首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During spaceflight the normal head-to-foot hydrostatic pressure gradients are eliminated and body fluids shift toward the head, resulting in a diminished fluid volume in the legs and an increased fluid volume in the head, neck, and upper extremities. Lymphatic function is important in the maintenance of normal tissue fluid volume, but it is not clear how microgravity influences lymphatic pumping. We performed a detailed evaluation of the influence of simulated microgravity on lymphatic diameter, wall thickness, elastance, tone, and other measures of phasic contractility in isolated lymphatics. Head-down tail suspension (HDT) rats were used to simulate the effects of microgravity. Animals were exposed to HDT for 2 wk, after which data were collected and compared with the control non-HDT group. Lymphatics from four regional lymphatic beds (thoracic duct, cervical, mesenteric, and femoral lymphatics) were isolated, cannulated, and pressurized. Input and output pressures were adjusted to apply a range of transmural pressures and flows to the lymphatics. Simulated microgravity caused a potent inhibition of pressure/stretch-stimulated pumping in all four groups of lymphatics. The greatest inhibition was found in cervical lymphatics. These findings presumably are correlated to the cephalic fluid shifts that occur in HDT rats as well as those observed during spaceflight. Flow-dependent pump inhibition was increased after HDT, especially in the thoracic duct. Mesenteric lymphatics were less strongly influenced by HDT, which may support the idea that lymph hydrodynamic conditions in the mesenteric lymphatic during HDT are not dramatically altered.  相似文献   

3.
模拟失重对大鼠腹主动脉L-Arg-NO-cGMP通路的影响   总被引:1,自引:0,他引:1  
目的:观察尾部悬吊模拟失重对大鼠腹主动脉舒张反应性与一氧化氮合酶表达的影响。方法:体重300~330 g的20只雄性SD大鼠按体重配对随机分为对照组与模拟失重组,模拟失重大鼠采用尾部悬吊方法模拟失重。4周后,利用离体动脉血管环舒张实验与Western blot蛋白免疫印迹方法观察了腹主动脉舒张反应性和腹主动脉一氧化氮合酶eNOS(endothelial NOS)和iNOS(inducible NOS)的表达。结果:悬吊大鼠腹主动脉环对左旋精氨酸(L-Arg)与乙酰胆碱(Ach)的舒张反应显著低于对照,而对硝普钠(SNP)与环磷酸鸟苷(cGMP)的舒张反应在两组间无显著不同。其敏感性在两组间均无显著差别。腹主动脉的eNOS与iNOS表达在模拟失重组与对照组间亦未发现显著差别。结论:本工作提示尾部悬吊模拟失重下大鼠腹主动脉舒张反应的减弱可能是动脉血管内皮功能改变的结果,尤其是NOS活性的变化可能更为重要。  相似文献   

4.
Recent works have shown that postflight orthostatic intolerance involves multiple alterations in physiological function during actual or simulated microgravity. In our previous work, we demonstrated that 14-day tail-suspension resulted in an impaired ability of vascular smooth muscle to develop tension in arteries confined to the hindquarter, which have been suggested as an important factor accounting for the occurrence of orthostatic intolerance. To our knowledge, data on arterial vasoreactivity alterations induced by simulated microgravity longer than two weeks are not found. The aim of the present work was to characterize the time course of alterations in vasoconstrictor properties of hindquarter arteries during tail-suspension up to eight weeks, and to examine whether these alterations are reversible.  相似文献   

5.
The effects of whole body heating on human baroreflex function are relatively unknown. The purpose of this project was to identify whether whole body heating reduces the maximal slope of the carotid baroreflex. In 12 subjects, carotid-vasomotor and carotid-cardiac baroreflex responsiveness were assessed in normothermia and during whole body heating. Whole body heating increased sublingual temperature (from 36.4 +/- 0.1 to 37.4 +/- 0.1 degrees C, P < 0.01) and increased heart rate (from 59 +/- 3 to 83 +/- 3 beats/min, P < 0. 01), whereas mean arterial blood pressure (MAP) was slightly decreased (from 88 +/- 2 to 83 +/- 2 mmHg, P < 0.01). Carotid-vasomotor and carotid-cardiac responsiveness were assessed by identifying the maximal gain of MAP and heart rate to R wave-triggered changes in carotid sinus transmural pressure. Whole body heating significantly decreased the responsiveness of the carotid-vasomotor baroreflex (from -0.20 +/- 0.02 to -0.13 +/- 0.02 mmHg/mmHg, P < 0.01) without altering the responsiveness of the carotid-cardiac baroreflex (from -0.40 +/- 0.05 to -0.36 +/- 0.02 beats x min(-1) x mmHg(-1), P = 0.21). Carotid-vasomotor and carotid-cardiac baroreflex curves were shifted downward and upward, respectively, to accommodate the decrease in blood pressure and increase in heart rate that accompanied the heat stress. Moreover, the operating point of the carotid-cardiac baroreflex was shifted closer to threshold (P = 0.02) by the heat stress. Reduced carotid-vasomotor baroreflex responsiveness, coupled with a reduction in the functional reserve for the carotid baroreflex to increase heart rate during a hypotensive challenge, may contribute to increased susceptibility to orthostatic intolerance during a heat stress.  相似文献   

6.
The study on development in altered gravity has been investigated in a wide range of animal species from a molecular level or cell culture to mammalian bodies. However development of the baroreflex has been studied in limited mammalian species even on the ground except the turtle to study diving reflex. The rat or mouse has been selectively used for studying the relationship between development of various functions and gravity especially microgravity, because of the limited body size for the loading space on the space ship, an experimental-animal most often used, and other biological characteristics. We have used the rat and rabbit for investigating the effect of microgravity on the development of the aortic baroflex. In the present paper a few results of our experiments using the rat will be shown and the appropriateness of the rat as a model system for studying the baroflex development in altered gravity will be discussed.  相似文献   

7.
Zhang L  Wang YY  Yu ZB 《生理学报》2007,59(6):845-850
本文旨在研究模拟失重对大鼠单个心肌细胞无负荷收缩功能的影响以及对异丙肾上腺素(isoproterenol,ISO)反应性的变化.采用人鼠尾部悬吊法在地面模拟失重状态,4周后以胶原酶I消化分离心肌细胞,分别对左、右两心室心肌细胞进行收缩功能测量.结果显示,悬吊4周大鼠(悬吊组)左,右心室心肌细胞的长度和宽度与正常大鼠(对照组)相比均无显著差异.随刺激频率增加,对照组与悬吊组大鼠心肌细胞缩短幅值均逐步增加.在1.0、2.0与4.0 Hz刺激下,对照组大鼠左心室心肌细胞缩短幅值分别为(8.50±1.26)%、(9.00±1.38)%与(9.23±1.83)%,右心室心肌细胞缩短幅值分别为(9.80±2.48)%、(10.03±2.48)%与(10.28±2.27)%;与对照组大鼠相比,在1.0与2.0Hz刺激下,悬吊组大鼠左心室心肌细胞无负荷缩短幅值分别降低12.2%、10.9%(P《0.05),右心室则分别降低16.5%、16.3%(P《0.05);但是在4.0 Hz刺激下却无显著性改变.与同一频率刺激下的对照组大鼠相比,悬吊组大鼠左、右心室心肌细胞达到缩短峰值的时程(time to peak shortening,TPS)明显缩短(P《0.05);而从缩短峰值至75%舒张的时程(TR75)则明显延长(P《0.05).在各刺激频率下,悬吊组大鼠左、右心室心肌细胞缩短(+dL/dtmax)与舒张(-dL/dtmax)速度均未发生明显改变.用1、5、10 nmol/L ISO灌流达稳态水平后,对照组大鼠心肌细胞缩短幅值分别增加了(10.63±0.83)%、(35.06±5.22)%和(71.64±6.83)%;而悬吊组大鼠心肌细胞缩短幅值仅增加(5.75±0.76)%、(23.97±4.50)%和(26.38±8.13)%,均有显著性差异(P《0.05,P《0.01).用10、50、100 nmol/L forskolin 灌流达稳定水平后,对照组大鼠心肌细胞缩短幅值分别增加了(3.04±0.27)%、(9.81±2.66)%、(20.20±3.47)%;而悬吊组大鼠心肌细胞缩短幅值仅增加了(1.42±0.53)%、(3.83±1.71)%、(5.49±4.08)%,均有显著性差异(P《0.05).以上结果表明,模拟失重4周降低人鼠心肌细胞无负荷缩短幅值以及对ISO的反应性.  相似文献   

8.
Cheng JH  Wang SY  Zhang LF  Liu X  Liu Y  Ma J 《生理学报》2008,60(1):74-82
本文旨在观察模拟失重28 d大鼠解除尾部悬吊前、后(2 h内),清醒自由活动状态下动脉收缩压(systolic bloodpressure,SBP)、舒张压(diastolic blood pressure,DBP)和心率(heart rate,HR)的变化.采用自回归模型法对不同时间点的收缩压变异性(SBP variability,SBPV)和心率变异性(HR variability,HRV)进行自谱与互谱分析,并比较自回归法与周期图法的自谱分析结果:由传递函数分析得到反映压力感受器-心率反射敏感性(baroreceptor-heart rate reflex sensitivity,BRS)变化的有关数据.结果显示,用自回归模型法对清醒大鼠血压信号进行短时程谱分析可得到较为平滑、谱峰清楚的谱估计曲线.28 d模拟失重大鼠解除尾部悬吊前、后,SBP、DBP和HR及其主要谱指标,以及高、低频段传递函数的平均增益均无显著性变化,不同时间点的谱指标也无显著差别;但模拟失重组的SBP、DBP和HR却显著高于对照组.上述结果提示,中期模拟失重大鼠恢复正常体位后,其清醒状态的BPV与HR均处于升高状态,但其短时程BPV与HRV谱及BRS均无显著变化,与最近报道的航天员HRV与BRS无显著改变一致.  相似文献   

9.
It is well known that the muscle spindle is a receptor of muscle's tension and length, it plays an important role in maintaining the muscle's tension. The aim of the present study is to compare the cross-section area (CSA) and the immunoreactivity of conjugated-ubiquitin in soleus extrafusal and intrafusal fibers after simulated-microgravity in order to demonstrate the role of muscle spindle in muscle atrophy induced by simulated microgravity.  相似文献   

10.
Wang Y  An L  Jiang Y  Hang H 《PloS one》2011,6(12):e29214
There have been many studies on the biological effects of simulated microgravity (SMG) on differentiated cells or adult stem cells. However, there has been no systematic study on the effects of SMG on embryonic stem (ES) cells. In this study, we investigated various effects (including cell proliferation, cell cycle distribution, cell differentiation, cell adhesion, apoptosis, genomic integrity and DNA damage repair) of SMG on mouse embryonic stem (mES) cells. Mouse ES cells cultured under SMG condition had a significantly reduced total cell number compared with cells cultured under 1 g gravity (1G) condition. However, there was no significant difference in cell cycle distribution between SMG and 1G culture conditions, indicating that cell proliferation was not impaired significantly by SMG and was not a major factor contributing to the total cell number reduction. In contrast, a lower adhesion rate cultured under SMG condition contributed to the lower cell number in SMG. Our results also revealed that SMG alone could not induce DNA damage in mES cells while it could affect the repair of radiation-induced DNA lesions of mES cells. Taken together, mES cells were sensitive to SMG and the major alterations in cellular events were cell number expansion, adhesion rate decrease, increased apoptosis and delayed DNA repair progression, which are distinct from the responses of other types of cells to SMG.  相似文献   

11.
The purpose of this study was to test the hypothesis that differential autoregulation of cerebral and hindquarter arteries during simulated microgravity is mediated or modulated by differential activation of K(+) channels in vascular smooth muscle cells (VSMCs) of arteries in different anatomic regions. Sprague-Dawley rats were subjected to 1- and 4-wk tail suspension to simulate the cardiovascular deconditioning effect due to short- and medium-term microgravity. K(+) channel function of VSMCs was studied by pharmacological methods and patch-clamp techniques. Large-conductance Ca(2+)-activated K(+) (BK(Ca)) and voltage-gated K(+) (K(v)) currents were determined by subtracting the current recorded after applications of 1 mM tetraethylammonium (TEA) and 1 mM TEA + 3 mM 4-aminopyridine (4-AP), respectively, from that of before. For cerebral vessels, the normalized contractility of basilar arterial rings to TEA, a BK(Ca) blocker, and 4-AP, a K(v) blocker, was significantly decreased after 1- and 4-wk simulated microgravity, respectively. VSMCs isolated from the middle cerebral artery branches of suspended rats had a more depolarized membrane potential (E(m)) and a smaller K(+) current density compared with those of control rats. Furthermore, the reduced total current density was due to smaller BK(Ca) and smaller K(v) current density in cerebral VSMCs after 1- and 4-wk tail suspension, respectively. For hindquarter vessels, VSMCs isolated from second- to sixth-order small mesenteric arteries of both 1- and 4-wk suspended rats had a more negative E(m) and larger K(+) current densities for total, BK(Ca), and K(v) currents. These results indicate that differential activation of K(+) channels occur in cerebral and hindquarter VSMCs during short- and medium-term simulated microgravity. It is further suggested that different profiles of channel remodeling might occur in VSMCs as one of the important underlying cellular mechanisms to mediate and modulate differential vascular adaptation during microgravity.  相似文献   

12.
This study was designed to clarify whether simulated microgravity-induced differential adaptational changes in cerebral and hindlimb arteries could be prevented by daily short-period restoration of the normal distribution of transmural pressure across arterial vasculature by either dorsoventral or footward gravitational loading. Tail suspension (Sus) for 28 days was used to simulate cardiovascular deconditioning due to microgravity. Daily standing (STD) for 1, 2, or 4 h, or +45 degrees head-up tilt (HUT) for 2 or 4 h was used to provide short-period dorsoventral or footward gravitational loading as countermeasure. Functional studies showed that Sus alone induced an enhancement and depression in vasoconstrictor responsiveness of basilar and femoral arterial rings, respectively, as previously reported. These differential functional alterations can be prevented by either of the two kinds of daily gravitational loading treatments. Surprisingly, daily STD for as short as 1 h was sufficient to prevent the differential functional changes that might occur due to Sus alone. In morphological studies, the effectiveness of daily 4-h HUT or 1-h STD in preventing the differential remodeling changes in the structure of basilar and anterior tibial arteries induced by Sus alone was examined by histomorphometry. The results showed that both the hypertrophic and atrophic changes that might occur, respectively, in cerebral and hindlimb arteries due to Sus alone were prevented not only by daily HUT for 4 h but also by daily STD even for 1 h. These data indicate that daily gravitational loading by STD for as short as 1 h is sufficient to prevent differential adaptational changes in function and structure of vessels in different anatomic regions induced by a medium-term simulated microgravity.  相似文献   

13.
The effect of long-term clinorotation on potato minituber formation and the structural-functional organization of storage parenchyma cell in minitubers has been studied by using methods of organ culture in vitro, light- and electron microscopy, biochemistry as well as phenological observation. It was established some acceleration of growth, changes in the parenchyma cell ultrastructure and in the starch content as well as an intensification of phosphorylase activity in the storage tissue of minitubers under the influence of simulated microgravity.  相似文献   

14.
The effects of simulated microgravity conditions, using a three-dimensional clinostat (Random Positioning Machine, RPM), on carrageenin-induced paw oedema in rats as a model of local inflammation were evaluated. RPM-exposed animals showed a significant reduction of oedema and a more pronounced decrease in body weight with respect to control groups. Moreover, aspirine (ASA) treatment, an anti-inflammatory agent, on RPM-exposed rats did not exhibit any activity after carrageenin challenge with respect to RPM control animals on the ground. ASA activity on RPM could be prevented by RPM-induced anti-oedematous effect. RPM-induced anti-oedematous effect did not reversed by pre-treatment with the non-selective glucocorticoid receptor antagonist, mifepristone ruling out the supposed influence of an of cortisol release during the RPM treatment.  相似文献   

15.
模拟微重力对肺动脉和胸主动脉的影响   总被引:3,自引:0,他引:3  
目的 :通过对模拟微重力 (SM)、肺动脉 (PA)和胸主动脉 (TA)局部调节机理研究 ,为大小循环动脉对SM适应机理和SM后立位耐力降低机理研究积累资料。方法 :XXH 2 0 0 0型小循环心功能检测仪检测人体头低位 6°卧床(HDT) 7d心肺循环功能变化。 - 30°尾部悬吊 (TS)大鼠模拟微重力 (microgravity ,M)的生理效应 ,测量 7d、1 4dPA和TA的反应性。结果 :人体HDT初期每搏PA(hz)、静脉 (hc)容量和左心前负荷 (hc/hz)均显著增加 ,96~ 1 4 4h大小循环均出现超调现象 ,前者出现时间早、幅度大。 7d尾部悬吊大鼠 (TS7)与对照组 (CON)比PA舒张反应显著增强 ,TS1 4有降低趋势。TS7TA与CON比舒张反应显著增强 ,TS1 4轻度升高。TS7PA收缩反应与CON比轻度降低 ,TS1 4显著降低。TS1 4TA收缩反应显著降低。去VECPA对KCl、苯肾上腺素和硝普钠的反应在所有组间无差异。结论 :SM对大小循环动脉影响不同 ,可能是SM时局部调节功能降低的重要表现 ,主要由于动脉血管内皮细胞功能变化 ,对立位耐力降低可能有贡献  相似文献   

16.
Skeletal muscle satellite cells cultured in simulated microgravity   总被引:1,自引:3,他引:1  
Summary Satellite cells are postnatal myoblasts responsible for providing additional nuclei to growing or regenerating muscle cells. Satellite cells retain the capacity to proliferate and differentiate in vitro and, therefore, provide a useful model to study postnatal muscle development. Most culture systems used to study postnatal muscle development are limited by the two-dimensional (2-D) confines of the culture dish. Limiting proliferation and differentiation of satellite cells in 2-D could potentially limit cell-cell contacts important for developing the level of organization in skeletal muscle obtained in vivo. Culturing satellite cells on microcarrier beads suspended in the High-Aspect-Ratio-Vessel (HARV) designed by NASA provides a low shear, three-dimensional (3-D) environment to study muscle development. Primary cultures established from anterior tibialis muscles of growing rats (∼ 200 gm) were used for all studies and were composed of greater than 75% satellite cells. Different inoculation densities did not affect the proliferative potential of satellite cells in the HARV. Plating efficiency, proliferation, and glucose utilization were compared between 2-D culture and 3-D HARV culture. Plating efficiency (cells attached ÷ cells plated ×100) was similar between the two culture systems. Proliferation was reduced in HARV cultures and this reduction was apparent for both satellite cells and nonsatellite cells. Furthermore, reduction in proliferation within the HARV could not be attributed to reduced substrate availability because glucose levels in medium from HARV and 2-D cell culture were similar. Morphologically, microcarrier beads within the HARV were joined together by cells into 3-D aggregates composed of greater than 10 beads/aggregate. Aggregation of beads did not occur in the absence of cells. Myotubes were often seen on individual beads or spanning the surface of two beads. In summary, proliferation and differentiation of satellite cells on microcarrier beads within the HARV bioreactor results in a 3-D level of organization that could provide a more suitable model to study postnatal muscle development than is currently available with standard culture methods.  相似文献   

17.
Neonatal rat heart cells cultured in simulated microgravity   总被引:9,自引:0,他引:9  
Summary In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two-dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by nonmyocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA- designed High-Aspect Ratio Vessel (HARV) bioreactors provide a low shear environment that allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells cultured in HARVs adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARVs using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar; however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissuelike organizations of cardiac cells in vitro.  相似文献   

18.
Cultivation of cell-polymer tissue constructs in simulated microgravity   总被引:8,自引:0,他引:8  
Tissue-engineered cartilage was cultivated under conditions of simulated microgravity using rotating bioreactors. Rotation randomized the effects of gravity on inoculated cells (chondrocytes) and permitted their attachment to three-dimensional (3D) synthetic, biodegradable polymer scaffolds that were freely suspended within the vessel. After 1 week of cultivation, the cells regenerated a cartilaginous extracellular matrix (ECM) consisting of glycosaminoglycan (GAG) and collagen types I and II. Tissue constructs grown in simulated microgravity had higher GAG contents and thinner outer capsules than control constructs grown in turbulent spinner flasks. Two fluid dynamic regimes of simulated microgravity were identified, depending on the vessel rotation speed: (i) a settling regime in which the constructs were maintained in a state of continuous free-fall close to a stationary point within the vessel and (ii) an orbiting regime in which the constructs orbited around the vessel spin axis. In the settling regime, the numerically calculated relative fluid-construct velocity was comparable to the experimentally measured construct settling velocity (2-3 cm/s). A simple mathematical model was used in conjunction with measured construct physical properties to determine the hydrodynamic drag force and to estimate the hydrodynamic stress at the construct surface (1.5 dyn/cm(2)). Rotating bioreactors thus provide a powerful research tool for cultivating tissue-engineered cartilage and studying 3D tissue morphogenesis under well-defined fluid dynamic conditions. (c) 1995 John Wiley & Sons, Inc.  相似文献   

19.
The study was aimed at investigation of the effects of 2-week tail suspension upon the constrictor responses of isolated small renal arteries in rats. 1st-2nd-order branches of renal artery were perfused with saline under the constant flow conditions. Constrictor responses to electrical stimulation of periarterial nerves, noradrenaline and serotonin were investigated. In post-suspension rats as compared to controls the response to nerve stimulation was slightly reduced during 15-Hz stimulation, but similar at smaller frequencies. Thus, simulated microgravity has no prominent effect of neurogenic responses of renal vessels, in agreement with non-changed density of periarterial adrenergic nerve plexus. Along with that, in post-suspension rats impairment of prejunctional sympathetic mechanisms might be compensated by augmented sensitivity of vascular smooth muscle to vasoconstrictors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号