首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Gengenbach  S Syn  X Wang  Y Lu 《Biochemistry》1999,38(35):11425-11432
Trp191Phe and Trp51Phe mutations have been introduced into an engineered cytochrome c peroxidase (CcP) containing a Mn(II)-binding site reported previously (MnCcP; see Yeung, B. K.-S., et al. (1997) Chem. Biol. 5, 215-221). The goal of the present study is to elucidate the role of tryptophans in peroxidase activity since CcP contains both Trp51 and Trp191 while manganese peroxidase (MnP) contains phenylalanine residues at the corresponding positions. The presence of Trp191 in CcP allows formation of a unique high-valent intermediate containing a ferryl oxo and tryptophan radical called compound I'. The absence of a tryptophan residue at this position in MnP is the main reason for the formation of an intermediate called compound I which contains a ferryl oxo and porphyrin pi-cation radical. In this study, we showed that introduction of the Trp191Phe mutation to MnCcP did not improve MnP activity (specific activity: MnCcP, 0.750 micromol min-1 mg-1; MnCcP(W191F), 0.560 micromol min-1 mg-1. k(cat)/K(m): MnCcP, 0.0517 s-1 mM-1; MnCcP(W191F), 0.0568 s-1 mM-1) despite the fact that introduction of the same mutation to WTCcP caused the formation of a transient compound I (decay rate, 60 s-1). However, introducing both the Trp191Phe and Trp51Phe mutations not only resulted in a longer lived compound I in WTCcP (decay rate, 18 s-1), but also significantly improved MnP activity in MnCcP (MnCcP(W51F, W191F): specific activity, 8.0 micromol min-1 mg-1; k(cat)/K(m), 0. 599 s-1 mM-1). The increase in activity can be attributed to the Trp51Phe mutation since MnCcP(W51F) showed significantly increased MnP activity relative to MnCcP (specific activity, 3.2 micromol min-1 mg-1; k(cat)/K(m), 0.325 s-1 mM-1). As with MnP, the activity of MnCcP(W51F, W191F) was found to increase with decreasing pH. Our results demonstrate that, while the Trp191Phe and Trp51Phe mutations both play important roles in stabilizing compound I, only the Trp51Phe mutation contributes significantly to increasing the MnP activity because this mutation increases the reactivity of compound II, whose oxidation of Mn(II) is the rate-determining step in the reaction mechanism.  相似文献   

2.
T D Pfister  A J Gengenbach  S Syn  Y Lu 《Biochemistry》2001,40(49):14942-14951
The role of two tryptophans (Trp51 and Trp191) and six tyrosines (Tyr36, Tyr39, Tyr42, Tyr187, Tyr229, and Tyr236) in yeast cytochrome c peroxidase (CcP) has been probed by site-directed mutagenesis. A series of sequential mutations of these redox-active amino acid residues to the corresponding, less oxidizable residues in lignin peroxidase (LiP) resulted in an increasingly more stable compound I, with rate constants for compound I decay decreasing from 57 s(-1) for CcP(MI, W191F) to 7 s(-1) for CcP(MI, W191F,W51F,Y187F,Y229F,Y236F,Y36F,Y39E,Y42F). These results provide experimental support for the proposal that the stability of compound I depends on the number of endogenous oxidizable amino acids in proteins. The higher stability of compound I in the variant proteins also makes it possible to observe its visible absorption spectroscopic features more clearly. The effects of the mutations on oxidation of ferrocytochrome c and 2,6-dimethoxyphenol were also examined. Since the first mutation in the series involved the change of Trp191, a residue that plays a critical role in the electron transfer pathway between CcP and cyt c, the ability to oxidize cyt c was negligible for all mutant proteins. On the other hand, the W191F mutation had little effect on the proteins' ability to oxidize 2,6-dimethoxyphenol. Instead, the W51F mutation resulted in the largest increase in the k(cat)/K(M), from 2.1 x 10(2) to 5.0 x 10(3) M(-1) s(-1), yielding an efficiency that is comparable to that of manganese peroxidase (MnP). The effect in W51F mutation can be attributed to the residue's influence on the stability and thus reactivity of the ferryl oxygen of compound II, whose substrate oxidation is the rate-determining step in the reaction mechanism. Finally, out of all mutant proteins in this study, only the variant containing the Y36F, Y39E, and Y42F mutations was found to prevent covalent protein cross-links in the presence of excess hydrogen peroxide and in the absence of exogenous reductants. This finding marks the first time a CcP variant is incapable of forming protein cross-links and confirms that one of the three tyrosines must be involved in the protein cross-linking.  相似文献   

3.
Unlike general peroxidases, Pleurotus ostreatus MnP2 was reported to have a unique property of direct oxidization of high-molecular-weight compounds, such as Poly R-478 and RNase A. To elucidate the mechanism for oxidation of polymeric substrates by MnP2, a series of mutant enzymes were produced by using a homologous gene expression system, and their reactivities were characterized. A mutant enzyme with an Ala substituting for an exposing Trp (W170A) drastically lost oxidation activity for veratryl alcohol (VA), Poly R-478, and RNase A, whereas the kinetic properties for Mn(2+) and H(2)O(2) were substantially unchanged. These results demonstrated that, in addition to VA, the high-molecular-weight substrates are directly oxidized by MnP2 at W170. Moreover, in the mutants Q266F and V166/168L, amino acid substitution(s) around W170 resulted in a decreased activity only for the high-molecular-weight substrates. These results, along with the three-dimensional modeling of the mutants, suggested that the mutations caused a steric hindrance to access of the polymeric substrates to W170. Another mutant, R263N, contained a newly generated N glycosylation site and showed a higher molecular mass in sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Interestingly, the R263N mutant exhibited an increased reactivity with VA and high-molecular-weight substrates. The existence of an additional carbohydrate modification and the catalytic properties in this mutant are discussed. This is the first study of a direct mechanism for oxidation of high-molecular-weight substrates by a fungal peroxidase using a homologous gene expression system.  相似文献   

4.
Tryptophan residues located in the substrate-binding cleft of a class V chitinase from Nicotiana tabacum (NtChiV) were mutated to alanine and phenylalanine (W190F, W326F, W190F/W326F, W190A, W326A, and W190A/W326A), and the mutant enzymes were characterized to define the role of the tryptophans. The mutations of Trp326 lowered thermal stability by 5-7 °C, while the mutations of Trp190 lowered stability only by 2-4 °C. The Trp326 mutations strongly impaired enzymatic activity, while the effects of the Trp190 mutations were moderate. The experimental data were rationalized based on the crystal structure of NtChiV in a complex with (GlcNAc)(4), in which Trp190 is exposed to the solvent and involved in face-to-face stacking interaction with the +2 sugar, while Trp326 is buried inside but interacts with the -2 sugar through hydrophobicity. HPLC analysis of anomers of the enzymatic products suggested that Trp190 specifically recognizes the β-anomer of the +2 sugar. The strong effects of the Trp326 mutations on activity and stability suggest multiple roles of the residue in stabilizing the protein structure, in sugar residue binding at subsite -2, and probably in maintaining catalytic efficiency by providing a hydrophobic environment for proton donor Glu115.  相似文献   

5.
Tryptophan residues located in the substrate-binding cleft of a class V chitinase from Nicotiana tabacum (NtChiV) were mutated to alanine and phenylalanine (W190F, W326F, W190F/W326F, W190A, W326A, and W190A/W326A), and the mutant enzymes were characterized to define the role of the tryptophans. The mutations of Trp326 lowered thermal stability by 5–7 °C, while the mutations of Trp190 lowered stability only by 2–4 °C. The Trp326 mutations strongly impaired enzymatic activity, while the effects of the Trp190 mutations were moderate. The experimental data were rationalized based on the crystal structure of NtChiV in a complex with (GlcNAc)4, in which Trp190 is exposed to the solvent and involved in face-to-face stacking interaction with the +2 sugar, while Trp326 is buried inside but interacts with the ?2 sugar through hydrophobicity. HPLC analysis of anomers of the enzymatic products suggested that Trp190 specifically recognizes the β-anomer of the +2 sugar. The strong effects of the Trp326 mutations on activity and stability suggest multiple roles of the residue in stabilizing the protein structure, in sugar residue binding at subsite ?2, and probably in maintaining catalytic efficiency by providing a hydrophobic environment for proton donor Glu115.  相似文献   

6.
A structural feature shared by the metallo-beta-lactamases is a flexible loop of amino acids that extends over their active sites and that has been proposed to move during the catalytic cycle of the enzymes, clamping down on substrate. To probe the movement of this loop (residues 152-164), a site-directed mutant of metallo-beta-lactamase L1 was engineered that contained a Trp residue on the loop to serve as a fluorescent probe. It was necessary first, however, to evaluate the contribution of each native Trp residue to the fluorescence changes observed during the catalytic cycle of wild-type L1. Five site-directed mutants of L1 (W39F, W53F, W204F, W206F, and W269F) were prepared and characterized using metal analyses, CD spectroscopy, steady-state kinetics, stopped-flow fluorescence, and fluorescence titrations. All mutants retained the wild-type tertiary structure and bound Zn(II) at levels comparable with wild type and exhibited only slight (<10-fold) decreases in k(cat) values as compared with wild-type L1 for all substrates tested. Fluorescence studies revealed a single mutant, W39F, to be void of the fluorescence changes observed with wild-type L1 during substrate binding and catalysis. Using W39F as a template, a Trp residue was added to the flexile loop over the active site of L1, to generate the double mutant, W39F/D160W. This double mutant retained all the structural and kinetic characteristics of wild-type L1. Stopped-flow fluorescence and rapid-scanning UV-visible studies revealed the motion of the loop (k(obs) = 27 +/- 2 s(-1)) to be similar to the formation rate of a reaction intermediate (k(obs) = 25 +/- 2 s(-1)).  相似文献   

7.
Cytochrome c peroxidase (CcP) variants with an engineered Mn(II) binding site, including MnCcP [CcP(MI, G41E, V45E, H181D)], MnCcP(W191F), and MnCcP(W191F, W51F), that mimic manganese peroxidase (MnP), have been characterized by resonance Raman (RR) spectroscopy. Analysis of the Raman bands in the 200–700 cm–1 and 1300–1650 cm–1 regions indicates that both the coordination and spin state of the heme iron in the variants differ from that of CcP(MI), the recombinant yeast CcP containing additional Met-Ile residues at the N-terminus. At neutral pH the frequencies of the 3 mode indicate that a pure five-coordinate heme iron exists in CcP(MI) whereas a six-coordinate low-spin iron is the dominant species in the CcP variants with the engineered Mn(II) binding site. The H181D mutation, which weakens the proximal linkage to the heme iron, may be responsible for these spectral and structural changes. Raman spectra of the variants CcP(MI, W191F) and CcP(MI, W191F, W51F) were also obtained to clarify the structural and functional roles of mutations at two tryptophan sites. The W51F mutation was found to disrupt H-bonding to the distal water molecules and the resulting variants tended to form transitional or mixed coordination states that possess spectral and structural features similar to that of MnP. Such structural features, with a loosened distal water, may facilitate the binding of H2O2 and increase the rate constant for compound I formation. This effect, in addition to the elimination of an H-bond to ferryl oxygen by the same mutation, accounts for the increased MnP specific activity of MnCcP(W191F, W51F).Electronic Supplementary Material Supplementary material is available in the online version of this article at .Abbreviations CcP cytochrome c peroxidase - CcP(MI) recombinant yeast CcP containing Met-Ile at the N-terminus in addition to the normal wild-type CcP sequence - HRP horseradish peroxidase - MnCcP CcP(MI, G41E, V45E, H181D) - MnCcP(W191F) CcP(MI, G41E, V45E, H181D, W191F) - MnCcP(W191F, W51F) CcP(MI, G41E, V45E, H181D, W191F, W51F) - MnP manganese peroxidase - RR resonance Raman - WtCcP wild-type cytochrome c peroxidase  相似文献   

8.
Cheng HL  Tsai LC  Lin SS  Yuan HS  Yang NS  Lee SH  Shyur LF 《Biochemistry》2002,41(27):8759-8766
The possible structural and catalytic functions of the nine tryptophan amino acid residues, including Trp(54), Trp(105), Trp(112), Trp(141), Trp(148), Trp(165), Trp(186), Trp(198), and Trp(203) in Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase (Fs beta-glucanase), were characterized using site-directed mutagenesis, initial rate kinetics, fluorescence spectrometry, and structural modeling analysis. Kinetic studies showed that a 5-7-fold increase in K(m) value for lichenan was observed for W141F, W141H, and W203R mutant Fs beta-glucanases, and approximately 72-, 56-, 30-, 29.5-, 4.9-, and 4.3-fold decreases in k(cat) relative to that for the wild-type enzyme were observed for the W54F, W54Y, W141H, W203R, W141F, and W148F mutants, respectively. In contrast, W186F and W203F, unlike the other 12 mutants, exhibited a 1.4- and 4.2-fold increase in k(cat), respectively. W165F and W203R were the only two mutants that exhibited a 4-7-fold higher activity relative to the wild-type enzyme after they were incubated at pH 3.0 for 1 h. Fluorescence spectrometry indicated that all of the mutations on the nine tryptophan amino acid residues retained a folding similar to that of the wild-type enzyme. Structural modeling and kinetic studies suggest that Trp(54), Trp(141), Trp(148), and Trp(203) play important roles in maintaining structural integrity in the substrate-binding cleft and the catalytic efficiency of the enzyme.  相似文献   

9.
The mutants at position 242 of manganese peroxidase (MnP), where the native Asp has been substituted with a Ser or a Glu, have been shown to be active, and are here characterized by electronic, EPR, and NMR spectroscopies. We have also mutated another residue on the proximal side, Phe 190 to Val and Leu, yielding active mutants. When studied by the above-mentioned spectroscopies, the mutants at both positions 242 and 190 exhibit three pH-dependent transitions. In contrast to the transitions observed at low and high pH, the spectroscopic studies reveal that the transition at intermediate pH has pK(a) values up to 2 units lower for the mutants at D242E and -S and F190V than for the wild type. This process is due to the ionization of a group that affects the transition to the bis-histidine coordination at the iron. The observed changes in the pK(a) values are related to the altered affinity of the calcium-binding site in the distal pocket. Other variations are observed in the other two pK(a) values. Characterization of the cyanide derivatives indicates that the location and orientation of the distal and proximal His residues are essentially identical to that in the wild type. Our results indicate that mutations on the proximal side residues can affect changes in the distal side. In particular, deprotonation of a group, whose pK(a) is influenced by the nature of the residues in the proximal side, produces a movement of helix B, which in turn induces the coordination of the distal His and the loss of the distal calcium ion.  相似文献   

10.
Site-directed mutations R177A and R177K in the gene encoding manganese peroxidase isozyme 1 (mnp1) from Phanerochaete chrysosporium were generated. The mutant enzymes were expressed in P. chrysosporium during primary metabolic growth under the control of the glyceraldehyde-3-phosphate dehydrogenase gene promoter, purified to homogeneity, and characterized by spectroscopic and kinetic methods. The UV-vis spectra of the ferric and oxidized states and resonance Raman spectra of the ferric state were similar to those of the wild-type enzyme, indicating that the heme environment was not significantly affected by the mutations at Arg177. Apparent K(m) values for Mn(II) were approximately 20-fold greater for the R177A and R177K MnPs than for wild-type MnP. However, the apparent K(m) values for the substrates, H(2)O(2) and ferrocyanide, and the k(cat) values for Mn(II) and ferrocyanide oxidation were similar to those of the wild-type enzyme. The second-order rate constants for compound I (MnPI) reduction of the mutant MnPs by Mn(II) were approximately 10-fold lower than for wild-type MnP. In addition, the K(D) values calculated from the first-order plots of MnP compound II (MnPII) reduction by Mn(II) for the mutant enzymes were approximately 22-fold greater than for wild-type MnP. In contrast, the first-order rate constants for MnPII reduction by Mn(II) were similar for the mutant and wild-type MnPs. Furthermore, second-order rate constants for the wild-type and mutant enzymes for MnPI formation, for MnPI reduction by bromide, and for MnPI and MnPII reduction by ferrocyanide were not significantly changed. These results indicate that both the R177A and R177K mutations specifically affect the binding of Mn, whereas the rate of electron transfer from Mn(II) to the oxidized heme apparently is not affected.  相似文献   

11.
The molecular architecture of versatile peroxidase (VP) includes an exposed tryptophan responsible for aromatic substrate oxidation and a putative Mn2+ oxidation site. The crystal structures (solved up to 1.3 A) of wild-type and recombinant Pleurotus eryngii VP, before and after exposure to Mn2+, showed a variable orientation of the Glu36 and Glu40 side chains that, together with Asp175, contribute to Mn2+ coordination. To evaluate the involvement of these residues, site-directed mutagenesis was performed. The E36A, E40A, and D175A mutations caused a 60-85-fold decrease in Mn2+ affinity and a decrease in the Mn2+ oxidation activity. Transient-state kinetic constants showed that reduction of both compounds I and II was affected (80-325-fold lower k2app and 103-104-fold lower k3app, respectively). The single mutants retained partial Mn2+ oxidation activity, and a triple mutation (E36A/E40A/D175A) was required to completely suppress the activity (<1% kcat). The affinity for Mn2+ also decreased ( approximately 25-fold) with the shorter carboxylate side chain in the E36D and E40D variants, which nevertheless retained 30-50% of the maximal activity, whereas similar mutations caused a 50-100-fold decrease in kcat in the case of the Phanerochaete chrysosporium manganese peroxidase (MnP). Additional mutations showed that introduction of a basic residue near Asp175 did not improve Mn2+ oxidation as found for MnP and ruled out an involvement of the C-terminal tail of the protein in low-efficiency oxidation of Mn2+. The structural and kinetic data obtained highlighted significant differences in the Mn2+ oxidation site of the new versatile enzyme compared to P. chrysosporium MnP.  相似文献   

12.
The lumenal CD loop region of the D2 protein of photosystem II contains residues that interact with a reaction center chlorophyll and the redox-active Tyr(D). Using combinatorial mutagenesis, photoautotrophic mutants of Synechocystis sp. PCC 6803 have been generated with multiple amino acid changes in this region. The CD loop mutations were transferred into a photosystem I-less Synechocystis strain to facilitate characterization of photosystem II properties in the mutants. Most of the combinatorial photosystem I-less mutants obtained had a high yield of variable fluorescence, F(V). However, in three mutants, which shared a replacement of Phe181 by Trp, the F(V) yield was dramatically reduced although a high rate of oxygen evolution was maintained. A site-directed F181W D2 mutant shared similar properties. Picosecond time-resolved fluorescence measurements revealed that in the combinatorial F181W mutants the fluorescence lifetimes in closed and open photosystem II centers were essentially identical and were similar to the fluorescence lifetime in open centers of the control strain. These results are explained by quenching of variable fluorescence in the mutants by charge separation between Trp181 and excited reaction center chlorophyll. This reaction competes efficiently with fluorescence and nonradiative decay in closed photosystem II centers, where the lifetime of the excitation in the chlorophyll antenna is long. Thermodynamic considerations favor the formation of oxidized tryptophan and reduced chlorophyll in the quenching reaction, presumably followed by charge recombination. A possible role of tryptophan-chlorophyll charge separation in the mechanism of energy-dependent quenching of excitations in photosynthesis is discussed.  相似文献   

13.
The reaction catalyzed by E. coli Pfk-2 presents a dual-cation requirement. In addition to that chelated by the nucleotide substrate, an activating cation is required to obtain full activity of the enzyme. Only Mn(2+) and Mg(2+) can fulfill this role binding to the same activating site but the affinity for Mn(2+) is 13-fold higher compared to that of Mg(2+). The role of the E190 residue, present in the highly conserved motif NXXE involved in Mg(2+) binding, is also evaluated in this behavior. The E190Q mutation drastically diminishes the kinetic affinity of this site for both cations. However, binding studies of free Mn(2+) and metal-Mant-ATP complex through EPR and FRET experiments between the ATP analog and Trp88, demonstrated that Mn(2+) as well as the metal-nucleotide complex bind with the same affinity to the wild type and E190Q mutant Pfk-2. These results suggest that this residue exert its role mainly kinetically, probably stabilizing the transition state and that the geometry of metal binding to E190 residue may be crucial to determine the catalytic competence.  相似文献   

14.
Wyman AJ  Popelkova H  Yocum CF 《Biochemistry》2008,47(24):6490-6498
The extrinsic photosystem II PsbO subunit (manganese-stabilizing protein) contains near-UV CD signals from its complement of aromatic amino acid residues (one Trp, eight Tyr, and 13 Phe residues). Acidification, N-bromosuccinimide modification of Trp, reduction or elimination of a disulfide bond, or deletion of C-terminal amino acids abolishes these signals. Site-directed mutations that substitute Phe for Trp241 and Tyr242, near the C-terminus of PsbO, were used to examine the contribution of these residues to the activity and spectral properties of the protein. Although this substitution is, in theory, conservative, neither mutant binds efficiently to PSII, even though these proteins appear to retain wild-type solution structures. Removal of six residues from the N-terminus of the W241F mutant restores activity to near-wild-type levels. The near-UV CD spectra of the mutants are modified; well-defined Tyr and Trp peaks are lost. Characterizations of the fluorescence spectra of the full-length WF and YF mutants indicate that Y242 contributes significantly to PsbO's Tyr fluorescence emission and that an excited-state tyrosinate could be present in PsbO. Deletion of W241 shows that this residue is a major contributor to PsbO's fluorescence emission. Loss of function is consistent with the proposal that a native C-terminal domain is required for PsbO binding and activity, and restoration of activity by deletion of N-terminal amino acids may provide some insights into the evolution of this important photosynthetic protein.  相似文献   

15.
Kálmán L  LoBrutto R  Allen JP  Williams JC 《Biochemistry》2003,42(37):11016-11022
The transfer of an electron from exogenous manganese (II) ions to the bacteriochlorophyll dimer, P, of bacterial reaction centers was characterized for a series of mutants that have P/P(+) midpoint potentials ranging from 585 to 765 mV compared to 505 mV for wild type. Light-induced changes in optical and EPR spectra of the mutants were measured to monitor the disappearance of the oxidized dimer upon electron donation by manganese in the presence of bicarbonate. The extent of electron transfer was strongly dependent upon the P/P(+) midpoint potential. The midpoint potential of the Mn(2+)/Mn(3+) couple was calculated to decrease linearly from 751 to 623 mV as the pH was raised from 8 to 10, indicating the involvement of a proton. The electron donation had a second order rate constant of approximately 9 x 10(4) M(-1) s(-1), determined from the linear increase in rate for Mn(2+) concentrations up to 200 microM. Weak dissociation constants of 100-200 microM were found. Quantitative EPR analysis of the six-line free Mn(2+) signal revealed that up to seven manganese ions were associated with the reaction centers at a 1 mM concentration of manganese. The association and the electron transfer between manganese and the reaction centers could be inhibited by Ca(2+) and Na(+) ions. The ability of reaction centers with high potentials to oxidize manganese suggests that manganese oxidation could have preceded water oxidation in the evolutionary development of photosystem II.  相似文献   

16.
L-Xylulose reductase (XR) is a homotetramer belonging to the short-chain dehydrogenase/reductase family. Human XR is stable at low temperature, whereas the enzymes of mouse, rat, guinea pig, and hamster are rapidly dissociated into their inactive dimeric forms. In order to identify amino acid residues that cause cold inactivation of the rodent XRs, we have here selected Asp238, Leu242, and Thr244 in the C-terminal regions of rodent XRs and performed site-directed mutagenesis of the residues of mouse XR to the corresponding residues (Glu, Trp, and Cys) of the human enzyme. Cold inactivation was prevented partially by the single mutation of L242W and the double mutation of L242W/T244C, and completely by the double mutation of D238E/L242W. The L242W and L242W/T244C mutants existed in both tetrameric and dimeric forms at low temperature and the D238E/L242W mutant retained its tetrameric structure. No preventive effect was exerted by the mutations of D238E and T244C, which were dissociated into their dimeric forms upon cooling. Crystallographic analysis of human XR revealed that Glu238 and Trp242 contribute to proper orientation of the guanidino group of Arg203 of the same subunit to the C-terminal carboxylate group of Cys244 of another subunit through the neighboring residues, Gln137 and Phe241. Thus, the determinants for cold inactivation of rodent XRs are Asp238 and Leu242 with small side chains, which weaken the salt bridges between Arg203 and the C-terminal carboxylate group, and lead to cold inactivation.  相似文献   

17.
Debus RJ  Campbell KA  Pham DP  Hays AM  Britt RD 《Biochemistry》2000,39(21):6275-6287
Recent models for water oxidation in photosystem II postulate that the tyrosine Y(Z) radical, Y(Z)(*), abstracts both an electron and a proton from the Mn cluster during one or more steps in the catalytic cycle. This coupling of proton- and electron-transfer events is postulated to provide the necessary driving force for oxidizing the Mn cluster in its higher oxidation states. The formation of Y(Z)(*) requires the deprotonation of Y(Z) by His190 of the D1 polypeptide. For Y(Z)(*) to abstract both an electron and a proton from the Mn cluster, the proton abstracted from Y(Z) must be transferred rapidly from D1-His190 to the lumenal surface via one or more proton-transfer pathways. The proton acceptor for D1-His190 has been proposed to be either Glu189 of the D1 polypeptide or a group positioned by this residue. To further define the role of D1-Glu189, 17 D1-Glu189 mutations were constructed in the cyanobacterium Synechocystis sp. PCC 6803. Several of these mutants are of particular interest because they appear to assemble Mn clusters in 70-80% of reaction centers in vivo, but evolve no O(2). The EPR and electron-transfer properties of PSII particles isolated from the D1-E189Q, D1-E189L, D1-E189D, D1-E189N, D1-E189H, D1-E189G, and D1-E189S mutants were examined. Intact PSII particles isolated from mutants that evolved no O(2) also exhibited no S(1) or S(2) state multiline EPR signals and were unable to advance beyond an altered Y(Z)(*)S(2) state, as shown by the accumulation of narrow "split" EPR signals under multiple turnover conditions. In the D1-E189G and D1-E189S mutants, the quantum yield for oxidizing the S(1) state Mn cluster was very low, corresponding to a > or =1400-fold slowing of the rate of Mn oxidation by Y(Z)(*). In Mn-depleted D1-Glu189 mutant PSII particles, charge recombination between Q(A)(*)(-) and Y(Z)(*) in the mutants was accelerated, showing that the mutations alter the redox properties of Y(Z) in addition to those of the Mn cluster. These results are consistent with D1-Glu189 participating in a network of hydrogen bonds that modulates the properties of both Y(Z) and the Mn cluster and are consistent with proposals that D1-Glu189 positions a group that accepts a proton from D1-His190.  相似文献   

18.
Z Q Wang  C C Wei  S Ghosh  A L Meade  C Hemann  R Hille  D J Stuehr 《Biochemistry》2001,40(43):12819-12825
In nitric oxide synthase (NOS), (6R)-tetrahydrobiopterin (H(4)B) binds near the heme and can reduce a heme-dioxygen intermediate (Fe(II)O(2)) during Arg hydroxylation [Wei, C.-C., Wang, Z.-Q., Wang, Q., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) J. Biol. Chem. 276, 315-319]. A conserved Trp engages in aromatic stacking with H(4)B, and its mutation inhibits NO synthesis. To examine how this W457 impacts H(4)B redox function, we performed single turnover reactions with the mouse inducible NOS oxygenase domain (iNOSoxy) mutants W457F and W457A. Ferrous mutants containing Arg and H(4)B were mixed with O(2)-containing buffer, and then heme spectral transitions, H(4)B radical formation, and Arg hydroxylation were followed versus time. A heme Fe(II)O(2) intermediate was observed in W457A and W457F and had normal spectral characteristics. However, its disappearance rate (6.5 s(-1) in W457F and 3.0 s(-1) in W457A) was slower than in wild-type (12.5 s(-1)). Rates of H(4)B radical formation (7.1 s(-1) in W457F and 2.7 s(-1) in W457A) matched their rates of Fe(II)O(2) disappearance, but were slower than radical formation in wild-type (13 s(-1)). The extent of H(4)B radical formation in the mutants was similar to wild-type, but their radical decayed 2-4 times faster. These kinetic changes correlated with slower and less extensive Arg hydroxylation by the mutants (wild-type > W457F > W457A). We conclude that W457 ensures a correct tempo of electron transfer from H(4)B to heme Fe(II)O(2), possibly by stabilizing the H(4)B radical. Proper control of these parameters may help maximize Arg hydroxylation and minimize uncoupled O(2) activation at the heme.  相似文献   

19.
A spectral probe mutant (F29W) of chicken skeletal muscle troponin C (TnC) has been prepared in which Phe-29 has been substituted by Trp. Residue 29 is at the COOH-terminal end of the A helix immediately adjacent to the Ca2+ binding loop of site I (residues 30-41) of the regulatory N domain. Since this protein is naturally devoid of Tyr and Trp, spectral features can be assigned unambiguously to the single Trp. The fluorescent quantum yield at 336 nm is increased almost 3-fold in going from the Ca(2+)-free state to the 4Ca2+ state with no change in the wavelength of maximum emission. Comparisons of the Ca2+ titration curves of the change in far-UV CD and fluorescence emission indicated that the latter was associated only with the binding of 2Ca2+ to the regulatory sites I and II. No change in fluorescence was detected by titration with Mg2+. The Ca(2+)-induced transitions of both the N and C domains were highly cooperative. Addition of Ca2+ also produced a red shift in the UV absorbance spectrum and a reduction in positive ellipticity as monitored by near-UV CD measurements. The fluorescent properties of F29W were applied to an investigation of five double mutants: F29W/V45T, F29W/M46Q, F29W/M48A, F29W/L49T, and F29W/M82Q. Ca2+ titration of their fluorescent emissions indicated in each case an increased Ca2+ affinity of their N domains. The magnitude of these changes and the decreased cooperativity observed between Ca2+ binding sites I and II for some of the mutants are discussed in terms of the environment of the mutated residues in the 2Ca2+ and modeled 4Ca2+ states.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Calcium binding to chicken recombinant skeletal muscle TnC (TnC) and its mutants containing tryptophan (F29W), 5-hydroxytryptophan (F29HW), or 7-azatryptophan (F29ZW) at position 29 was measured by flow dialysis and by fluorescence. Comparative analysis of the results allowed us to determine the influence of each amino acid on the calcium binding properties of the N-terminal regulatory domain of the protein. Compared with TnC, the Ca(2+) affinity of N-terminal sites was: 1) increased 6-fold in F29W, 2) increased 3-fold in F29ZW, and 3) decreased slightly in F29HW. The Ca(2+) titration of F29ZW monitored by fluorescence displayed a bimodal curve related to sequential Ca(2+) binding to the two N-terminal Ca(2+) binding sites. Single and double mutants of TnC, F29W, F29HW, and F29ZW were constructed by replacing aspartate by alanine at position 30 (site I) or 66 (site II) or both. Ca(2+) binding data showed that the Asp --> Ala mutation at position 30 impairs calcium binding to site I only, whereas the Asp --> Ala mutation at position 66 impairs calcium binding to both sites I and II. Furthermore, the Asp --> Ala mutation at position 30 eliminates the differences in Ca(2+) affinity observed for replacement of Phe at position 29 by Trp, 5-hydroxytryptophan, or 7-azatryptophan. We conclude that position 29 influences the affinity of site I and that Ca(2+) binding to site I is dependent on the previous binding of metal to site II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号