been ascribed to sarcoplasmic reticulum Ca(2+) release channel (ryanodine receptor, RyR) opening induced by Ca(2+) influx via L-type Ca(2+) channels or by spontaneous RyR openings and have been thought to reflect Ca(2+) release from a cluster of RyR. Here we describe a pharmacological approach to study sparks by exposing ventricular myocytes to caffeine with a rapid solution-switcher device. Sparks under these conditions have properties similar to naturally occurring sparks in terms of size and intracellular Ca(2+) concentration ([Ca(2+)](i)) amplitude. However, after the diffusion of caffeine, sparks first appear close to the cell surface membrane before coalescing to produce a whole cell transient. Our results support the idea that a whole cell [Ca(2+)](i) transient consists of the summation of sparks and that Ca(2+) sparks consist of the opening of a cluster of RyR and confirm that characteristics of the cluster rather than the L-type Ca(2+) channel-RyR relation determine spark properties.  相似文献   

11.
12.
High-conductanceCa2+-activatedK+(KCa) channels werestudied in mouse skeletal muscle fibers using thepatch-clamp technique. In inside-out patches, application of negativepressure to the patch induced a dose-dependent and reversibleactivation of KCa channels.Stretch-induced increase in channel activity was found to be of thesame magnitude in the presence and in the absence ofCa2+ in the pipette. Thedose-response relationships betweenKCa channel activity andintracellular Ca2+ and betweenKCa channel activity and membranepotential revealed that voltage andCa2+ sensitivity were not alteredby membrane stretch. In cell-attached patches, in the presence of highexternal Ca2+ concentration,stretch-induced activation was also observed. We conclude that membranestretch is a potential mode of regulation of skeletal muscleKCa channel activity and could beinvolved in the regulation of muscle excitability duringcontraction-relaxation cycles.

  相似文献   

13.
Recent evidence suggests the expression of a Na(+)/Ca(2+) exchanger (NCX) in vascular endothelial cells. To elucidate the functional role of endothelial NCX, we studied Ca(2+) signaling and Ca(2+)-dependent activation of endothelial nitric-oxide synthase (eNOS) at normal, physiological Na(+) gradients and after loading of endothelial cells with Na(+) ions using the ionophore monensin. Monensin-induced Na(+) loading markedly reduced Ca(2+) entry and, thus, steady-state levels of intracellular free Ca(2+) ([Ca(2+)](i)) in thapsigargin-stimulated endothelial cells due to membrane depolarization. Despite this reduction of overall [Ca(2+)](i), Ca(2+)-dependent activation of eNOS was facilitated as indicated by a pronounced leftward shift of the Ca(2+) concentration response curve in monensin-treated cells. This facilitation of Ca(2+)-dependent activation of eNOS was strictly dependent on the presence of Na(+) ions during treatment of the cells with monensin. Na(+)-induced facilitation of eNOS activation was not due to a direct effect of Na(+) ions on the Ca(2+) sensitivity of the enzyme. Moreover, the effect of Na(+) was not related to Na(+) entry-induced membrane depolarization or suppression of Ca(2+) entry, since neither elevation of extracellular K(+) nor the Ca(2+) entry blocker 1-(beta-[3-(4-methoxyphenyl)-propoxy]-4-methoxyphenethyl)-1H-imidazol e hydrochloride (SK&F 96365) mimicked the effects of Na(+) loading. The effects of monensin were completely blocked by 3', 4'-dichlorobenzamil, a potent and selective inhibitor of NCX, whereas the structural analog amiloride, which barely affects Na(+)/Ca(2+) exchange, was ineffective. Consistent with a pivotal role of Na(+)/Ca(2+) exchange in Ca(2+)-dependent activation of eNOS, an NCX protein was detected in caveolin-rich membrane fractions containing both eNOS and caveolin-1. These results demonstrate for the first time a crucial role of cellular Na(+) gradients in regulation of eNOS activity and suggest that a tight functional interaction between endothelial NCX and eNOS may take place in caveolae.  相似文献   

14.
1. Two distinct patterns of Ca(2+)-mediated activation of Ca(2+)-ATPase were identified in calmodulin-depleted membranes. 2. In membranes showing no activation (type A), preincubation with micromolar concentration of cyclic AMP and ATP made possible stimulation of the enzyme while in membranes already exhibiting activation (type B), preincubation with cyclic AMP and ATP abolished the activation. 3. ATPase stimulation in type A membranes was suppressible by leupeptin. 4. Triton extractable inhibitor isolated from type A membranes was as active as that derived from type B membranes only after preincubating the membranes with cyclic AMP and ATP. 5. The inhibitor could be inactivated by alkaline phosphatase.  相似文献   

15.
Using the whole-cell patch-clamp technique, we have studied the properties of alpha(1E) Ca(2+) channel transfected in cardiac myocytes. We have also investigated the effect of foreign gene expression on the intrinsic L-type current (I(Ca,L)). Expression of green fluorescent protein significantly decreased the I(Ca,L). By contrast, expression of alpha(1E) with beta(2b) and alpha(2)/delta significantly increased the total Ca(2+) current, and in these cells a Ca(2+) antagonist, PN-200-110 (PN), only partially blocked the current. The remaining PN-resistant current was abolished by the application of a low concentration of Ni(2+) and was little affected by changing the charge carrier from Ca(2+) to Ba(2+) or by beta-adrenergic stimulation. On the basis of its voltage range for activation, this channel was classified as a high-voltage activated channel. Thus the expression of alpha(1E) did not generate T-like current in cardiac myocytes. On the other hand, expression of alpha(1E) decreased I(Ca,L) and slowed the I(Ca,L) inactivation. This inactivation slowing was attenuated by the beta(2b) coexpression, suggesting that the alpha(1E) may slow the inactivation of I(Ca,L) by scrambling with alpha(1C) for intrinsic auxiliary beta.  相似文献   

16.
In contrast to previous studies, a new fluorescent method was used to accurately determine the Ca(2+) concentration in test solutions used to activate skinned rat cardiac cells. This method used the calcium green-2 fluorescent indicator, which is shown to change its fluorescence over the Ca(2+) range responsible for Ca(2+) activation of force and ATPase. The dissociation constant (K(d)) of calcium green-2 for Ca(2+) was determined for three different Mg(2+) concentrations in solutions similar to those used in the experiment. Increasing Mg(2+) concentration from 1.0 to 8.0 mM had no significant effect on the Ca(2+) sensitivity of either force or actomyosin ATPase activity, in contrast to previous reported studies on force. The ATPase activity was activated at lower Ca(2+) concentration than the force. The ratio (ATPase/force) is proportional to the dissociation rate of force-generating myosin cross bridges and decreased during Ca(2+) activation. These findings are consistent with the hypothesis that cardiac muscle contraction is activated by a single Ca(2+)-specific binding site on troponin C.  相似文献   

17.
The Ca(2+) binding sites of the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum (SR) have been identified as two high-affinity sites orientated towards the cytoplasm, two sites of low affinity facing the lumen, and a transient occluded species that is isolated from both membrane surfaces. Binding and release studies, using (45)Ca(2+), have invoked models with sequential binding and release from high- and low-affinity sites in a channel-like structure. We have characterised turnover conditions in isolated SR vesicles with oxalate in a Ca(2+)-limited state, [Ca(2)](lim), where both high- and low-affinity sites are vacant in the absence of chelators (Biochim. Biophys. Acta 1418 (1999) 48-60). Thapsigargin (TG), a high-affinity specific inhibitor of the Ca(2+)-ATPase, released a fraction of total Ca(2+) at [Ca(2+)](lim) that accumulated during active transport. Maximal Ca(2+) release was at 2:1 TG/ATPase. Ionophore, A23187, and Triton X-100 released the rest of Ca(2+) resistant to TG. The amount of Ca(2+) released depended on the incubation time at [Ca(2+)](lim), being 3.0 nmol/mg at 20 s and 0.42 nmol/mg at 1000 s. Rate constants for release declined from 0. 13 to 0.03 s(-1). The rapidly released early fraction declined with time and k=0.13 min(-1). Release was not due to reversal of the pump cycle since ADP had no effect; neither was release impaired with substrates acetyl phosphate or GTP. A phase of reuptake of Ca(2+) followed release, being greater with shorter delay (up to 200 s) following active transport. Reuptake was minimal with GTP, with delays more than 300 s, and was abolished by vanadate and at higher [TG], >5 microM. Ruthenium red had no effect on efflux, indicating that ryanodine-sensitive efflux channels in terminal cisternal membranes are not involved in the Ca(2+) release mechanism. It is concluded that the Ca(2+) released by TG is from the occluded Ca(2+) fraction. The Ca(2+) occlusion sites appear to be independent of both high-affinity cytoplasmic and low-affinity lumenal sites, supporting a multisite 'in line' sequential binding mechanism for Ca(2+) transport.  相似文献   

18.
Previous studies have demonstrated the activation of endometrial Cl(-) secretion through P(2Y2) (P(2U)) purinoceptors by extracellular ATP. The present study further explored the presence of pyrimidine-sensitive receptors in the primary cultured mouse endometrial epithelial cells using the short-circuit current (I(SC)) and whole-cell patch-clamp techniques. UDP induced a transient increase in I(SC) in a concentration-dependent manner (EC(50) approximately 8.84 microM). The UDP-induced I(SC) was abolished after pretreating the epithelia with a calcium chelator, 1, 2-bis-(2-aminophenoxy)-ethane-N,N,N'N'tetraacetic acid-acetomethyl ester (BAPTA-AM), suggesting the dependence of the I(SC) on cytosolic free Ca(2+). The type of receptor involved was studied by cross-desensitization between ATP and UDP. ATP or UDP desensitized its subsequent I(SC) response. However, when ATP was added after UDP, or vice versa, a second I(SC) response was observed, indicating the activation of distinct receptors, possibly pyrimidine-sensitive receptors in addition to P(2Y2) (P(2U)) receptors. Similar results were observed in the patch-clamp experiments where UDP and ATP were shown to sequentially activate whole-cell current in the same cell. The UDP-activated whole-cell current exhibited outward rectification with delay activation and inactivation at depolarizing and hyperpolarizing voltages, respectively. In addition, the UDP-evoked whole-cell current reversed near the equilibrium potential of Cl(-) in the presence of a Cl(-) gradient across the membrane, and was sensitive to 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), indicating the activation of Ca(2+)-activated Cl(-) conductance. These characteristics were very similar to that of the ATP-activated whole-cell current. Taken together, our findings indicate the presence of distinct receptors, pyrimidinoceptors and P(2Y2) (P(2U)) receptors in mouse endometrial epithelial cells. These distinct receptors appear to converge on the same Ca(2+)-dependent Cl(-) channels.  相似文献   

19.
Heart failure leading to ventricular arrhythmogenesis is a major cause of clinical mortality and has been associated with a leak of sarcoplasmic reticular Ca(2+) into the cytosol due to increased open probabilities in cardiac ryanodine receptor Ca(2+)-release channels. Caffeine similarly increases such open probabilities, and so we explored its arrhythmogenic effects on intact murine hearts. A clinically established programmed electrical stimulation protocol adapted for studies of isolated intact mouse hearts demonstrated that caffeine (1 mM) increased the frequency of ventricular tachycardia from 0 to 100% yet left electrogram duration and latency unchanged during programmed electrical stimulation, thereby excluding slowed conduction as a cause of arrhythmogenesis. We then used fluorescence measurements of intracellular Ca(2+) concentration in isolated mouse ventricular cells to investigate parallel changes in Ca(2+) homeostasis associated with these arrhythmias. Both caffeine (1 mM) and FK506 (30 microM) reduced electrically evoked cytosolic Ca(2+) transients yet increased the frequency of spontaneous Ca(2+)-release events. Diltiazem (1 microM) but not nifedipine (1 microM) pretreatment suppressed these increases in frequency. Identical concentrations of diltiazem but not nifedipine correspondingly suppressed the arrhythmogenic effects of caffeine in whole hearts. These findings thus directly implicate spontaneous Ca(2+) waves in triggered arrhythmogenesis in intact hearts.  相似文献   

20.
To maintain cellular ATP levels, hypoxia leads to Na,K-ATPase inhibition in a process dependent on reactive oxygen species (ROS) and the activation of AMP-activated kinase α1 (AMPK-α1). We report here that during hypoxia AMPK activation does not require the liver kinase B1 (LKB1) but requires the release of Ca(2+) from the endoplasmic reticulum (ER) and redistribution of STIM1 to ER-plasma membrane junctions, leading to calcium entry via Ca(2+) release-activated Ca(2+) (CRAC) channels. This increase in intracellular Ca(2+) induces Ca(2+)/calmodulin-dependent kinase kinase β (CaMKKβ)-mediated AMPK activation and Na,K-ATPase downregulation. Also, in cells unable to generate mitochondrial ROS, hypoxia failed to increase intracellular Ca(2+) concentration while a STIM1 mutant rescued the AMPK activation, suggesting that ROS act upstream of Ca(2+) signaling. Furthermore, inhibition of CRAC channel function in rat lungs prevented the impairment of alveolar fluid reabsorption caused by hypoxia. These data suggest that during hypoxia, calcium entry via CRAC channels leads to AMPK activation, Na,K-ATPase downregulation, and alveolar epithelial dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号