首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposing CGL1 (HeLa x fibroblast) hybrid cells to 7 Gy of X rays results in the onset of a delayed apoptosis in the progeny of the cells 10 to 12 cell divisions postirradiation that correlates with the emergence of neoplastically transformed foci. The delayed apoptosis begins around day 8 postirradiation and lasts for 11 days. We now demonstrate that the delayed apoptosis is also characterized by the appearance of approximately 50-kb apoptotic DNA fragments and caspase 3 activation postirradiation. In addition, we confirm that stabilization of TP53 and transactivation of pro-apoptosis BAX also occurs during the delayed apoptosis and show that anti-apoptosis BCL-X(L) is down-regulated. To test whether the delayed apoptosis was due to a nonfunctional acute TP53 damage response in CGL1 cells, studies of acute apoptosis were completed. After irradiation, CGL1 cells underwent an acute wave of apoptosis that involves TP53 stabilization, transactivation of BAX gene expression, and a rapid caspase activation that ends by 96 h postirradiation. In addition, the acute onset of apoptosis correlates with transactivation of a standard wild-type TP53-responsive reporter (pG13-CAT) in CGL1 cells after radiation exposure. We propose that the onset of the delayed apoptosis is not the result of a nonfunctional acute TP53 damage response pathway but rather is a consequence of X-ray-induced genomic instability arising in the distant progeny of the irradiated cells.  相似文献   

2.
Therapeutic irradiation of the brain can cause a progressive cognitive dysfunction that may involve defects in neurogenesis. In an effort to understand the mechanisms underlying radiation-induced stem cell dysfunction, neural precursor cells isolated from the adult rat hippocampus were analyzed for acute (0-24 h) and chronic (3-33 days) changes in apoptosis and reactive oxygen species (ROS) after exposure to X rays. Irradiated neural precursor cells exhibited an acute dose-dependent apoptosis accompanied by an increase in ROS that persisted over a 3-4-week period. The radiation effects included the activation of cell cycle checkpoints that were associated with increased Trp53 phosphorylation and Trp53 and p21 (Cdkn1a) protein levels. In vivo, neural precursor cells within the hippocampal dentate subgranular zone exhibited significant sensitivity to radiation. Proliferating precursor cells and their progeny (i.e. immature neurons) exhibited dose-dependent reductions in cell number. These reductions were less severe in Trp53-null mice, possibly due to the disruption of apoptosis. These data suggest that the apoptotic and ROS responses may be tied to Trp53-dependent regulation of cell cycle control and stress-activated pathways. The temporal coincidence between in vitro and in vivo measurements of apoptosis suggests that oxidative stress may provide a mechanistic explanation for radiation-induced inhibition of neurogenesis in the development of cognitive impairment.  相似文献   

3.
Arsenic trioxide (As2O3) inhibits cell growth and induces apoptosis in certain types of cancer cells including acute promyelocytic leukemia, prostate and ovarian carcinomas, but its effect on response of tumor cells to ionizing radiation has never been explored before. Here we demonstrate that As2O3 can sensitize human cervical cancer cells to ionizing radiation both in vitro and in vivo. As2O3 in combination with ionizing radiation have a synergistic effect in decreasing clonogenic survival and in the regression of established human cervical tumor xenografts. Pretreatment of the cells with As2O3 also synergistically enhanced radiation-induced apoptosis. Apoptosis of the cells by combined treatment of As2O3 and radiation was associated with reactive oxygen species generation and loss of mitochondrial membrane potential, resulting in the activation of caspase-9 and caspase-3. The combined treatment also resulted in an increased G2/M cell cycle distribution at the concentration of As2O3 which did not alter cell cycle when applied alone. These results indicate that As2O3 can synergistically enhance radiosensitivity of human cervix carcinoma cells in vitro and in vivo, suggesting a potential clinical applicability of combination treatment of As2O3 and ionizing radiation in cancer therapies.  相似文献   

4.
Prenatal exposure to low-dose radiation increases the risk of microcephaly and/or mental retardation. Microcephaly is also associated with genetic mutations that affect the non-homologous end-joining pathway of DNA double-strand break repair. To examine the link between these two causal factors, we characterized the neural developmental effects of acute radiation exposure in mouse littermate embryos harboring mutations in the Ku70 and p53 genes. Both low-dose radiation exposure and Ku70 deficiency induced morphologically indistinguishable cortical neuronal apoptosis. Irradiated Ku70-deficient embryos displayed anatomical damage indicative of increased radiosensitivity in the developing cerebral cortex. Deleting the p53 gene not only rescued cortical neuronal apoptosis at all levels but also restored the in vitro growth of Ku70-deficient embryonic fibroblasts despite the presence of unrepaired DNA/chromosomal breaks. The results confirm the role of DNA double-strand breaks as a common causative agent of apoptosis in the developing cerebral cortex. Furthermore, the findings suggest a disease mechanism by which the presence of endogenous DNA double-strand breaks in the newly generated cortical neurons becomes radiomimetic when DNA end joining is defective. This in turn activates p53-dependent neuronal apoptosis and leads to microcephaly and mental retardation.  相似文献   

5.
Liu G  Gong P  Zhao H  Wang Z  Gong S  Cai L 《Radiation research》2006,165(4):379-389
Hormetic and adaptive responses induced by low-level radiation in hematopoietic and immune systems have been observed, as shown by stimulatory effects on cell growth and resistance to subsequent radiation-induced cytogenetic damage. However, in terms of cell death by apoptosis, the effects of low-level radiation are controversial: Some studies showed decreased apoptosis in response to low-level radiation while others showed increased apoptosis. This controversy may be related to the radiation doses or dose rates and also, more importantly, to the cell types. Testes are one of the most radiosensitive organs. The loss of male germ cells after exposure to ionizing radiation has been attributed to apoptosis. In the present study, the effects of low-level radiation at doses up to 200 mGy on mouse male germ cells in terms of apoptosis and the expression of apoptosis-related proteins were examined at different times after whole-body exposure of mice to low-level radiation. In addition, the effect of pre-exposure to low-level radiation on subsequent cell death induced by high doses of radiation was examined to explore the possibility of low-level radiation-induced adaptive response. The results showed that low-level radiation in the dose range of 25-200 mGy induced significant increases in apoptosis in both spermatogonia and spermatocytes, with the maximal effect at 75 mGy. The increased apoptosis is most likely associated with Trp53 protein expression. Furthermore, 75 mGy low-level radiation given pre-irradiation led to an adaptive response of seminiferous germ cells to subsequent high-level radiation-induced apoptosis. These results suggest that low-level radiation induces increased apoptosis in male germ cells but also induces a significant adaptive response that decreases cell death after a subsequent high-dose irradiation.  相似文献   

6.
Although p53 is a major cancer preventive factor, under certain extreme stress conditions it may induce severe pathologies. Analyses of animal models indicate that p53 is largely responsible for the toxicity of ionizing radiation or DNA damaging drugs contributing to hematopoietic component of acute radiation syndrome and largely determining severe adverse effects of cancer treatment. p53-mediated damage is strictly tissue specific and occurs in tissues prone to p53-dependent apoptosis (e.g., hematopoietic system and hair follicles); on the contrary, p53 can serve as a survival factor in tissues that respond to p53 activation by cell cycle arrest (e.g., endothelium of small intestine). There are multiple experimental indications that p53 contributes to pathogenicity of acute ischemic diseases. Temporary reversible suppression of p53 by small molecules can be an effective and safe approach to reduce severity of p53-associated pathologies.  相似文献   

7.
The dramatic increase in the incidence of nonmelanoma skin cancer over the last decades has been related to the augmented exposure to ultraviolet (UV) radiation (UVR). It is known that apoptosis is induced as a protective mechanism after the acute irradiation of keratinocytes, whereas apoptotic resistance and carcinogenesis may follow the chronic exposure to UVR. We found that not all the human keratinocytes lines studied underwent apoptosis following acute exposure to UVR (10-60 mJ/cm2). Whereas UVR induced apoptosis in the HaCaT cells, NCTC 2544 and nr-HaCaT cells showed apoptosis resistance. The cytokeratin pattern of the apoptosis-resistant cells indicated that they possessed a degree of differentiation lower than that of HaCaT cells. They also showed an enhanced expression of cyclooxygenase-2 (COX-2), an early marker of carcinogenesis in various tissues, including skin. n-3 polyunsaturated fatty acids have drawn increasing interest as nutritional factors with the potential to reduce UVR carcinogenesis, and since they are apoptosis inducers and COX-2 inhibitors in cancer cells, we investigated the ability of n-3 polyunsaturated fatty acids to influence the resistance to UVR-induced apoptosis in keratinocytes. We observed that docosahexaenoic acid (DHA) reverted the resistance of nr-HaCaT cells to UVR-induced apoptosis, increasing the Bax/Bcl-2 ratio and caspase-3 activity, and reduced COX-2 levels by inhibiting the expression of the human antigen R (HuR), a known COX-2 mRNA stabilizer in keratinocytes. The transfection of nr-HaCaT cells with HuR siRNA mimicked the proapoptotic effect of DHA. Overall, our findings further support the role of DHA as a suitable anticarcinogenic factor against nonmelanoma skin cancers.  相似文献   

8.
Ho SY  Huang PC  Guo HR  Chang WH  Chen RJ  Wei BL  Wu WJ  Tai C  Wang YJ 《Radiation research》2006,165(4):390-399
Apoptosis is a common mode of cell death after exposure of tumor cells to radiation and/or chemotherapy. The factors that determine the rate of induction of apoptosis are generally related to the functioning of cell cycle checkpoints. In the present study, we investigated the involvement of several genes in cell cycle redistribution and induction of apoptosis in U937 cells after low and high doses of radiation. Activation of CDC2 was observed after both low and high doses of radiation in U937 cells that underwent apoptosis. Expression of CDK2, CDC2 and cyclin A was induced rapidly in the process of radiation-induced apoptosis. In addition, we investigated the use of a clinically relevant dose of radiation to promote As2O3-induced apoptosis in U937 cells. We found that combining radiation and As2O3 may be a new and more effective means of cancer treatment.  相似文献   

9.
Our earlier results demonstrated that clinically relevant concentrations of unconjugated bilirubin (UCB) possessed immunotoxic effects. Whole-body irradiation (WBI) with 1 to 6Gy leads to acute radiation syndrome, immunosuppression, and makes the host susceptible to infection. Since hyperbilirubinemia has been shown to be associated with several types of cancer, the present studies were undertaken to evaluate the radiomodifying effects of UCB in radiation-exposed mice having elevated levels of UCB. Pretreatment of splenic lymphocytes with UCB (1-50μM at UCB/BSA ratio <1) augmented radiation-induced DNA strand breaks, MMP loss, calcium release, and apoptosis. Combination treatment of mice with UCB (50mg/kg bw) followed by WBI (2Gy) 0.5h later, resulted in significantly increased splenic atrophy, bone marrow aplasia, decreased counts of peritoneal exudate cells, and different splenocyte subsets such as CD3+ T, CD4+ T, CD8+ T, CD19+ B, and CD14+ macrophages as compared to either UCB or WBI treatment. Hematological studies showed that WBI-induced lymphopenia, thrombocytopenia, and neutropenia were further aggravated in the combination treatment group. UCB pretreatment of mice potentiated WBI-induced apoptosis and decreased WBI-induced loss of functional response of various immune cells leading to augmentation of immunosuppression and infection susceptibility caused by WBI. In an acute bacterial peritonitis model, UCB pretreatment of mice significantly increased WBI-induced proinflammatory cytokines, nitric oxide, and peritoneal bacterial load resulting in increased infection and death. Studies using the pharmacological inhibitor of p38MAPK demonstrated the involvement of p38MAPK activation in the inflammatory cascade of peritonitis. These findings should prove useful in understanding the potential risk to hyperbilirubinemic patients during radiotherapy and victims of acute radiation exposure in the course of radiation accidents.  相似文献   

10.
Lymphocytes are very sensitive to radiation. Our aim was to test the possibility of detecting apoptosis in lymphocytes as a potential short-term biomarker of ionizing radiation exposure. Our in vitro data confirmed the dose-time-effect relationships involved in radiation-induced apoptosis. The detection of in vivo induction of apoptosis in circulating lymphocytes after exposure of animals to radiation appears to depend critically on the technique used to measure apoptosis. Among the different techniques we investigated, mitochondrial modification was the most appropriate; they allowed establishment of dose-time-effect relationships when animals were observed for 72 h. A model of in vitro phagocytosis of apoptotic lymphocytes by macrophages was developed to mimic clearance of apoptotic cells occurring in vivo. Together, our data show that mitochondrial labeling may make it possible to detect ex vivo radiation-induced apoptosis of lymphocytes before macrophage ingestion occurs. We propose the measurement of apoptosis in lymphocytes as a potential short-term biomarker of ionizing radiation exposure.  相似文献   

11.
Ionizing radiation is an effective means of killing tumor cells. Approximately 50% of all American cancer patients are treated with radiotherapy at some time during the course of their disease, making radiation one of the most widely used cytotoxic therapies. Currently, much effort is focused on understanding the molecular pathways that regulate tumor cell survival following radiotherapy, with the long term goal of developing novel therapeutic strategies for specifically sensitizing tumors to radiation. At present, there is particular interest in the role of tumor cell apoptotic potential as a regulator of both intrinsic and extrinsic determinants of the response of tumors to radiation therapy. Here we review what is currently known about the role of apoptosis as a mechanism of tumor cell killing by ionizing radiation and the relative contribution of apoptosis to cellular radiosensitivity and the ability to control human cancers using radiotherapy. The following topics will be discussed: (1) radiation-induced apoptosis in normal and malignant cells, (2) clinical findings with respect to apoptosis in human cancers treated with radiotherapy, (3) the contribution of apoptosis to intrinsic radiosensitivity in vitro, (4) the relevance of apoptosis to treatment outcome in experimental tumor models in vivo and (5) the potential of exploiting apoptosis as a means to improve the therapeutic efficacy of radiotherapy.  相似文献   

12.
The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.  相似文献   

13.
14.
Induction of apoptosis by ionizing radiation and CI-1033 in HuCCT-1 cells   总被引:1,自引:0,他引:1  
CI-1033 is a quinazoline-based HER family tyrosine kinase inhibitor that is currently being evaluated as a potential anticancer agent. The present study examines the molecular mechanism by which CI-1033 induces apoptosis either as a single agent or in combination with radiation. Although CI-1033 alone did not induce apoptosis, the simultaneous exposure of cells to CI-1033 and radiation induced significant levels of apoptosis. The sequential treatment of cells with CI-1033 followed by radiation induced an even greater effect with 62.6% of cells undergoing apoptosis but this enhanced effect was not seen if cells were treated first with radiation and then CI-1033. The combination treatment induces apoptosis of HuCCT-1 via upregulation of FasL and Bid cleavage. These data suggest that modulation of the Fas-FasL pathway and activation of Bid could be useful for increasing the anti-tumor effect of CI-1033 in this type of cancer.  相似文献   

15.
Although protein kinase C (PKC) plays an important role in cellular response to radiation, little is known about the specific role of each isoform in the radiation induced cellular response. In this study, the induction of apoptosis and subcellular distribution of PKC isoforms after gamma-ray irradiation were examined in three kinds of mouse epidermal cells with different stages of carcinogenesis (normal mouse keratinocytes, PK: v-rasHa transfected mouse keratinocytes, ras-PK; and neoplastic cells from mouse skin papilloma, 308 cells). The induction of apoptosis was different in normal and neoplastic cells; in normal cells after 16 Gy of radiation, apoptosis was 2-10 times higher than that in ras-PK or 308 cells, and was rapidly induced; other cells died more slowly, depending on the stage of carcinogenesis. The responses of each PKC, especially rapid translocation of PKCdelta and no response of PKCepsilon by radiation in normal cells may influence the induction of apoptosis by radiation.  相似文献   

16.
The histone deacetylase inhibitor (HDAC), phenylbutyrate (PB), is a novel anti-tumor agent. Studies have demonstrated that HDAC inhibitors can suppress cutaneous radiation syndrome and stimulate hematopoiesis. The objective of this study was to test the ability of PB treatment to protect against acute gamma-radiation-induced lethality in the DBA/2 mouse model. A 30-day radiation lethality study was used to assess radioprotective capability of PB. Mechanisms were evaluated using western blots, flow cytometry, and the single-cell gel electrophoresis assay. Western blot studies showed that PB treatment acetylated histones in vivo. For radiation protection studies, prophylactic administration of PB (24 h preradiation; 1–50 mg/kg) provided radioprotection against gamma radiation (8–9.5 Gy) and PB demonstrated a DRF of 1.31 (P = 0.001; 95% confidence interval: 1.27, 1.36). When PB (10 mg/kg) was administered post-radiation (4 h), it also provided significant radioprotection at 8.0 Gy radiation (P = 0.022). PB treatment before radiation was associated with significant elevations in neutrophils and platelets following radiation. Results from single-cell gel electrophoresis of peripheral blood leukocytes demonstrated that PB treatment before radiation can attenuate DNA damage and inhibit radiation-induced apoptosis. These results indicate that an HDAC inhibitor like PB has potential as a radiation protector and that mechanisms of action include attenuation of DNA damage and inhibition of apoptosis.  相似文献   

17.
Exposure to ionizing radiation induces p53, and its inhibition improves mouse survival. We tested the effect of 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG) on p53 expression and function after radiation exposure. 17-DMAG, a heat-shock protein 90 (Hsp90) inhibitor, protects human T cells from ionizing radiation-induced apoptosis by inhibiting inducible nitric oxide synthase (iNOS) and subsequent caspase-3 activation. Using ex vivo human peripheral blood mononuclear cells, we found that ionizing radiation increased p53 accumulation, acute p53 phosphorylation, Bax expression and caspase-3/7 activation in a radiation dose- and time postirradiation-dependent manner. 17-DMAG inhibited these increases in a concentration-dependent manner (IC(50) = 0.93 ± 0.01?μM). Using in vitro models, we determined that inhibition of p53 by genetic knockout resulted in lower levels of caspase-3/7 activity 1?day after irradiation and enhanced survival at 10?days. Analysis of p53-Hsp90 interaction in ex vivo cell lysates indicated that the binding between the two molecules occurred after irradiation but 17-DMAG prevented the binding. Taken together, these results suggest the presence of p53 phosphorylation and Hsp90-dependent p53 stabilization after acute irradiation. Hsp90 inhibitors such as 17-DMAG may prove useful with radiation-based cancer therapy as well as for general radioprotection.  相似文献   

18.
Abstract Many acute and chronic effects of ionizing radiation are mediated by reactive oxygen species and reactive nitrogen species, which deplete antioxidant stores, leading to cellular apoptosis, stem cell depletion and accelerated aging. C57BL/6NHsd mice receiving intravenous MnSOD-PL prior to 9.5 Gy total-body irradiation (TBI) show increased survival from the acute hematopoietic syndrome, and males demonstrated improved long-term survival (Epperly et al., Radiat. Res. 170, 437-444, 2008). We evaluated the effect of an antioxidant-chemopreventive diet compared to a regular diet on long-term survival in female mice. Twenty-four hours before the LD(50/30) dose of 9.5 Gy TBI, subgroups of mice were injected intravenously with MnSOD-PL (100 μg plasmid DNA in 100 μl of liposomes). Mice on either diet treated with MnSOD-PL showed decreased death after irradiation compared to irradiated mice on the house diet alone (P = 0.031 for the house diet plus MnSOD-PL or 0.015 for antioxidant diet plus MnSOD-PL). The mice on the antioxidant-chemoprevention diet alone or with MnSOD-PL that survived 30 days after irradiation had a significant increase in survival compared to mice on the regular diet (P = 0.04 or 0.01, respectively). In addition, mice treated with MnSOD-PL only and surviving 30 days after radiation also had increased survival compared to those on the regular diet alone (P = 0.02). Survivors of acute ionizing radiation damage have ameliorated life shortening if they are fed an antioxidant-chemopreventive diet.  相似文献   

19.
Exposure of cells to ionizing radiation can cause apoptosis. Since antioxidants have been shown to protect against radiation-induced apoptosis, in this study we have evaluated the putative protective effect of ascorbate against radiation-induced apoptosis as well as the production of peroxides in the cells. HL60 cells transport the oxidized form of ascorbic acid, dehydroascorbic acid (DHA), and accumulate reduced ascorbate. Exposure of the cells to 5-40 Gy X radiation resulted in induction of apoptosis. Preincubation of the cells with DHA reduced the level of apoptosis after exposure to 5-20 Gy. Exposure of the cells to 5 or 20 Gy X radiation did not affect the intracellular concentration of peroxides, while phorbol myristate acetate (PMA), which is known to induce production of H(2)O(2) in cells (and served as a control), resulted in an increase in peroxides and a decrease in intracellular ascorbate. Irradiation of the cells with 1-3 Gy resulted in up-regulation of expression of BCL2 without affecting the level of apoptosis. At higher doses of radiation, enhanced BCL2 expression did not prevent radiation-induced apoptosis. Loading of the cells with ascorbate prior to their exposure to 1-3 Gy X radiation did not affect the enhanced BCL2 expression observed in the irradiated cells. At higher doses of radiation, ascorbate decreased apoptosis and restored the level of BCL2 in the cells. Exposure of the cells to 3-20 Gy X radiation enhanced the cell surface expression of TNFRSF6 (formerly known as Fas/APO-1) antigen and enhanced anti-TNFRSF6 antibody-induced apoptosis of the cells. Ascorbate loading did not affect expression of TNFRSF6 and did not overcome the anti-TNFRSF6 antibody-induced apoptosis. In conclusion, our data demonstrate that exposure of HL60 cells to radiation enhanced BCL2 and TNFRSF6 expression. Ascorbate did not affect BCL2 or TNFRSF6 expression. We therefore conclude that it protects HL60 cells against radiation-induced apoptosis, although the mechanisms of protection must still be elucidated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号