首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The fermentation of d-glucose and d-xylose mixtures by the yeast Candida tropicalis NBRC 0618 has been studied under the most favourable operation conditions for the culture, determining the most adequate initial proportion in these sugars for xylitol production. In all the experiments a synthetic culture medium was used, with an initial total substrate concentration of 25 g L−1, a constant pH of 5.0 and a temperature of 30 °C. From the experimental results, it was deduced that the highest values of specific rates of production and of overall yield in xylitol were achieved for the mixtures with the highest percentage of d-xylose, specifically in the culture with the initial d-glucose and d-xylose concentrations of 1 and 24 g L−1, respectively, with an overall xylitol yield of 0.28 g g−1. In addition, the specific rates of xylitol production declined over the time course of the culture and the formation of this bioproduct was favoured by the presence of small quantities of d-glucose. The sum of the overall yield values in xylitol and ethanol for all the experiments ranged from 0.26 to 0.56 g bioproduct/g total substrate.  相似文献   

2.
Trichoderma reesei Rut C-30 was grown on eight different natural or rare aldopentoses as the main carbon source and on mixtures of an aldopentose with d-glucose or lactose. The fungal cells consumed all aldopentoses tested, except l-xylose and l-ribose. The highest total xylanase and cellulase activities were achieved when cells were grown on l-arabinose as the main carbon source. The total xylanase activity produced by cells grown on l-arabinose was even higher than that produced by cells grown on an equal amount of lactose. In co-metabolism of d-glucose (15 g l–1) and l-arabinose (5 g l–1), the total volumetric and specific xylanase productivities were improved (derepressed) approximately 23- and 18-fold, respectively, compared to a cultivation on only d-glucose (20 g l–1). In a similar experiment, in which cells were grown on a mixture of lactose and l-arabinose, the xylanase productivity was approximately doubled, compared to a cultivation on only lactose. The cellulase productivities, however, were not improved by the addition of l-arabinose. Compared with a typical industrial fungal enzyme production process with lactose as the main carbon source, better volumetric and specific xylanase productivities were achieved both on a lactose/arabinose mixture and on a glucose/arabinose mixture.  相似文献   

3.
AmyR is commonly considered a regulator of starch degradation whose activity is induced by the presence of maltose, the disaccharide building block of starch. In this study, we demonstrate that the role of AmyR extends beyond starch degradation. Enzyme activity assays, genes expression analysis and growth profiling on d-glucose- and d-galactose-containing oligo- and polysaccharides showed that AmyR regulates the expression of some of the Aspergillus niger genes encoding α- and β-glucosidases, α- and β- galactosidases, as well as genes encoding α-amlyases and glucoamylases. In addition, we provide evidence that d-glucose or a metabolic product thereof may be the inducer of the AmyR system in A. niger and not maltose, as is commonly assumed.  相似文献   

4.
Jilek A  Mollay C  Lohner K  Kreil G 《Amino acids》2012,42(5):1757-1764
In the skin of fire-bellied toads (Bombina species), an aminoacyl-l/d-isomerase activity is present which catalyses the post-translational isomerization of the l- to the d-form of the second residue of its substrate peptides. Previously, this new type of enzyme was studied in some detail and genes potentially coding for similar polypeptides were found to exist in several vertebrate species including man. Here, we present our studies to the substrate specificity of this isomerase using fluorescence-labeled variants of the natural substrate bombinin H with different amino acids at positions 1, 2 or 3. Surprisingly, this enzyme has a rather low selectivity for residues at position 2 where the change of chirality at the alpha-carbon takes place. In contrast, a hydrophobic amino acid at position 1 and a small one at position 3 of the substrate are essential. Interestingly, some peptides containing a Phe at position 3 also were substrates. Furthermore, we investigated the role of the amino-terminus for substrate recognition. In view of the rather broad specificity of the frog isomerase, we made a databank search for potential substrates of such an enzyme. Indeed, numerous peptides of amphibia and mammals were found which fulfill the requirements determined in this study. Expression of isomerases with similar characteristics in other species can therefore be expected to catalyze the formation of peptides containing d-amino acids.  相似文献   

5.
A non-characterized gene, previously proposed as the d-tagatose-3-epimerase gene from Rhodobacter sphaeroides, was cloned and expressed in Escherichia coli. Its molecular mass was estimated to be 64 kDa with two identical subunits. The enzyme specificity was highest with d-fructose and decreased for other substrates in the order: d-tagatose, d-psicose, d-ribulose, d-xylulose and d-sorbose. Its activity was maximal at pH 9 and 40°C while being enhanced by Mn2+. At pH 9 and 40°C, 118 g d-psicose l−1 was produced from 700 g d-fructose l−1 after 3 h. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Sinorhizobium sp., which can convert d-fructose into d-psicose, was isolated from soil. The optimal pH, temperature, and cell concentration for d-psicose production with the isolated strain were 8.5, 40°C, and 60 mg/ml, respectively. The toluene-treated cells showed 2.5- and 4.8-fold increases in the d-psicose concentration and productivity compared with untreated washed cells. Under the optimal conditions, the toluene-treated cells produced 37 g d-psicose/l from 70% (w/v) (3.9 M) d-fructose after 15 h.  相似文献   

7.
Park CS  Yeom SJ  Kim HJ  Lee SH  Lee JK  Kim SW  Oh DK 《Biotechnology letters》2007,29(9):1387-1391
The rpiB gene, encoding ribose-5-phosphate isomerase (RpiB) from Clostridium thermocellum, was cloned and expressed in Escherichia coli. RpiB converted d-psicose into d-allose but it did not convert d-xylose, l-rhamnose, d-altrose or d-galactose. The production of d-allose by RpiB was maximal at pH 7.5 and 65°C for 30 min. The half-lives of the enzyme at 50°C and 65°C were 96 h and 4.7 h, respectively. Under stable conditions of pH 7.5 and 50°C, 165 g d-allose l1 was produced without by-products from 500 g d-psicose l−1 after 6 h.  相似文献   

8.
d-Asp-containing proteins have been implicated in many aging-related diseases. To clarify the role of d-Asp-containing proteins in such diseases, we developed a screening system for these proteins using a d-aspartyl endopeptidase that specifically cleaves the proteins at the C-terminus. The digested proteins were detected by means of two-dimensional gel electrophoresis and identified using nano-liquid chromatography/tandem mass spectrometry. We were able to detect myelin basic protein, a known d-Asp-containing protein, in the brain tissues of mice; this indicates that our system is effective for screening d-Asp-containing proteins.  相似文献   

9.
The catabolism of d-galactose in yeast depends on the enzymes of the Leloir pathway. In contrast, Aspergillus nidulans mutants in galactokinase (galE) can still grow on d-galactose in the presence of ammonium—but not nitrate—ions as nitrogen source. A. nidulans galE mutants transiently accumulate high (400 mM) intracellular concentrations of galactitol, indicating that the alternative d-galactose degrading pathway may proceed via this intermediate. The enzyme degrading galactitol was identified as l-arabitol dehydrogenase, because an A. nidulans loss-of-function mutant in this enzyme (araA1) did not show NAD+-dependent galactitol dehydrogenase activity, still accumulated galactitol but was unable to catabolize it thereafter, and a double galE/araA1 mutant was unable to grow on d-galactose or galactitol. The product of galactitol oxidation was identified as l-sorbose, which is a substrate for hexokinase, as evidenced by a loss of l-sorbose phosphorylating activity in an A. nidulans hexokinase (frA1) mutant. l-Sorbose catabolism involves a hexokinase step, indicated by the inability of the frA1 mutant to grow on galactitol or l-sorbose, and by the fact that a galE/frA1 double mutant of A. nidulans was unable to grow on d-galactose. The results therefore provide evidence for an alternative pathway of d-galactose catabolism in A. nidulans that involves reduction of the d-galactose to galactitol and NAD+-dependent oxidation of galactitol by l-arabitol dehydrogenase to l-sorbose.  相似文献   

10.
We successfully engineered a new enzyme that catalyzes the formation of d-Ala amide (d-AlaNH2) from d-Ala by modifying ATP-dependent d-Ala:d-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of d-Ala-d-Ala from two molecules of d-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second d-Ala of d-Ala-d-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for d-AlaNH2 production. The S293E variant, which was selected as the best enzyme for d-AlaNH2 production, exhibited an optimal activity at pH 9.0 and 40 °C for d-AlaNH2 production. The apparent K m values of this variant for d-Ala and NH3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of d-AlaNH2 from 10 and 50 mM d-Ala and 3 M NH4Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.  相似文献   

11.
Microbial production of d-hexosaminate was examined by means of oxidative fermentation with acetic acid bacteria. In most strains of acetic acid bacteria, membrane-bound d-glucosamine dehydrogenase (synonymous with an alternative d-glucose dehydrogenase distinct from quinoprotein d-glucose dehydrogenase) oxidized d-hexosamines to the corresponding d-hexosaminates in a stoichiometric manner. Conversion of d-hexosamines to the corresponding d-hexosaminates was observed with growing cells of acetic acid bacteria, and d-hexosaminate was stably accumulated in the culture medium even though d-hexosamine was exhausted. Since the enzyme responsible is located on the outer surface of the cytoplasmic membrane, and the enzyme activity is linked to the respiratory chain of the organisms, resting cells, dried cells, and immobilized cells of acetic acid bacteria were effective catalysts for d-hexosaminate production. d-Mannosaminate and d-galactosaminate were also prepared for the first time by means of oxidative fermentation, and three different d-hexosaminates were isolated from unreacted substrate by a chromatographic separation. In this paper, d-hexosaminate production by oxidative fermentation carried out mainly with Gluconobacter frateurii IFO 3264 is exemplified as a typical example.  相似文献   

12.
l-arabinose isomerase (EC5.3.1.4. AI) mediates the isomerization of d-galactose into d-tagatose as well as the conversion of l-arabinose into l-ribulose. The AI from Lactobacillus plantarum SK-2 was purified to an apparent homogeneity giving a single band on SDS–PAGE with a molecular mass of 59.6 kDa. Optimum activity was observed at 50°C and pH 7.0. The enzyme was stable at 50°C for 2 h and held between pH 4.5 and 8.5 for 1 h. AI activity was stimulated by Mn2+, Fe3+, Fe2+, Ca2+ and inhibited by Cu2+, Ag+, Hg2+, Pb2+. d-galactose and l-arabinose as substrates were isomerized with high activity. l-arabitol was the strongest competitive inhibitor of AI. The apparent Michaelis–Menten constant (K m), for galactose, was 119 mM. The first ten N-terminal amino acids of the enzyme were determined as MLSVPDYEFW, which is identical to L. plantarum (Q88S84). Using the purified AI, 390 mg tagatose could be converted from 1,000 mg galactose in 96 h, and this production corresponds to a 39% equilibrium.  相似文献   

13.
Pseudomonas stutzeri SDM was newly isolated from soil, and two stereospecific NAD-independent lactate dehydrogenase (iLDH) activities were detected in membrane of the cells cultured in a medium containing dl-lactate as the sole carbon source. Neither enzyme activities was constitutive, but both of them might be induced by either enantiomer of lactate. P. stutzeri SDM preferred to utilize lactate to growth, when both l-lactate and glucose were available, and the consumption of glucose was observed only after lactate had been exhausted. The Michaelis–Menten constant for l-lactate was higher than that for d-lactate. The l-iLDH activity was more stable at 55°C, while the d-iLDH activity was lost. Both enzymes exhibited different solubilization with different detergents and different oxidation rates with different electron acceptors. Combining activity staining and previous proteomic analysis, the results suggest that there are two separate enzymes in P. stutzeri SDM, which play an important role in converting lactate to pyruvate. Ma and Gao contributed equally to this work.  相似文献   

14.
d-Glucose absorptive processes at the gastrointestinal tract of decapod crustaceans are largely under-investigated. We have studied Na+-dependent d-glucose transport (Na+/d-glucose cotransport) in the hepatopancreas of the Kuruma prawn, Marsupenaeus japonicus, using both brush-border membrane vesicles and purified R and B hepatopancreatic cell suspensions. As assessed by brush-border membrane vesicle studies, Na+/d-glucose cotransport was inhibited by phloridzin and responsive to the (inside negative) membrane potential. Furthermore, it was strongly activated by protons (although only in the presence of an inside-negative membrane potential), which correlates with the fact that the lumen of crustacean hepatopancreatic tubules is acidic. When assayed in purified R and B cell suspensions, Na+/d-glucose cotransport activity was restricted to B cells only. Mab 13, a monoclonal antibody recognizing an 80- to 85-KDa protein at the brush-border membrane location, inhibited Na+/D-glucose cotransport in brush-border membrane vesicles as well as in enriched B cell suspensions. Primers designed after comparison of highly homologous regions of various mammalian sodium-glucose transporter) nucleotide sequences failed to produce RT-PCR amplification products from Kuruma prawn hepatopancreatic RNA. The molecular nature of this Na+/d-glucose cotransport system is still to be established.Communicated by: G. Heldmaier  相似文献   

15.
Immobilized cells of Bacillus subtilis HLZ-68 were used to produce d-alanine from dl-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher l-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on l-alanine consumption were examined. Maximum l-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of dl-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete l-alanine degradation within 60 h, leaving 185 g of d-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. d-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted d-alanine was 99.1 and 99.6%, respectively.  相似文献   

16.
17.
3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) is an entry enzyme of the shikimate pathway that connects primary carbohydrate metabolism with the biosynthesis of most secondary metabolites in plants. In the present study, two DAHPS cDNAs were cloned from grape berries (Vitis vinifera) and designated as VvDAHPS-1 and VvDAHPS-2. These two cDNA sequences share 75.7% of the identities. Their DNA corresponding to the two isogenes both contain four introns. The deduced proteins from two cDNAs had different NH4-terminal regions and putative mature regions sharing sequence, molecular size and pI value similarity. Both of VvDAHPSs had a close evolution relationship with Populus trichocarpa DAHPSs. The prokaryotically-expressed VvDAHPSs both manifested DAHPS catalytic activity and Mn2+-activated effects. Analysis by real time-PCR showed that VvDAHPS-1 and VvDAHPS-2 were expressed in all the tested tissues, but their expression patterns accompanying with berry mature varied in the skin, pulp and seeds. The results give new insight into further study on regulatory mechanism of grape phenolics biosynthesis.  相似文献   

18.
d-Tagatose is a highly functional rare ketohexose and many attempts have been made to convert d-galactose into the valuable d-tagatose using l-arabinose isomerase (l-AI). In this study, a thermophilic strain possessing l-AI gene was isolated from hot spring sludge and identified as Anoxybacillus flavithermus based on its physio-biochemical characterization and phylogenetic analysis of its 16s rRNA gene. Furthermore, the gene encoding l-AI from A. flavithermus (AFAI) was cloned and expressed at a high level in E. coli BL21(DE3). l-AI had a molecular weight of 55,876 Da, an optimum pH of 10.5 and temperature of 95°C. The results showed that the conversion equilibrium shifted to more d-tagatose from d-galactose by raising the reaction temperatures and adding borate. A 60% conversion of d-galactose to d-tagatose was observed at an isomerization temperature of 95°C with borate. The catalytic efficiency (k cat /K m) for d-galactose with borate was 9.47 mM−1 min−1, twice as much as that without borate. Our results indicate that AFAI is a novel hyperthermophilic and alkaliphilic isomerase with a higher catalytic efficiency for d-galactose, suggesting its great potential for producing d-tagatose.  相似文献   

19.
20.
A newly isolated Zygosaccharomyces rouxii NRRL 27,624 produced d-arabitol as the main metabolic product from glucose. In addition, it also produced ethanol and glycerol. The optimal conditions were temperature 30°C, pH 5.0, 350 rpm, and 5% inoculum. The yeast produced 83.4 ± 1.1 g d-arabitol from 175 ± 1.1 g glucose per liter at pH 5.0, 30°C, and 350 rpm in 240 h with a yield of 0.48 g/g glucose. It also produced d-arabitol from fructose, galactose, and mannose. The yeast produced d-arabitol and xylitol from xylose and also from a mixture of xylose and xylulose. Resting yeast cells produced 63.6 ± 1.9 g d-arabitol from 175 ± 1.8 g glucose per liter in 210 h at pH 5.0, 30°C and 350 rpm with a yield of 0.36 g/g glucose. The yeast has potential to be used for production of xylitol from glucose via d-arabitol route. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. department of Agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号