首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary Deoxyadenosine methylation (dam) of the numerous GATC sequences present in theEscherichia coli origin of chromosomal replication (oriC) has been shown to be important both in vivo and in vitro for efficient initiation of DNA synthesis. Recent in vivo data suggest that initiation is only inefficient when these sequences are hemimethylated. This raises the interesting possibility that initiation may be inefficient because it only takes place on one strand of the template, i.e., replication is asymmetric on hemimethylated DNA. We tested this possibility by a novel and rapid approach which relies on the specificities of the restriction endonucleasesMboI,MboII andDpnI. Although we show that replication takes place equally well on both strands of methylated and hemimethylatedoriC DNA templates, the method should be applicable to the analysis of replication symmetry on most DNA templates which contain methylated deoxyadenosine GATC sequences as part ofMboII restriction sites.  相似文献   

2.
Summary High molecular weight genomic DNA isolated from the archaebacterium Methanococcus voltae by alkaline-SDS lysis was not effectively digested with the restriction enzyme Sau3AI, which recognizes the base sequence GATC. Mc. voltae DNA was also resistant to digestion by MboI and BamHI which recognize sites containing the same GATC sequence. Examination of a Mc. voltae genomic library prepared in Escherichia coli JM83 with a pUC vector revealed that the 5–10 kb inserts were still resistant to Sau3AI digestion, indicating a likely lack of the GATC sequence in Mc. voltae DNA.  相似文献   

3.
4.
This study focused on finding a novel sensitive method to determine the methylation modification at DNA dam (GATC) sites in Escherichia coli. A new plasmid which contained three GATC sites recognized by restriction enzyme BclI and one GAATTC site recognized by EcoRI was transformed into E. coli stains AB1157(dam +) and GM2929(dam ) respectively. Then the plasmid DNA was digested by restriction enzyme BclI(T*GATCA), which was sensitive to methylation. The results showed that the plasmid derived from AB1157 was not digested while that from GM2929 was, for the methylation level of the former was high while the latter was low. So by detecting the methylation of plasmid transferred into the strain, we could determine whether methylaion existed at DNA dam (GATC) site in E. coli. This method was effective and rapid; moreover, the digested fragments were not dispersive. It also made a basis for the detection of whether methylation occurred in mode beings by low-energy ion beam. The article is published in the original.  相似文献   

5.
Clostridium thermocellum cell extracts exhibit specific endonuclease activity with very little non-specific exonuclease activity at 55°C. The Dam methylation system of Escherichia coli offers complete protection from digestion by C. thermocellum ATCC 27405 cell extracts for all DNA tested (totaling >100 kb, insuring that most potential restriction sequences have been exposed). Based on both the Dam recognition sequence and the similarity of cell extract and MboI DNA digests, the C. thermocellum restriction enzyme recognition sequence appears to be 5′ GATC 3′. Cell extracts made from a second thermophile, C. thermosaccharolyticum ATCC 31960 do not exhibit specific endonuclease activity under the conditions tested. Genomic DNA from C. thermocellum exhibits a Dam+ phenotype while genomic DNA from C. thermosaccharolyticum exhibits a Dam- phenotype. Received: 10 March 1995/Received revision: 4 September 1995/Accepted: 13 September 1995  相似文献   

6.
A tandemly repeated DNA sequence (RRS7) was isolated from Oryza alta (CCDD). RRS7-related sequences were also found tandemly arrayed in genomes AA, BB, BBCC, CC, and EE, and a small amount of RRS7-related sequences were detected in genome FF and the Oryza species with unknown genomes. DNA sequence analysis of the 1844-bp insert of RRS7 revealed that it contained six tandemly repeated units, of which five were 155 bp in length and one was 194 bp in length and contained an imperfect internal 39-bp duplication. Southern blot analysis showed that the boundary sequence contained in RRS7 is a single-copy sequence. A 155-bp consensus sequence derived from the six monomeric repeats contained no internal repeat and showed no significant homology to other currently known sequences. The results of Southern blot and sequence analysis revealed that there are at least two subfamilies present in the RRS7 family; these are represented by the DraI site and the MspI site, respectively. Restriction digestion with two pairs of isoschizomers MboI/Sau3A and MspI/HpaII demonstrated that most of the C residues in the GATC sites and the internal C in the CCGG sites of the RRS7 family in O. Alta were methylated. The usefulness of the RRS7 family in determining the evolutionary relationship of the genome DD and other Oryza genomes is discussed.  相似文献   

7.
As part of our analysis of the role of a uniquely clustered set of dam methylation sites (the motif GATC) within the origin of DNA replication in Escherichia coli, we have studied the effect of GATCs in various methylation states on the intrinsic curvature of DNA. We have designed a set of DNA linkers and used commercially available linkers containing GATC motifs. The linkers were ligated and the electrophoretic mobility of the resulting multimers in different states of methylation was tested relative to reference fragments. We report that properly phased GATCs in certain sequence environments modulate DNA curvature and that these effects may be enhanced by N6-adenine methylation of the GATCs. These structural alterations may in turn affect DNA-protein interactions, especially those involving proteins that rely on both primary sequence and structure for recognition. We present an example, where introduction of a GATC within an integration host factor (IHF) binding site, which does not alter the consensus sequence, reduces the binding affinity of the protein for the modified site. Received: 16 December 1997 / Accepted: 24 February 1998  相似文献   

8.
9.
Escherichia coli DNA adenine methyltransferase (Dam) and Leucine-responsive regulatory protein (Lrp) are key regulators of the pap operon, which codes for the pilus proteins necessary for uropathogenic E. coli cellular adhesion. The pap operon is regulated by a phase variation mechanism in which the methylation states of two GATC sites in the pap regulatory region and the binding position of Lrp determine whether the pilus genes are expressed. The post-replicative reassembly of Dam, Lrp, and the local regulator PapI onto a hemimethylated pap intermediate is a critical step of the phase variation switching mechanism and is not well understood. We show that Lrp, in the presence and in the absence of PapI and nonspecific DNA, specifically protects pap regulatory GATC sites from Dam methylation when allowed to compete with Dam for assembly on unmethylated and hemimethylated pap DNA. The methylation protection is dependent upon the concentration of Lrp and does not occur with non-regulatory GATC sites. Our data suggest that only at low Lrp concentrations will Dam compete effectively for binding and methylation of the proximal GATC site, leading to a phase switch resulting in the expression of pili.  相似文献   

10.
Constitutive heterochromatin of a karyotypically conserved species of harvest mouse was compared to that of three karyotypically derived species of harvest mice by examining banding patterns produced on metaphase chromosomes with three restriction endonucleases (EcoRI, MboI and PstI). Banding patterns produced by two of these restriction endonucleases (EcoRI and MboI) were compared to published G- and C-banded karyotypes and in situ hybridization of a satellite DNA repeat for these taxa. The third restriction endonuclease (PstI) did not produce a detectable pattern of digestion. For the most part, patterns produced by EcoRI and MboI can be related to C-banded chromosomes and in situ hybridization of satellite DNA sequences. Moreover, digestion with EcoRI reveals bands not apparent with these other techniques, suggesting that restriction endonuclease digestion of metaphase chromosomes may provide additional insight into the structure and organization of metaphase chromosomes. The patterns produced by restriction endonuclease digestion are compatible with the chromosomal evolution of these taxa, documenting that in the highly derived taxa not only are the chromosomes rearranged but the abundance of certain sequences is highly variable. However, technical variation and difficulty in producing consistent results even on a single slide with some restriction endonucleases documents the problems associated with this method.  相似文献   

11.
12.
The polymerase chain reaction (PCR) was employed to develop a specific assay for plant pathogenic mycoplasmalike organisms (MLOs). A cloned fragment of a plasmid from a severe strain of western aster yellows (AY)-MLO was sequenced to identify oligonucleotide primers for PCR. Amplified DNA fragments of the predicted size were obtained from DNA extracted from plants and insects infected with pear decline MLO, beet leafhopper-transmitted virescence agent, elm yellows MLO and several AY-MLO strains. No amplification occurred from healthy leafhopper or plant DNA. The PCR-based assay was over 500 times more sensitive than a _tilized_tion-based assay which _tilized a cloned AY plasmid fragment as a probe. With the PCR-based assay, MLOs could be detected using DNA samples of leafhoppers that were only crushed and boiled in buffer. Amplification of the target DNA was confirmed by digestion of the PCR product with Mbo I which yielded predicted sized fragments for all MLO strains except Bradford AY and eastern AY. Sequencing the PCR product from elm yellows and eastern AY-MLOs revealed greater than 90% homology, and the failure to restrict the PCR product with Mbo I was due to a single base change in the restriction endonuclease site. The ability of the assay to detect a wide range of MLOs with minimal sample preparation and high sensitivity will be useful in epidemiological studies of MLO-caused diseases.  相似文献   

13.
As part of our analysis of the role of a uniquely clustered set of dam methylation sites (the motif GATC) within the origin of DNA replication in Escherichia coli, we have studied the effect of GATCs in various methylation states on the intrinsic curvature of DNA. We have designed a set of DNA linkers and used commercially available linkers containing GATC motifs. The linkers were ligated and the electrophoretic mobility of the resulting multimers in different states of methylation was tested relative to reference fragments. We report that properly phased GATCs in certain sequence environments modulate DNA curvature and that these effects may be enhanced by N6-adenine methylation of the GATCs. These structural alterations may in turn affect DNA-protein interactions, especially those involving proteins that rely on both primary sequence and structure for recognition. We present an example, where introduction of a GATC within an integration host factor (IHF) binding site, which does not alter the consensus sequence, reduces the binding affinity of the protein for the modified site.  相似文献   

14.
Escherichia coli DNA adenine methyltransferase (EcoDam) methylates the N-6 position of the adenine in the sequence 5'-GATC-3' and plays vital roles in gene regulation, mismatch repair, and DNA replication. It remains unclear how the small number of critical GATC sites involved in the regulation of replication and gene expression are differentially methylated, whereas the approximately 20,000 GATCs important for mismatch repair and dispersed throughout the genome are extensively methylated. Our prior work, limited to the pap regulon, showed that methylation efficiency is controlled by sequences immediately flanking the GATC sites. We extend these studies to include GATC sites involved in diverse gene regulatory and DNA replication pathways as well as sites previously shown to undergo differential in vivo methylation but whose function remains to be assigned. EcoDam shows no change in affinity with variations in flanking sequences derived from these sources, but methylation kinetics varied 12-fold. A-tracts immediately adjacent to the GATC site contribute significantly to these differences in methylation kinetics. Interestingly, only when the poly(A) is located 5' of the GATC are the changes in methylation kinetics revealed. Preferential methylation is obscured when two GATC sites are positioned on the same DNA molecule, unless both sites are surrounded by large amounts of nonspecific DNA. Thus, facilitated diffusion and sequences immediately flanking target sites contribute to higher order specificity for EcoDam; we suggest that the diverse biological roles of the enzyme are in part regulated by these two factors, which may be important for other enzymes that sequence-specifically modify DNA.  相似文献   

15.
Summary Weak to severe deficit of GATC sequences in the DNA of enterobacteriophages appears to be correlated with their undermethylation during growth indam + (GATC ade-methylase) bacteria. This observation is corroborated by the sequence analysis showing no evidence for site-specific mutagenicity of 6meAde. The MutH protein of the methyl-directed mismatch repair system recognizes and cleaves the undermethylated GATC sequences in the course of mismatch repair. To enquire whether the MutH function of the methyldirected mismatch repair system participates in counterselection of GATC sequences in enterobacteriophages, we have studied the yield of bacteriophage X174 containing either 0, 1, or 2 GATC sequences, in wild type,dam, andmut (H, L, S, U) Escherichia coli. Following transfection with unmethylated DNA containing two GATC sequences, a net decrease in the yield of infective particles was observed in all bacterialmutH + dam strains, whereas no detectable decrease was observed in bacteria infected by DNA without GATC sequence. This effect of the MutH function is maximum in wild type andmutL andmutS bacteria whereas the effect is not significant inmutU bacteria, suggesting an interaction of the, helicase II with the MutH protein.However, indam + bacteria, the presence of GATC sequences leads to an increased yield of infective particles. The effect of GATC sequence and its Dam methylation system on phage yield inmutH bacteria reveals that methylated GATC sequences are advantageous to the phage. These results suggest that the methyl-directed mismatch repair system, and in particular its MutH protein, may have participated in severe counterselection of GATC sequences from enterobacteriophages, presumably, by DNA cleavage or by interfering with DNA replication or packaging when GATC sequences are undermethylated. Coevolution of the Dam and MutH proteins could then account for the loss of GATC sequences from DNA of bacteriophages growing indam + hosts.  相似文献   

16.
The mechanism of chromosome banding induced by restriction endonucleases was analyzed by measuring the amount of radioactivity extracted from [14C]thymidine-labeled chromosomes digested first with restriction enzymes and subsequently with proteinase K and DNase I. Restriction enzymes with a high frequency of recognition sites in the DNA produced a large number of short DNA fragments, which were extracted from chromosomes during incubation with the enzyme. This loss of DNA resulted in decreased chromosomal staining, which did not occur in regions resistant to restriction enzyme digestion and thus led to banding. Subsequent digestion of chromosomes with proteinase K produced a further loss of DNA, which probably corresponded to long fragments retained in the chromosome by the proteins of fixed chromatin. Restriction enzymes induce chromatin digestion and banding in G1 and metaphase chromosomes, and they induce digestion and the appearance of chromocenters in interphase nuclei. This suggests that the spatial organization and folding of the chromatin fibril plays little or no role in the mechanism of chromosome banding.It was confirmed that the pattern of chromosome banding induced by AluI, MboI, HaeIII, DdeI, RsaI, and HinfI is characteristic for each endonuclease. Moreover, several restriction banding polymorphisms that were not found by conventional C-banding were detected, indicating that there may be a range of variability in the frequency and distribution of restriction sites in homologous chromosome regions.  相似文献   

17.
We have analyzed the esterase D (EsD) polymorphism at the nucleic acid level. Two common alleles, EsD1 and EsD2, are characterized by the substitution of one amino acid (Gly-to-Glu), which is caused by the point mutation of one nucleotide (G-to-A). Individuals exhibiting the EsD1 and EsD 2 phenotypes are homozygotes for EsD 1 and EsD 2 cDNAs, respectively. Individuals showing the EsD 2-1 phenotype have two kinds of cDNAs, viz., EsD 1 and EsD 2. The point mutation difference between the cDNAs of the EsD1 and EsD2 alleles results in a different SspI digestion site. A restriction fragment length polymorphism caused by this difference with respect to the SspI digestion site makes it possible to determine the EsD phenotype using DNA samples extracted from forensic materials with no EsD enzymatic activity.  相似文献   

18.
Two pairs of restriction enzyme isoschizomers were used to study in vivo methylation of E. coli and extrachromosomal DNA. By use of the restriction enzymes MboI (which cleaves only the unmethylated GATC sequence) and its isoschizomer Sau3A (indifferent to methylated adenine at this sequence), we found that all the GATC sites in E. coli and in extrachromosomal DNAs are symmetrically methylated on both strands. The calculated number of GATC sites in E. coli DNA can account for all its m6Ade residues. Foreign DNA, like mouse mtDNA, which is not methylated at GATC sites became fully methylated at these sequences when introduced by transfection into E. coli cells. This experiment provides the first evidence for the operation of a de novo methylation mechanism for E. coli methylases not involved in restriction modification. When the two restriction enzyme isoschizomers, EcoRII and ApyI, were used to analyze the methylation pattern of CCTAGG sequences in E. coli C and phi X174 DNA, it was found that all these sites are methylated. The number of CCTAGG sites in E. coli C DNA does not account for all m5Cyt residues.  相似文献   

19.
EcoDam is an adenine-N6 DNA methyltransferase that methylates the GATC sites in the Escherichia coli genome. We have changed the target specificity of EcoDam from GATC to GATT by directed evolution, combining different random mutagenesis methods with restriction protection at GATT sites for selection and screening. By co-evolution of an enzyme library and a substrate library, we identified GATT as the best non-GATC site and discover a double mutation, R124S/P134S, as the first step to increase enzyme activity at GATT sites. After four generations of mutagenesis and selection, we obtained enzyme variants with new specificity for GATT. While the wild-type EcoDam shows no detectable activity at GATT sites in E. coli cells, some variants prefer methylation at GATT over GATC sites by about 10-fold in cells. In vitro DNA methylation kinetics carried out under single-turnover conditions using a hemimethylated GATC and a GATT oligonucleotide substrate confirmed that the evolved proteins prefer methylation of GATT sites to a similar degree. They show up to 1600-fold change in specificity in vitro and methylate the new GATT target site with 20% of the rate of GATC methylation by the wild-type enzyme, indicating good activity. We conclude that the new methyltransferases are fully functional in vivo and in vitro but show a new target-site specificity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号