首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of N-terminal amino acid stereochemistry on prolyl amide geometry and peptide turn conformation were investigated by coupling both L- and D-amino acids to (2S, 5R)-5-tert-butylproline and L-proline to generate, respectively, N-(acetyl)dipeptide N'-methylamides 1 and 2. Prolyl amide cis- and trans-isomers were, respectively, favored for peptides 1 and 2 as observed by proton NMR spectroscopy in water, DMSO and chloroform. The influence of solvent composition on amide proton chemical shift indicated an intramolecular hydrogen bond between the N'-methylamide proton and the acetamide carbonyl for the major conformer of dipeptides (S)-1, that became less favorable in (R)-1 and 2. The coupling constant (3J(NH,alpha)) values for the cis-isomer of (R)-1 indicated a phi2 dihedral angle value characteristic of a type VIb beta-turn conformation in solution. X-ray crystallographic analysis of N-acetyl-D-leucyl-5-tert-butylproline N'-methylamide (R)-lb showed the prolyl residue in a type VIb beta-turn geometry possessing an amide cis-isomer and psi3-dihedral angle having a value of 157 degrees, which precluded an intramolecular hydrogen bond. Intermolecular hydrogen bonding between the leucyl residues of two turn structures within the unit cell positioned the N-terminal residue in a geometry where their phi2 and psi2 dihedral angle values were not characteristic of an ideal type VIb turn. The circular dichroism spectra of tert-butylprolyl peptides (S)- and (R)-1b were found not to be influenced by changes in solvent composition from water to acetonitrile. The type B spectrum exhibited by (S)-1b has been previously assigned to a type VIa beta-turn conformation [Halab L, Lubell WD. J. Org. Chem. 1999; 64: 3312-3321]. The type C spectrum exhibited by the (R)-lb has previously been associated with type II' beta-turn and alpha-helical conformations in solution and appears now to be also characteristic for a type VIb geometry.  相似文献   

2.
Three peptides, B-10148 (Lys-1-Lys0-Arg1-Pro2-Hyp3-Gly4-Igl5-Ser6- DF5F7-Oic8; where Hyp is trans-4-hydroxyproline, Igl is alpha-(2-indanyl)glycine, F5F is 2,3,4,5,6-pentafluorophenylalanine and Oic is (3aS,7aS)-octahydroindole-2-carboxylic acid), B-10206 (DArg0-Arg1-Pro2-Hyp3-Gly4-Igl5-Ser6-DF 5F7-Nc7G8-Arg9; where Nc7G is N-cycloheptylglycine) and B- 10284 (Arg1-Pro2-Pro3-Gly4-Phe5-Thr6-DTic7-Oic8- NH2; where Tic is 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), were studied in detail by NMR spectroscopy in 60% CD3OH /40% H2O and modeled by a simulated annealing protocol to determine their solution structure. B-10148, an extremely potent BK B1 receptor antagonist with very high BK B2 receptor antagonist activity, despite lacking a C-terminal Arg, displayed an ideal type II beta-turn from Pro2 to Igl5, as well as a salt bridge between the guanidino group of Arg1 and the carboXylate group of Oic8. B-10206, the most potent B2 antagonist, also displayed an ideal type II beta-turn from Pro2 to Igl5 but secondary structure was not observed at the C-terminal end. The third peptide, B-10284, a des-Arg9 analog with a C-terminal amide and a very potent B2 antagonist, had no definite solution structure. The high activity of these peptides emphasizes the importance of the N-terminal beta-turn and the hydrophobic character at the C-terminus in determining the activity of bradykinin antagonists.  相似文献   

3.
The role played by noncovalent interactions in inducing a stable secondary structure onto the sodium dodecyl sulfate (SDS) and dodecylphosphocholine (DPC) micelle-bound conformations of (Ala(8,13,18))magainin 2 amide and the DPC micelle bound conformation of magainin 1 were determined. Two-dimensional NMR and molecular modeling investigations indicated that (Ala(8,13,18))magainin 2 amide bound to DPC micelles adopts a alpha-helical secondary structure involving residues 2-16. The four C-terminal residues converge to a lose beta-turn structure. (Ala(8,13,18))magainin 2 amide bound to SDS miscelles adopts a alpha-helical secondary structure involving residues 7-18. The C- and N-terminal residues exhibited a great deal of conformational flexibility. Magainin 1 bound to DPC micelles adopts a alpha-helical secondary structure involving residues 4-19. The C-terminal residues converge to a lose beta-turn structure. The results of this investigation indicate hydrophobic interactions are the major contributors to stabilizing the induced helical structure of the micelle-bound peptides. Electrostatic interactions between the polar head groups of the micelle and the cationic side chains of the peptides define the positions along the peptide backbone where the helical structures begin and end.  相似文献   

4.
The crystal structure of Ac-DeltaVal-NMe(2) (DeltaVal = alpha,beta-dehydrovaline) was determined by X-ray crystallography. The found angles phi = -60 degrees and psi = 125 degrees correspond exactly to the respective values of the (i + 1)th residue in idealised beta-turn II/VIa. Ab initio/DFT studies revealed that the molecule adopts the angle psi restricted only to about |130 degrees | and very readily attains the angle phi = about -50 degrees. This is in line with its solid-state conformation. Taken together, these data suggest that the DeltaVal residue combined with a C-terminal tertiary amide is a good candidate at the (i + 1)th position in a type II/VIa beta-turn.  相似文献   

5.
The relationship between the conformation and biological activity of Leu-enkephalin was studied using (2S,6R,8S)-9-oxo-8-N-(Boc)amino-1-azabicyclo[4.3.0]nonane-2-carboxylic acid [(2S,6R,8S)-1, I(9)AA] as a constrained Gly(2)-Gly(3) dipeptide surrogate. [I(9)AA](2,3)-Leu-enkephalin 12 was assembled using solid-phase peptide synthesis on Merrifield resin with TBTU as the coupling reagent. The in vitro assays indicated that [I(9)AA](2,3)-Leu-enkephalin 12 exhibited affinities for the mu- and delta-opioid receptors that were three orders of magnitude lower than that of Leu-enkephalin, as well as partial agonist character for both receptors. In in vivo assays for spinal analgesia, the indolizidinone analog 12 showed significantly enhanced duration of action, indicating an increased metabolic stability. Conformational analysis was performed using NMR and CD spectroscopy. The amide temperature coefficients and 3J(NH-CalphaH) coupling constants for 12 could not support a hydrogen-bonded beta-turn structure; however, its CD spectrum indicated a turn conformation. Incorporation of indolizidinone amino acid 1 into Leu-enkephalin thus provided additional support for the importance of a turn conformation for the biological activity of the native peptide.  相似文献   

6.
A useful synthon to approach artificial phenylalanyl peptides in a [2 + 2 + 2] cycloaddition reaction, C(alpha,alpha)-dipropargylglycine (Dprg) is examined for its conformational preferences as a constrained residue. Crystal structure analysis and preliminary NMR results establish possible preference of the residue for folded (alpha) rather than extended (beta) region of the straight phi,psi conformational space. Boc-Dprg-L-Leu-OMe (1) displays two molecular conformations within the same crystallographic asymmetric unit, with Dprg in the alpha(R) or alpha(L) conformation, participating in a type I beta-turn or an alpha(L)-alpha(R)-type fold, in which Leu(2) assumes the alpha(R) conformation stereochemically favored for an L-chiral residue. Boc-Dprg-D-Val-L-Leu-OMe (2) displays a type I' beta-turn conformation in crystal, with both Dprg(1) and D-Val(2) assuming the alpha(L) conformation stereochemically favored for a D-chiral residue, with 4 --> 1 type hydrogen bond linking L-Leu(3) NH with Boc CO. NMR analysis using temperature variation, solvent titration, and a spin probe study suggests a fully solvent-exposed nature of Dprg NH, ruling out a fully extended C(5)-type conformation for this residue, and solvent sequestered nature of L-Leu(3) NH, suggesting possibility of a beta-turn due to Dprg assuming a folded conformation.  相似文献   

7.
Analysis and prediction of the different types of beta-turn in proteins   总被引:30,自引:0,他引:30  
beta-Turns have been extracted from 59 non-identical proteins (resolution 2 A) using the standard criterion that the distance between C alpha (i) and C alpha (i + 3) is less than 7 A (1 A = 0.1 nm). The beta-turns have been classified, using phi, psi angles, into seven conventional turn types (I, I', II, II', IV, VIa, VIb) and a new class of beta-turn, designated type VIII, in which the central residues (i + 1, i + 2) adopt an alpha R beta conformation. Most beta-turn types are found in various topological environments, with the exception of I' and II' beta-turns, where 83% and 50%, respectively, are found in beta-hairpins. Sufficient data have been gathered to enable, for the first time, the separate statistical analysis of type I and II beta-turns. The two turn types have been shown to be strikingly different in their sequence preferences. Type I turns favour Asp, Asn, Ser and Cys at i; Asp, Ser, Thr and Pro at i + 1; Asp, Ser, Asn and Arg at i + 2; Gly, Trp and Met at i + 3, whilst type II turns prefer Pro at i + 1; Gly and Asn at i + 2; Gln and Arg at i + 3. These preferences have been explained by the specific side-chain interactions observed within the X-ray structures. The positional trends for type I and II beta-turns have been incorporated into the simple empirical predictive algorithm originally developed by P.N. Lewis et al. The program has improved the positional prediction of beta-turns, and has enhanced and extended the method by predicting the type of beta-turn. Since the observed preferences reflect local interactions these predictions are applicable not only to proteins, but also to peptides, many of which are thought to contain beta-turns.  相似文献   

8.
The conformational analysis by NMR, IR, and molecular modeling of tetrapeptides containing morpholine-3-carboxylic acid (Mor) as a proline surrogate is presented. The relationship between the chirality of the cyclic amino acid at position i+1 and the turn propensity is maintained with respect to the reference proline-containing peptides, although marked differences in the type of folded structures were observed. The conformational profile of morpholine-containing turn peptides as a function of the chirality of the cyclic amino acid indicated that the heterochiral tetrapeptide containing the D-isomer of the cyclic amino acid is more prone to nucleate compact folded structures, although with no resemblance to the beta-turn structures of D-proline-containing peptides. Also, the solvation system proved to influence the organization of folded structures, as in the more interactive CD(3)CN the model peptides showed more compact conformations. The L-Mor-containing peptide displayed two rotamers at the Val-Mor amide bond. The trans isomer did not experience any turn structures, nor any intramolecular hydrogen-bonds, whereas the cis isomer showed a strong preference for a type VI beta-turn structure, thus providing a different conformational asset with respect to the beta-turn structure as reported for the reference L-proline model peptide.  相似文献   

9.
The high-affinity interaction between protein kinase inhibitor (PKI)(6-22)amide(Thr6-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr-Gly- Arg-Arg-Asn- Ala-Ile22-NH2) and the catalytic subunit of cAMP-dependent protein kinase requires both the N-terminal Thr6 to Ile11 sequence of the inhibitor peptide and its C-terminal pseudosubstrate site comprised of Arg15 to Ile22. Small angle X-ray scattering data indicate that PKI(6-22)amide has a compact, rather than extended, structure in solution (Reed J et al., 1989, Biochem J 264:371-380). CD spectroscopic analysis of the PKI peptide led to the suggestion that a beta-turn structure might be located in the -Ala12-Ser-Gly-Arg15-connecting sequence in the middle of the molecule (Reed J, Kinzel V, Cheng HC, Walsh DA, 1987, Biochemistry 26:7641-7647). To investigate this possibility further, conformationally constrained and flexible analogs of PKI(6-22)amide were synthesized and used to study the structure-function relationships of this central portion of the inhibitor. (Des12-14)PKI(6-22) amide exhibited over a 200-fold loss in inhibitory activity. Replacement of the omitted -Ala12-Ser-Gly14-sequence with aminocaprylic acid yielded an analog that regained more than 90% of the lost binding energy. The D-alanine14 PKI analog was as potent as the parent peptide, whereas the beta-alanine14 and the sarcosine14 analogs were only 10-fold less active. Several peptides that promoted a beta-turn structure at residues 12-15 showed about 200-fold decreases in inhibitory activity. Two constrained analogs that could not assume a beta-turn conformation were only 30-fold less potent than PKI(6-22)amide. Thus, the structure of the central connecting portion of the PKI peptide, encompassing residues 12-15, greatly influences its ability to effectively bind to and inhibit the catalytic subunit. We conclude, however, that a formal beta-turn at this position is not required and is actually detrimental for a high-affinity interaction of PKI(6-22)amide with the enzyme. These results are interpreted in light of the Fourier-transform infrared spectra of the peptide analogs and the crystal structure of the peptide bound at the active site of the protein kinase (Knighton DR et al., 1991b, Science 253:414-420).  相似文献   

10.
The crystal structures of four peptides incorporating 1-aminocycloheptane-1-carboxylic acid (Ac7c) are described. Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe adopt beta-turn conformations stabilized by an intramolecular 4----1 hydrogen bond, the former folding into a type-I/III beta-turn and the latter into a type-II beta-turn. In the dipeptide esters, Boc-Aib-Ac7c-OMe and Boc-Pro-Ac7c-OMe, the Ac7c and Aib residues adopt helical conformations, while the Pro residue remains semi-extended in both the molecules of Boc-Pro-Ac7c-OMe found in the asymmetric unit. The cycloheptane ring of Ac7c residues adopts a twist-chair conformation in all the peptides studied. 1H-NMR studies in CDCl3 and (CD3)2SO and IR studies in CDCl3 suggest that Boc-Aib-Ac7c-NHMe and Boc-Pro-Ac7c-Ala-OMe maintain the beta-turn conformations in solution.  相似文献   

11.
The carboxyl-terminal domain of RNA polymerase II, which is rich in phosphorylation sites, contains 17--52 tandem repeats with the consensus sequence of the heptapeptide, YSPTSPS. The repeat unit of the heptapeptide has two SPXX motifs showing potential beta-turns, SPTS and SPSY. NMR studies were performed in water at pH 4.0 for two cyclic peptides containing one and two repeat units, cyclo-[C(1)R(2)D(3)Y(4)S(5)P(6)T(7)S(8)P(9)S(10)Y(11)S(12)R(13)D(14)C(15)] (peptide 1) and cyclo-[C(1)R(2)D(3)Y(4)S(5)P(6)T(7)S(8)P(9)S(10)Y(11)S(12)P(13)T(14)S(15)P(16)N(17)Y(18)S(19)R(20)D(21)C(22)] (peptide 2), which are cyclized with a disulfide bridge of two Cys residues at the N- and C-termini. SP in 1 and 2 are predominantly in trans form. The following NMR parameters were detected: (1) lower temperature coefficients of amide proton chemical shifts of T7 and S8 in 1, and Tx (T7 or T14), Sx (S8 or S15), Tz (T14 or T7) and Sz (S15 or S8) in 2, (2) significantly large deviation of H(alpha) chemical shifts from its random coil value (Delta H(alpha)) of Pro preceding the Thr (P6 in 1, and Px and Pz in 2), (3) relatively large (3)J(HNH alpha) coupling constants (>8.7 Hz) of T7 in 1 and Tx and Tz in 2, and (4) NOE (d(NN) (i, i+1)) connectivities between the amide protons of T7-S8 and S10-Y11 in 1, and Tx-Sx, S10-Y11, Tz-Sz, and N17-Y18 in 2, although two Pro-Thr-Ser segments in 2 (each of these are annotated by 'x' and 'z') in the first and second repeat units were not distinguishable. Comparison of the NMR parameters between the cyclic peptides and the corresponding linear peptides indicates that cyclization promotes structural stabilization in water. The present NMR data were consistent with the presence of a beta-turn at both SPTS and SPSY: S(5)P(6)T(7)S(8) and S(8)P(9)S(10)Y(11) in 1, and SPxTxSx, SPzTzSz, SP(9)S(10)Y(11), SP(16)N(17)Y(18) in 2. However, the structure of the SPTS segment is more stable than that of the SPSY segment. Conformations consistent with NMR parameters including NOE distances were obtained through molecular dynamics and energy minimization methods. These calculations yielded two stable conformers for the SPTS segment. One of the two corresponds to a type I beta-turn.  相似文献   

12.
To correlate the Raman frequencies of the amide I and III bands to beta-turn structures, three peptides shown to contain beta-turn structure by x-ray diffraction and NMR were examined. The compounds examined were tertiary (formula: see text). The amide I band of these compounds is seen at 1,668, 1,665, and 1,677 cm-1, and the amide III band appears at 1,267, 1,265, and 1,286 cm-1, respectively. Thus, it is concluded that the amide I band for type III beta-turn structure appears in the range between 1,665 and 1,677 cm-1 and the amide III band between 1,265 and 1,286 cm-1.  相似文献   

13.
Xu G  Evans JS 《Biopolymers》1999,49(4):303-312
We report solution-state pulsed field gradient nmr studies of a native sequence-derived 23-residue peptidomimetic, N alpha-acetyl-QPGVGGRQPGMGGQPGVGGRQPG-C alpha-amid, that incorporates the prevalent GVGGR and GMGGQ repeats found in the sea urchin embryo intracrystalline spicule matrix protein, SM50 (Strongylocentrotus purpuratus). These repeats are sequence homologues of elastin protein repeats (VPGVG, VGGVG, and APGVGV) and spider dragline silk protein repeats (GPGG, GQGG, and QPGYG). Using rotating frame nuclear Overhauser effect (ROE) connectivities, CH alpha proton conformational shifts, 3JNH-CH alpha coupling constants, amide temperature shift coefficients, and pulsed field gradient ROE spectroscopy solvent exchange measurements, we find that the 23-mer peptidomimetic possesses a multiple beta-turn structure in aqueous solution, in equilibria with an extended or coil structure (60% beta-turn: 40% random coil). The GVGGR sequence adopts a double beta-turn conformation that is stabilized by two hydrogen bonds (R7-->V4, R20-->V17; G6-->G3, G19-->G16). The GMGGQ region adopts a single beta-turn conformation that is stabilized by a hydrogen bond involving residues Q14 and M11. Repeating beta-turn structures, or beta-spirals, may play an important role with regard to matrix assembly, protein stability, molecular elasticity, and/or protein-crystal recognition within the spicule mineralized matrix.  相似文献   

14.
Molecular processes depending on protein–protein interactions can use consensus recognition sequences that possess defined secondary structures. Left-handed polyproline II (PPII) helices are a class of secondary structure commonly involved with cellular signal transduction. However, unlike -helices, for which a substantial body of work exists regarding applications of ring-closing metathesis (RCM), there are few reports on the stabilization of PPII helices by RCM methodologies. The current study examined the effects of RCM macrocyclization on left-handed PPII helices involved with the SH3 domain-mediated binding of Sos1–Grb2. Starting with the Sos1-derived peptide “Ac-V1-P2-P3-P4-V5-P6-P7-R8-R9-R10-amide,” RCM macrocyclizations were conducted using alkenyl chains of varying lengths originating from the pyrrolidine rings of the Pro4 and Pro7 residues. The resulting macrocyclic peptides showed increased helicity as indicated by circular dichroism and enhanced abilities to block Grb2–Sos1 interactions in cell lysate pull-down assays. The synthetic approach may be useful in RCM macrocyclizations, where maintenance of proline integrity at both ring junctures is desired.  相似文献   

15.
An important goal in the de novo design of enzymes is the control of molecular geometry. To this end, an analog of the protease from human immunodeficiency virus 1 (HIV-1 protease) was prepared by total chemical synthesis, containing a constrained, nonpeptidic type II' beta-turn mimic of predetermined three-dimensional structure. The mimic beta-turn replaced residues Gly16,17 in each subunit of the homodimeric molecule. These residues constitute the central amino acids of two symmetry-related type I' beta-turns in the native, unliganded enzyme. The beta-turn mimic-containing enzyme analog was fully active, possessed the same substrate specificity as the Gly16,17-containing enzyme, and showed enhanced resistance to thermal inactivation. These results indicate that the precise geometry of the beta-turn at residues 15-18 in each subunit is not critical for activity, and that replacement of the native sequence with a rigid beta-turn mimic can lead to enhanced protein stability. Finally, the successful incorporation of a fixed element of secondary structure illustrates the potential of a "molecular kit set" approach to protein design and synthesis.  相似文献   

16.
The peptide alpha Ahx-Met-Ala-Asp-Pro-Asn-Arg-Phe-Arg-Gly-Lys-Asp-Leu-Pro-Val-Leu- Asp-Gln-Leu-Thr-Asp-Pro-Pro-alpha Ahx (epsilon Ahx = 6-aminohexanoyl), the antigenic sequence 11-32 from Herpes simplex virus glycoprotein D-1, has been synthesised. Its 1H-NMR spectrum has been assigned by a combination of two-dimensional techniques in H2O and 2H2O. Its secondary structure has been defined by nuclear Overhauser effects and amide proton exchange rates, and also to some extent chemical shifts, coupling constants and amide proton temperature coefficients. These latter parameters are shown to be less reliable as guides to secondary structure. The peptide has a helical (type I/III) turn at residues Pro-14-Asn-15 and helical structure at residues Lys-20-Val-24, in rapid equilibrium with random-coil structure. A beta-turn at residues Arg-18-Gly-19 may be present as a minor component. These locations of secondary structure correspond with previously determined regions of antigenic activity.  相似文献   

17.
The secondary structure of a bradykinin B(1)receptor antagonist B-10324 (F5C-Lys-(1)- Lys(0)-Arg(1)-Pro(2)- Hyp(3)-Gly(4)-CpG(5)- Ser(6)-DTic(7)-CpG(8)) was determined by NMR at 800MHz. The conformational data are compared with those obtained previously for two bradykinin B(1) receptor antagonists, namely B-9858 (Lys-(1)- Lys(0)-Arg(1)-Pro(2)- Hyp(3)-Gly(4)-Igl(5)- Ser(6)-DIgl(7)-Oic(8)) and B-10148 (Lys-(1)-Lys(0)-Arg(1)- Pro(2)-Hyp(3)-Gly(4)- Igl(5)-Ser(6)-DF5F(7)- Oic(8)). The abnormal amino acids are: Hyp, trans-4- hydroxyproline; Tic, 1, 2, 3, 4-tetrahydroisoquinoline-3-carboxylic acid; Oic, (2S, 3aS, 7aS)-octahydroindole-2-carboxylic acid; Igl, alpha(2- indanyl)glycine; F5F, 2,3,4,5,6-pentafluorophenylalanine; CpG, alpha- cyclopentylglycine. F5C, pentafluorocinnamoyl, is the N-terminal protecting group and is not involved in the peptide secondary structure. B-10324 contains an N-terminal Pro(2)- CpG(5) distorted type II beta-turn whereas the rest of the peptide is random. A salt bridge is not observed between the carboxylate group at the C-terminal end and the Arg(1) side chain, in contrast to that previously observed for B-9858 and B- 10148. The conformations are correlated with the measured B(1) receptor antagonist activities (J.-F. Larrivée, L. Gera, S. Houle, J. Bouthillier, D. R. Bachvarov, J. M. Stewart and F. Marc au, Br. J. Pharmacol. 131, 885-892 (2000)). The importance of the N-terminal beta-turn is highlighted.  相似文献   

18.
A Fourier transform infrared spectrometer has been interfaced with a surface balance and a new external reflection infrared sampling accessory, which permits the acquisition of spectra from protein monolayers in situ at the air/water interface. The accessory, a sample shuttle that permits the collection of spectra in alternating fashion from sample and background troughs, reduces interference from water vapor rotation-vibration bands in the amide I and amide II regions of protein spectra (1520-1690 cm-1) by nearly an order of magnitude. Residual interference from water vapor absorbance ranges from 50 to 200 microabsorbance units. The performance of the device is demonstrated through spectra of synthetic peptides designed to adopt alpha-helical, antiparallel beta-sheet, mixed beta-sheet/beta-turn, and unordered conformations at the air/water interface. The extent of exchange on the surface can be monitored from the relative intensities of the amide II and amide I modes. Hydrogen-deuterium exchange may lower the amide I frequency by as much as 11-12 cm-1 for helical secondary structures. This shifts the vibrational mode into a region normally associated with unordered structures and leads to uncertainties in the application of algorithms commonly used for determination of secondary structure from amide I contours of proteins in D2O solution.  相似文献   

19.
The structural perturbation induced by C(alpha)-->N(alpha) exchange in azaamino acid-containing peptides was predicted by ab initio calculation of the 6-31G* and 3-21G* levels. The global energy-minimum conformations for model compounds, For-azaXaa-NH2 (Xaa=Gly, Ala, Leu) appeared to be the beta-turn motif with a dihedral angle of phi= +/- 90 degrees, psi=0 degrees. This suggests that incorporation of the azaXaa residue into the i+2 position of designed peptides could stabilize the beta-turn structure. The model azaLeu-containing peptide, Boc-Phe-azaLeu-Ala-OMe, which is predicted to adopt a beta-turn conformation was designed and synthesized in order to experimentally elucidate the role of the azaamino acid residue. Its structural preference in organic solvents was investigated using 1H NMR, molecular modelling and IR spectroscopy. The temperature coefficients of amide protons, the characteristic NOE patterns, the restrained molecular dynamics simulation and IR spectroscopy defined the dihedral angles [ (phi i+1, psi i+1) (phi i+2, psi i+2)] of the Phe-azaLeu fragment in the model peptide, Boc-Phe-azaLeu-Ala-OMe, as [(-59 degrees, 127 degrees) (107 degrees, -4 degrees)]. This solution conformation supports a betaII-turn structural preference in azaLeu-containing peptides as predicted by the quantum chemical calculation. Therefore, intercalation of the azaamino acid residue into the i+2 position in synthetic peptides is expected to provide a stable beta-turn formation, and this could be utilized in the design of new peptidomimetics adopting a beta-turn scaffold.  相似文献   

20.
Previous studies have indicated that proteolytic activation of pro-hormones and pro-proteins occurs most frequently at the level of basic amino acids arranged in doublets and that the dibasic sites are situated in or next to beta-turns. Investigations utilizing synthetic peptides reproducing the N-terminal processing domain of pro-oxytocin-neurophysin have suggested a close relationship between the secondary structure of the cleavage locus and enzyme recognition, the minimal recognized sequence being the -Pro-Leu-Gly-Gly-Lys-Arg-Ala-Val-Leu- segment of the native precursor. NMR investigations and energy minimization studies have demonstrated that this sequence is organized in two type-II beta-turns involving the -Pro-Leu-Gly-Gly- and -Lys-Arg-Ala-Val- sequences. To further strengthen the above reported hypothesis and to study the role of turn subtypes, a new proline containing cyclic substrate of the processing enzyme, in which the N-terminal side that comes before the Lys-Arg pair is constrained to adopt a type-lI beta-turn, has been synthesized. The presence of a type-II beta-turn structure in this cyclic peptide model has been demonstrated by a combined NMR, CD and FT-IR absorption investigation. A preliminary study shows that PC1 is able to recognize and process our constrained substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号