首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation of water-soluble metabolites of tritium-labeled benzo[a]pyrene (BP) by cultured hamster embryo cells was studied. The ratio of the radioactivity in the aqueous phase to that in the organic phase increased with the incubation period. After incubation for 48 h with 3.75 nmol/ml of [3H] BP in the medium more than 90% of the 3H-radioactivity was found in the aqueous phase, whereas with 10-fold more BP about half the radioactivity remained in the organic phase. The main metabolites extracted from the medium at 37.5 nmol/ml BP with ethyl acetate by high pressure liquid chromatography (HPLC) were 9,10-diol and 7,8-diol; but after treatment of the medium with beta-glucuronidase the main oxygenated metabolites were phenols, the amount of 9-OH BP being more than that of 3-OH BP. beta-Glucuronidase also released 9,10-diol and 7,8-diol, but most of these diols were in the free form in the medium. The medium from cells treated with 3.75 nmol/ml BP has a quantitatively different profile, and most of the radioactivity obtained by extraction with organic solvent and digestion with beta-glucuronidase was eluted in the regions of phenols. These results show that in hamster embryo cells BP is mainly metabolised to conjugates of phenols with glucuronic acid.  相似文献   

2.
The metabolism of benzo[a]pyrene (BP) by hamster embryo cells was studied. The production of water-soluble metabolites, shown to be conjugates with glucuronic acid, depended on BP concentration. With increased BP concentration the amount of glucuronic acid conjugates increased, but the proportion of conjugates in BP or its metabolites present in the medium decreased. The metabolites extracted with ethylacetate were trans-7,8-dihydrodiol-BP (7,8-dihydrodiol) and trans-9,10-dihydrodiol-BP (9,10-dihydrodiol), but large peaks of phenolic metabolites were found by high pressure liquid chromatography (HPLC) after digesting the medium with beta-glucuronidase. Therefore, BP is metabolized to oxygenated forms, and of these, most of the phenolic metabolites and parts of the dihydrodiols are conjugated with glucuronic acid. The proportions of dihydrodiols to phenols, estimated by HPLC after beta-glucuronidase digestion, decreased when the BP concentration was decreased. The results suggest that dihydrodiols are less readily glucuronidated than phenols and so may be metabolized further to metabolites other than glucuronic acid conjugates.  相似文献   

3.
The rate of metabolism of benzo[a]pyrene (BP) and changes in related enzyme activities in cultured hamster embryo cells during successive subculture were studied. The activity of aryl hydrocarbon hydroxylase (AHH) was the highest when embryo cells were first dispersed in tissue culture flasks and decreased during subsequent passages. On the other hand, UDP-glucuronyl transferase activity increased gradually during successive subculture. Treatment of the cells with 13 nmol/ml of benz[a]anthracene (BA) for 24 h increased the activity of AHH but not that of UDP-glucuronyl transferase. The metabolism of BP was measured in cells of the passages 1, 3 and 7; metabolism of BP was most efficient in cells in passage 3 and their formation of glucuronic acid conjugates of BP, one of the major metabolites found in the medium, was 3- and 10-fold more than those of cells in passages 1 and 7, respectively. Analysis of BP-metabolites extracted from the medium with ethylacetate showed that the main metabolites were 9,10-diol and 7,8-diol. Phenols and quinones were released by treatment of the medium with beta- glucuronidase and their amounts were larger than those of diols at all passages. These results show that in hamster embryo cells in early passage, BP is metabolized to conjugates of phenols with glucuronic acid.  相似文献   

4.
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-1) and (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-2) are highly mutagenic diol epoxide diastereomers that are formed during metabolism of the carcinogen (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Remarkable stereoselectivity has been observed on metabolism of the optically pure (+)- and (?)-enantiomers of the dihydrodiol which are obtained by separation of the diastereomeric diesters with (?)-α-methoxy-α-trifluoromethylphenylacetic acid. The high stereoselectivity in the formation of diol epoxide-1 relative to diol epoxide-2 was observed with liver microsomes from 3-methylcholanthrene-treated rats and with a purified cytochrome P-448-containing monoxygenase system where the (?)-enantiomer produced a diol epoxide-2 to diol epoxide-1 ratio of 6 : 1 and the (+)-enantiomer produced a ratio of 1 : 22. Microsomes from control and phenobarbital-treated rats were less stereospecific in the metabolism of enantiomers of BP 7,8-dihydrodiol. The ratio of diol epoxide-2 to diol epoxide-1 formed from the (?)- and (+)-enantiomers with microsomes from control rats was 2 : 1 and 1 : 6, respectively. Both enantiomers of BP 7,8-dihydrodiol were also metabolized to a phenolic derivative, tentatively identified as 6,7,8-trihydroxy-7,8-dihydrobenzo[a]pyrene, which accounted for ~30% of the total metabolites formed by microsomes from control and phenobarbital-pretreated rats whereas this metabolite represents ~5% of the total metabolites with microsomes from 3-methylcholanthrene-treated rats. With benzo[a]pyrene as substrate, liver microsomes produced the 4,5-, 7,8- and 9,10-dihydrodiol with high optical purity (>85%), and diol epoxides were also formed. Most of the optical activity in the BP 7,8-dihydrodiol was due to metabolism by the monoxygenase system rather than by epoxide hydrase, since hydration of (±)-benzo[a]pyrene 7,8-oxide by liver microsomes produced dihydrodiol which was only 8% optically pure. Thus, the stereospecificity of both the monoxygenase system and, to a lesser extent, epoxide hydrase plays important roles in the metabolic activation of benzo[a]pyrene to carcinogens and mutagens.  相似文献   

5.
Alkaline sucrose gradient sedimentation analysis was used to detect DNA lesions induced by benzo[a]pyrene B(a)P in Chinese hamster ovary cells. The number of lesions detected immediately following treatment with 10(-4) M B(a)P was related directly to the duration of treatment. When treated cells were incubated in a B(a)P-free medium, the majority of lesions disappeared rapidly and could no longer be detected 15 min following treatment. These data indicate that a population of B(a)P-induced DNA lesions may be removed by a rapid DNA-repair process. The transient nature of such lesions should be considered when assays for DNA damage or repair are designed and interpreted.  相似文献   

6.
The effect of phenothiazine and 11 of its derivatives on the mutagenicity of benzo[a]pyrene, as measured by the Ames test was investigated. Significant anti-mutagenic activity was detected for 10 phenothiazine derivatives, with the 2-chloro derivative being the most effective inhibitor tested and promazine the only phenothiazine drug tested which has no demonstrable inhibitory activity. It is considered that the anti-mutagenic activity and therefore potentially anticarcinogenic activity of these derivatives should be of interest to epidemiologists.  相似文献   

7.
The proportions of individual benzo[a]pyrene (BaP)-DNA adducts present in rodent embryo cell cultures change with the length of time of exposure to BaP; the major alteration is an increase in the proportion of (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydroBaP (BaPDE)-deoxyguanosine (dG) adduct (Sebti et al., Cancer Res., 45 (1984) 1594-1600). To determine if this change in the BaP-DNA adducts could result from the induction of enzymes involved in oxidation of BaP, hamster embryo cell cultures were exposed to acetone or BaP for 24 h and then the medium was replaced with fresh medium containing [3H]BaP. After 5 h the BaP-pretreated cells had a 30% higher level of binding of BaP to DNA and formed a greater proportion of (+)-anti-BaPE-dG adduct than the acetone-pretreated control group. Cells pretreated for 24 h with BaP and then exposed to [3H]BaP and Actinomycin D for 5 h had a lower level of binding of BaP to DNA and a lower amount of (+)-anti-BaPDE-deoxyguanosine adduct than cells pretreated with acetone and exposed to [3H]BaP for 5 h. In contrast, pretreatment for 24 h with BaP plus Actinomycin D followed by a 5-h exposure to [3H]BaP resulted in a decrease in overall binding of BaP to DNA but had no effect on the amount of (+)-anti-BaPDE-deoxyguanosine adduct. Actinomycin D treatment had no significant effect on either the total amount of BaP metabolized, the formation of primary and water-soluble BaP metabolites, or cell viability, but reduced [3H]uridine incorporation into RNA by more than 65% at all times. These results suggest that induction of specific isozymes of cytochrome P-450 may be involved in the time-dependent increase in the proportion of (+)-anti-BaPDE-DNA adducts in BaP-treated cells. The state of induction of specific isozymes of cytochrome P-450 and the ability of the BaP dose applied to induce them may be major factors in determining the proportion of BaP metabolized to (+)-anti-BaPDE, the most carcinogenic stereoisomer of BaPDE.  相似文献   

8.
9.
Human placental microsomes were incubated with [3H]benzo[a]pyrene (BP) and Salmon sperm DNA and the resulting metabolite-nucleoside complexes resolved by Sephadex LH-20 chromatography. The metabolite pattern was analyzed by high-pressure liquid chromatography (HPLC). The incubates were also co-chromatographed with extracts obtained from incubates with rat liver microsomes and [14C]BP. Phenols, quinones and 7,8-dihydrodiol were detected in the placental incubates. Both 9,10- and 4,5-dihydrodiols were very low as compared with control rat liver samples. Placental microsomes catalyzed the binding of BP metabolites to DNA in vitro, giving rise to two main complexes which co-chromatographed with rat liver-produced peaks attributable to 7,8-diol-9,10-epoxide and 7,8-oxide and/or quinones when metabolized further. The nucleoside metabolite peaks attributable to 4,5-oxide and 9-phenol-4,5-oxide were lacking when compared with the binding pattern catalyzed by rat liver. Both the total binding and specific metabolite-nucleoside adducts in the placenta correlated with fluorometrically measured aryl hydrocarbon hydroxylase (AHH) activity and with the amount of dihydrodiol formed. The results demonstrate that both the metabolite pattern and the nucleoside-metabolite complexes formed by the placental microsomes in vitro differed greatly from those produced by rat liver microsomes. These studies also suggest that it is not possible to predict specific patterns of DNA binding from AHH measurements or even from BP metabolite patterns, especially when comparing different tissues and species.  相似文献   

10.
11.
Studies were carried out on the incidence of sister-chromatid exchanges induced in Chinese hamster ovary cells by in vitro treatment with the polycyclic aromatic hydrocarbons 7-methylbenz[a]anthracene and benzo[a]pyrene and with related K-region and non-K-region dihydrodiols. Appreciable increases in the incidence of sister-chromatid exchanges were apparent in cells treated with non-K-region dihydrodiols: the most active compounds were 3,4-dihydro-3,4-dihydroxy-7-methylbenz[a]anthracene and 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene and the effects were dose-dependent. The parent hydrocarbons and the related K-region dihydrodiols induced some sister-chromatid exchanges but they were considerably less active than these two non-K-region diols. The results suggest that this system may usefully be applied to studies aimed at determining which dihydrodiols are important in the metabolic activation of the carcinogenic polycyclic hydrocarbons. These and other results also infer that Chinese hamster ovary cells possess some intrinsic ability to metabolize such compounds in the absence of exogenous activation systems.  相似文献   

12.
The effect of norharman on the metabolism of benzo[a]pyrene by rat-liver microsomes was studied. Separation of the metabolites into hydrophilic and hydrophobic fractions showed that norharman inhibited the conversion of hydrophobic metabolites to hydrophilic ones.Analysis of the hydrophobic metabolites by high-pressure liquid chromatography showed that norharman also inhibited the disappearance of benzo[a]pyrene itself. However, large amounts of hydrophobic metabolites, such as phenol, quinones and diols, were formed in the presence of norharman, and formation of the strong mutagen 7,8-dihydroxybenzo[a]pyrene was increased 10-fold by norharman. The increase in formation of this compound may be one of the chief reasons why norharman enhances the mutagenicity of benzo[a]pyrene on Salmonella typhimurium.  相似文献   

13.
The oxidative metabolism of benzo[a]pryrene (B[a]P) phenols catalyzed by liver microsomes in vitro leads to multiple products. High-pressure liquid chromatography analysis of the organic-soluble products formed indicates that regardless of the animal pretreatment regime, 3-hydroxy-B[a]P is metabolized to the 3,6-quinone and to a hydroxylated derivative tentatively identified as 3,9-dihyroxy-B[a]P. However, the distribution of products obtained with 9-hydroxy-B[a]P varied with animal pretreatment. A maximum of three distinct metabolites was obtained when the 9-phenol was metabolized in vitro with microsomes from phenobarbital-pretreated rats and the tentative 3,9-dihydroxy derivative was a common metabolite for all pretreatment regimes. Physical characterization, including mass spectrometry, indicates that all three products have an extra oxygen atom incorporated into their molecular structure from molecular oxygen. Studies utilizing specific inhibitors of the cytochrome P-450-dependent monooxygenase clearly suggest that the formation of dihydroxy or phenol-oxide derivatives is catalyzed by the hemoprotein, cytochrome P-450. These metabolites of the benzo[a]pyrene phenols are most likely related to the putative phenol-oxides of benzo[a]pyrene which have been demonstrated to alkylate DNA and protein. Repetitive scan difference spectrophotometric analysis of incubation mixtures containing rat liver microsomes, 3- or 9-hydroxy-B[a]P, NADPH, and oxygen shows the conversion of the phenols into products which absorb in the region from 400 to 500 nm. During and after the steady state of the reaction, it can be seen that certain of the hydroxy compounds produced are in equilibrium with their respective quinone form and may be involved in an oxygen-coupled redox cycle.  相似文献   

14.
The effect of norharman on the metabolism of benzo[alpha]pyrene by rat-liver microsomes was studied. Separation of the metabolites into hydrophilic and hydrophobic fractions showed that norharman inhibited the conversion of hydrophobic metabolites to hydrophilic ones. Analysis of the hydrophobic metabolites by high-pressure liquid chromatography showed that norharman also inhibited the disappearance of benzo[alpha]pyrene itself. However, large amounts of hydrophobic metabolites, such as phenol, quinones and diols, were formed in the presence of norharman, and formation of the strong mutagen 7,8-dihydroxybenzo[alpha]pyrene was increased 10-fold by norharman. The increase in formation of this compound may be one of the chief reasons why norharman enhances the mutagenicity of benzo[alpha]pyrene on Salmonella typhimurium.  相似文献   

15.
NADPH-reduction of benzo[a]pyrene 4,5-oxide (BP-4,5-oxide) to BP required four components from rat liver: cytochrome P-450, NADPH cytochrome P-450 reductase, phosphatidylcholine and a soluble, heat-sensitive factor which was present in 105 000 × g supernatant and was also released from microsomes by sonication. The requirement for this factor contrasts with recently reported results from Sugiura et al. (Cancer Res., 40 (1980) 2910). Oxide-reduction was 40 times faster under anaerobic conditions, but oxygen did not affect the stimulation factor. This stimulation was highest (× 15) at low concentrations of microsomal protein (<0.1 mg/ml) and was almost absent at high concentrations of microsomal protein (>1 mg/ml). Oxide-reduction activity was proportional to microsomal protein concentration in the presence of added 105 000 × g supernatant, but for microsomes alone (>0.1 mg/ml) exhibited a parallel plot with an intercept at 0.08 mg/ml microsomal protein. Stimulation was highest at high concentrations of BP-4,5-oxide and a linear plot of V−1 vs. [BP-4,5-oxide]−1 was only obtained in the presence of 105 000 × g supernatant (Km = 3 μM, Vmax = 3.3 nmol/mg/min). Microsomal hydration of BP-4,5-oxide (inhibited in reductase assays) was unaffected by 105 000 × g supernatant, suggesting that stimulation of oxide-reduction did not derive from solubilization of BP-4,5-oxide. Stimulation was observed in the initial rate of reaction and was independent of incubation time. Inhibition of lipid peroxidation, removal of peroxides and deoxygenation were all excluded as explanations of the stimulatory effect.  相似文献   

16.
Liver microsomal enzymes are essential for the detection of benzo[a]pyrene (B[a]P)-mediated mutagenesis in the Salmonella/mammalian microsome mutagenicity test and, furthermore, this mutagenicity is considerably enhanced by induction of hepatic enzymes involved with drug metabolism. Although Aroclor 1254 is most commonly used for induction of S9 enzymes, DDT is also capable of this induction. This paper reports a comparison of liver S9 fraction induced by the two agents: there is a marked difference in their concentration optima for metabolism of B[a]P; greater numbers of revertant colonies are seen with Aroclor-induced S9, which is optimal at a concentration of 10% (v/v), whereas DDT-induced S9 is optimal at 2.5% (v/v); Aroclor induces aryl hydrocarbon hydroxylase (AHH), cytochrome P-450 and epoxide hydrase while DDT induces only AHH, to about half the level detected in the Aroclor-induced S9 fraction. A comparison of metabolite distribution for Aroclor- and DDT-induced hepatic microsomes reveals quantitative differences only. DDT-induced microsomes yield a greater proportion of B[a]P-4,5-oxide and its metabolic product B[a]P-4,5-dihydrodiol than do Aroclor-induced microsomes. Time course studies on the mutagen half-life measured on the agar plate provides good evidence that metabolites responsible for mutagenicity were different for each inducer.  相似文献   

17.
Ellagic acid, a common plant phenol, was shown to be a potent inhibitor of epidermal microsomal aryl hydrocarbon hydroxylase (AHH) activity in vitro, and of benzo[a]pyrene (BP)-binding to both calf thymus DNA in vitro and to epidermal DNA in vivo. The in vitro addition of ellagic acid (0.25-2.0 microM) resulted in a dose-dependent inhibition of AHH activity in epidermal microsomes prepared from control or carcinogen-treated animals. The I50 of ellagic acid for epidermal AHH was 1.0 microM making it the most potent inhibitor of epidermal AHH yet identified. In vitro addition of ellagic acid to microsomal suspensions prepared from control or coal tar-treated animals resulted in 90% inhibition of BP-binding to calf thymus DNA. Application of ellagic acid to the skin (0.5-10.0 mumol/10 gm body wt) caused a dose-dependent inhibition of BP-binding to epidermal DNA. Our results suggest that phenolic compounds such as ellagic acid may prove useful in modulating the risk of cutaneous cancer from environmental chemicals.  相似文献   

18.
19.
Mechanisms of co-carcinogenicity of particulates, such as iron oxide and asbestos, and benzo[a]pyrene (B[a]P) are not completely understood. Particulates dramatically alter rates of uptake of B[a]P into membranes, a factor which could account for co-carcinogenicity. However, B[a]P must be activated to reactive forms to be carcinogenic and mutagenic so alterations in metabolism of B[a]P by particulates also could result in co-carcinogenesis. To elucidate mechanisms of particulate-B[a]P co-carcinogenesis, we have correlated rates of uptake of B[a]P into microsomes with metabolism of B[a]P and with mutagenicity of B[a]P in the Ames test. In general, aryl hydrocarbon hydroxylase (AHH) activity paralleled rates of uptake of B[a]P, though some inhibition of AHH activity by particulates which was not attributable to availability of B[a]P was evident. This inhibition was studied further by assaying separately mixed function oxidase and epoxide hydrase activities in the presence of particulates. Both chrysotile and iron oxide inhibited O-deethylation of 7-ethoxyresorufin and hydration of B[a]P-4,5-oxide. To determine effects of this inhibition on activation of B[a]P to reactive forms, we studied profiles of metabolites of B[a]P and mutagenicity of B[a]P. The only alteration in profiles of B[a]P metabolites produced by particulates was that due to effects on rates of uptake. Similarly, mutagenicity of B[a]P was positively correlated with rates of uptake into microsomes. We conclude that the predominant effects of chrysotile and iron oxide are in altering rates of uptake of particle-adsorbed B[a]P. Changes in uptake rates then result in alterations of B[a]P metabolism and mutagenicity.  相似文献   

20.
Basal levels of aryl hydrocarbon hydroxylase, epoxide hydrolase and glutathione S-transferase enzyme activities, cytochrome P-450 content and inducibility of enzymes with phenobarbital were found to be similar in the microsomes of D. simulans mutant strain 364yv, which is sensitive to the toxic and mutagenic effects of benzo[a]pyrene (BP), and of the wild resistant Turku strain. In contrast, increases in the rate of BP turnover per molecule of cytochrome P-450, intensity of the hemoprotein band with apparent molecular weight 56,000 and the yield of BP 7,8-dihydrodiol and 9,10-dihydrodiol occurred only in microsomes of BP-pretreated 364yv flies but not of Turku ones. It is likely that BP induces an aberrant form of cytochrome P-450 in 364yv flies with a rare mutation in one of the P-450 regulating genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号