首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potato tuber moth, Phthorimaea operculella (Zeller), in tropical and subtropical countries, is the most destructive pest of potato, Solanum tuberosum L. The larvae attack foliage and tubers in the field and in storage. The purpose of this study was to evaluate the efficacy of a Bt-cry5 transgene to control the potato tuber moth in tuber tissues. Tuber bioassays using stored (11-12 mo old) and newly harvested tubers of Bt-cry5-Lemhi Russet and Bt-cry5-Atlantic potato lines showed up to 100% mortality of 1st instars. Mortality was lowest in the newly harvested tubers of Bt-cry5-Atlantic lines (47.1-67.6%). Potato tuber moth mortality was 100% in the Bt-cry5-Spunta lines that were transformed with Bt-cry5 gene controlled by the CaMV 35S promoter (pBIML5 vector) and in 2 of 3 lines transformed with Bt-cry5 gene controlled by the Gelvin super promoter (pBIML1 vector). The transgenic Spunta lines expressing Bt-cry5 controlled by the patatin promoter (pBMIL2 vector) showed the lowest tuber moth mortality (25.6 and 31.1%). The Bt-cry5 transgenic lines with high tuber expression of B. thuringiensis have value in an integrated pest management system to control potato tuber moth.  相似文献   

2.
The potato tuberworm, Phthorimaea operculella (Zeller), is a major pest of potatoes in fields and traditional storage. A common method of nonrefrigerated storage is to pile potatoes in straw-covered heaps in the field. Tubers may be stored up to 3-4 mo in this manner, until the next harvest. We studied the dynamics of potato tuber moth infestation associated with such field storage in a 12-wk experiment in Israel. We set up six potato heaps, and sampled them for potato tuber moth at different locations at weekly intervals. Potato tuber moth infestation was significantly higher at the perimeter of the heaps than at their center, but it did not differ between bottom, mid-height, and top of the heaps. The proportion of potato tuber moth-infested potato tubers increased from 10 to 65% over the course of the experiment, and the mean number of potato tuber moth larvae per tuber increased from 0.25 to 2.50. Potato tuberworm populations increased sharply after 3, 6, and 9 wk of study, possibly corresponding to successive generations that developed within the heaps. This interpretation is supported by calculations of potato tuberworm generation length based on temperature data. Catches in pheromone traps that were placed near the heaps were not correlated (spatially and temporally) with potato tuberworm densities within heaps, hinting that migration among heaps did not considerably affect within-heap population dynamics. Potato tuberworm levels were not correlated with ambient temperatures, perhaps because of the warm, humid, and constant microclimate within the heaps. We discuss the significance of our findings for control efforts of the potato tuberworm.  相似文献   

3.
The potato tuberworm Phthorimaea operculella (Zeller) is an important agricultural pest that causes significant economic losses to potato growers worldwide. The addition of an effective method of biological control for the potato tuberworm is greatly needed, and is currently unavailable in Brazil. The granulosis virus (Baculoviridae) is a promising biological control agent to protect post-harvest potatoes and in storage from the potato tuberworm. However, the control measure must be economically feasible. Liquid suspensions of a granulosis virus applied alone or in mixture with two commercial neem oil-based products (DalNeem? and NeemAzal?), and a dry powder formulation of viral granules were evaluated for control of potato tuberworm larvae by treating potato tubers under laboratory conditions. High larval mortality (86.7%) was achieved when DalNeem and virus were applied together at 4?mg of azadirachtin/L and 104 occlusion bodies (OBs)/mL, respectively. This combination resulted in ??50% efficacy in relation to their counterparts alone. Conversely, NeemAzal did not enhance virus effectiveness against larvae of the potato tuberworm. The talc-based virus formulation was used for dusting seed tubers at different concentrations and resulted in 100% larval mortality at 5?×?108 OBs/g. Formulated and unformulated virus provided 50% mortality at 166 OBs/g and at 5.0?×?105 OBs/mL, respectively. As a result, talc-based virus formulation had a better control efficiency on potato tuberworm than the aqueous virus suspension. The granulosis virus combined with DalNeem at low rates or formulated with talc powder is a viable option to control the potato tuberworm under storage conditions.  相似文献   

4.
The Colorado potato beetle, Leptinotarsa decemlineata Say, is the major insect pest of potato, Solanum tuberosum L., in eastern North America and is renowned for resistance development, currently resistant to >40 insecticides worldwide. Host plant resistance may assist in delaying in resistance development to insecticides. We evaluated natural host plant resistance mechanisms (glandular trichomes and Solanum chacoense Bitter-derived resistance) and engineered resistance mechanisms (Bacillus thuringiensis [Bt] Berliner cry3A and cry1Ia1) in a no-choice cage study. Six different potato lines representing four host plant resistance mechanisms were evaluated over 2 yr. Egg masses were placed in each cage (one egg mass per plant). Almost no feeding was observed in the Bt-cry3A lines, and only minor feeding was observed in the Bt-cry1Ia1 lines in either year. On the S. chacoense-derived line, there was significantly less defoliation than on either the susceptible line or the glandular trichome line in 2003. In 2004, there was significantly higher defoliation on the S. chacoense-derived line than on the susceptible line or glandular trichome line. The defoliation of the Solanum chacoense-derived line was largely due to larvae clipping the petioles, rather than consumption of the leaves. Defoliation on the glandular trichome line did not differ significantly from the defoliation of the susceptible line, suggesting glandular trichomes may not be effective in controlling larvae and preventing defoliation. This study suggested that Bt can provide high levels of resistance, but the natural resistance mechanisms tested here are variable for control of Colorado potato beetle larvae in no-choice situations.  相似文献   

5.
The potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), is an important pest of solanaceous crops including potato [Solanum tuberosum L. (Solanaceae)]. Recent evidence of survival of the pest in the Columbia Basin of Oregon and Washington, USA, is surprising as potato tuberworm is most commonly a pest in tropical and subtropical regions. Potato tuberworm was studied in a manipulative experiment to determine how stage (egg, larva, and pupa) and soil depth affected the potential for winter survival. In early January 2007, eggs, tubers infested with larvae, and pupae were placed in the soil at 6, 10, and 20 cm depths, or left on the soil surface. Each potato tuberworm life stage was sampled at 7–17‐day intervals for 90 days and survival was estimated at each time period. Eggs survived up to 54 days with the greatest survival observed at 6‐cm soil depth and the lowest survival on the soil surface. However, egg survival was significantly reduced after 1 month of exposure to winter conditions. Larvae were able to survive up to 30 days with the greatest survival observed at 20‐cm soil depth. Tubers at the surface and buried at 6 cm were frozen; thus, no larval survival was recorded. The pupal stage showed a greater tolerance to winter conditions than the egg or larval stages, surviving up to 91 days of exposure. These results suggest that the pupal stage is probably the stage most likely to survive winter conditions in the northwestern USA.  相似文献   

6.
Potato is an important crop for starch production, but there are limitations regarding the genetic variation of starch quality. In maize, starches with various properties have been available for a long time by mutational breeding. Amylose starch from potatoes differs from cereal amyloses in several functionally important aspects, such as a higher degree of polymerization. Areas of application in which the degree of polymerization is of importance include film forming and the polymeric properties of bioplastics. High-amylose potato lines have been achieved by inhibiting the two known branching enzyme forms of potato. A single inserted gene construct for the inhibition of both forms resulted in structural changes of the starch to levels of branching that were below the commercially available amylose standards of potato. The high-amylose potato lines were tested in multiple year field trials of agronomic performance and were used for the pilot plant production of starch. The introduced trait was confirmed to be stable over multiple years. The consequences of the modification were found to be an increased tuber yield, reduced starch content, smaller granule size and an increase in reducing sugars.  相似文献   

7.
Dispersal of larvae of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in specific combinations of transgenic corn expressing the Cry3Bb1 protein and nontransgenic, isoline corn was evaluated in a 2-yr field study. In total, 1,500 viable western corn rootworm eggs were infested in each subplot. Each year, plant damage and larval recovery were evaluated among four pedigree combinations (straight transgenic; straight nontransgenic corn; nontransgenic corn with a transgenic central, infested plant; and transgenic corn with a nontransgenic central, infested plant) on six sample dates between egg hatch and pupation. For each subplot, the infested plant, three successive plants down the row (P1, P2, and P3), the closest plant in the adjacent row of the plot, and a control plant were sampled. The number of western corn rootworm larvae recovered from transgenic rootworm-resistant plants adjacent to infested nontransgenic plants was low and not statistically significant in either 2001 or 2002. In 2001, significantly fewer larvae were recovered from transgenic rootworm-resistant plants than from nontransgenic plants when both were adjacent to infested, nontransgenic plants. In 2002, significantly more neonate western corn rootworm larvae were recovered from nontransgenic plants adjacent to infested, transgenic rootworm-resistant plants than nontransgenic plants adjacent to infested, nontransgenic plants on the second sample date. Together, these data imply that both neonate and later instar western corn rootworm larvae prefer nontransgenic roots to transgenic rootworm-resistant roots when a choice is possible. However, when damage to the infested, nontransgenic plant was high, western corn rootworm larvae apparently moved to neighboring transgenic rootworm-resistant plants and caused statistically significant, although only marginally economic, damage on the last sample date in 2001. Implications of these data toward resistance management plan are discussed.  相似文献   

8.
Potato glycoalkaloids were determined in tubers of a wide range of genotypes in order to study their influence on resistance to storage rots caused by Fusarium solani var. coeruleum and Phoma exigua var. foveata. No relationships were found. This indicates that breeders selection for low glycoalkaloid potato clones is not in conflict with the demands for high levels of resistance to these pathogens. It was also observed that genotypes susceptible to skin-breaking types of, damage were more easily infected than genotypes susceptible to other types of damage.  相似文献   

9.
Susceptibility of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) field populations to the CrylAc toxin of Bacillus thuringiensis Berliner (Bt) were monitored from 1997 to 2004 in China. During 2001-2004, 53 strains from the Bt cotton planting region were sampled. The range of concentration producing 50% inhibition of larval development to third instar (IC50) values among different populations in 2001, 2002, 2003, and 2004 was 0.014-0.046, 0.010-0.062, 0.005-0.062, and 0.005-0.035 microg/ml, respectively. Diagnostic concentration studies (IC99) showed that the percentage of individuals reaching third instar ranged from 0 to 9.09%, with only four of the 53 tested populations showing values above 0%. Considering these data, it was determined that the susceptibility to CrylAc of the field populations sampled was not different from the baseline in 1997, and no movement toward resistance among H. armigera populations was apparent.  相似文献   

10.
Transgenic potato, Solanum tuberosum L., plants containing a synthetic cry1Ac gene coding for the Bacillus thuringiensis (Bt) crystalline insecticidal protein were produced and evaluated for resistance to Tecia solanivora Povolny (Lepidoptera: Gelechiidae), the larvae of which attack potato tubers. In total, 43 transgenic lines of commercial Andean potato varieties Diacol Capiro, Pardo Pastusa, and Pandeazúcar were obtained. These transgenic lines were found to have one to four copies of cry1Ac per genome and expression levels of Cry1Ac protein varying from 0.02 to 17 microg/g fresh tuber tissue. Bioassays of T. solanivora larvae on these transgenic potato tubers showed 83.7-100% mortality, whereas the mortality levels on nontransgenic lines were 0-2.67%. Our data indicate the capability of Bt transgenic technology to control the T. solanivora while reducing the use of chemical insecticides. Further studies under controlled field conditions will be helpful in exploring the potential of CrylAc potatoes in the insect pest management strategies.  相似文献   

11.
Bt-transgenic cotton has proven to be highly efficient in controlling key lepidopteran pests. One concern with the deployment of Bt cotton varieties is the potential proliferation of non-target pests. We previously showed that Bt cotton contained lower concentrations of insecticidal terpenoids as a result of reduced caterpillar damage, which benefited the aphid Aphis gossypii. It is thus important that non-target herbivores are under biological control in Bt cotton fields. The induction or lack of induction of terpenoids could also influence the quality of aphid honeydew, an important food source for beneficial insects. We therefore screened A. gossypii honeydew for cotton terpenoids, that are induced by caterpillars but not the aphids. We then tested the influence of induced insect-resistance of cotton on honeydew nutritional quality for the aphid parasitoid Lysiphlebus testaceipes and the whitefly parasitoid Eretmocerus eremicus. We detected the cotton terpenoids gossypol and hemigossypolone in A. gossypii honeydew. Although a feeding assay demonstrated that gossypol reduced the longevity of both parasitoid species in a non-linear, dose-dependent manner, the honeydew was capable of sustaining parasitoid longevity and reproduction. The level of caterpillar damage to Bt and non-Bt cotton had no impact on the quality of honeydew for the parasitoids.These results indicate that the nutritional quality of honeydew is maintained in Bt cotton and is not influenced by induced insect resistance.  相似文献   

12.
Improvement of potato has been accomplished using conventional and non-conventional approaches coupled with numerous tissue culture procedures. The aim of the present study was to assess the efficacy of gibberellic acid (GA3) on the morphogenesis of International Potato Center (CIP) potato explants and acclimatization of plantlets in the field. Nodal segments as an explant source (1–1.5 cm) were isolated from 31 CIP potato plantlets and were inoculated into Murashige and Skoog (MS) medium supplemented with 0.0 (control), 0.1, 0.5, or 1.0 mg L?1of GA3. The variation in growth parameters of the cultivars was then observed. The highest shoot induction occurred in MS medium containing 1.0 mg L?1 GA3 with an increase in the inter-nodal distance between nodes as compared to other treatments. Higher concentration (1.0 mg L?1) of GA3 significantly increased plant height and root length in the treated germplasm however; this concentration was inhibitory to the number of nodes and roots per plant. The number of leaves was significantly increased in plants receiving GA3 treatment at lower concentration (0.1 mg L?1). The 31 CIP genotypes were transplanted to the field and checked for yield quality traits. It was concluded from the results that GA3 had significant effects on morphogenesis and was effective in the acclimatization of CIP potato plantlets in field.  相似文献   

13.
Natural mutations in translation initiation factor eIF4E confer resistance to potyviruses in many plant species. Potato is a staple food crop plagued by several potyviruses, yet to date no known eIF4E-mediated resistance genes have been identified. In this study, we demonstrate that transgenic expression of the pvr1(2) gene from pepper confers resistance to Potato virus Y (PVY) in potato. We then use this information to convert the susceptible potato ortholog of this allele into a de novo allele for resistance to PVY using site-directed mutagenesis. Potato plants overexpressing the mutated potato allele are resistant to virus infection. Resistant lines expressed high levels of eIF4E mRNA and protein. The resistant plants showed growth similar to untransformed controls and produced phenotypically similar tubers. This technique disrupts a key step in the viral infection process and may potentially be used to engineer virus resistance in a number of economically important plant-viral pathosystems. Furthermore, the general public may be more amenable to the 'intragenic' nature of this approach because the transferred coding region is modified from a gene in the target crop rather than from a distant species.  相似文献   

14.
Summary Environmental influence on physiological factors that determine seed quality is discussed in relation to true potato seed (TPS). This review has been motivated by the need for high quality seed for the proper evaluation of TPS technology. The objectives of tuber production may not be in harmony with those required for the production of high quality TPS. The production of high quality TPS may be influenced by the stronger sink strength ability of fast developing tubers for assimilation of available nutrients. Earliness of tuber formation, which is needed in TPS progenitors, may tend to result in incomplete TPS development. Limiting conditions during seed development decrease the potential of the seed for field establishment. Seed vigor is the most important attribute of seed quality since it is essential for seedling performance under the adverse conditions commonly encountered during field development. The attractiveness of TPS technology for tropical areas, where potato production is limited by low-quality seed tuber availability, is decreased by the lack of seedling vigor and uniformity of seedlings derived from TPS. Current research indicates that considerable genetic improvement of TPS vigor and uniformity is possible. It is suggested that significant immediate improvement of TPS quality would result from agronomic techniques that reflect understanding of the physiological factors that influence the production and maintenance of high quality seed. Research areas needed to develop methodologies for TPS production with optimum expression of genotype are identified.Abbreviations TPS True potato seed - CIP International Potato Center, Lima, Peru - SD Short day - LD Long day - INIA Instituto Nacional de Investigaciones Agropecuarias, Chile - GA Gibberellic acid  相似文献   

15.
Potato is the world's largest non-cereal crop. Potato late blight is a pandemic, foliar wasting potato disease caused by Phytophthora infestans, which has become highly virulent, fungicide resistant, and widely disseminated. Similarly, fungicide resistant isolates of Phytophthora erythroseptica, which causes pink rot, have also become an economic scourge of potato tubers. Thus, an alternate, cost effective strategy for disease control has become an international imperative. Here we describe a strategy for engineering potato plants exhibiting strong protection against these exceptionally virulent pathogens without deleterious effects on plant yield or vigor. The small, naturally occurring antimicrobial cationic peptide, temporin A, was N-terminally modified (MsrA3) and expressed in potato plants. MsrA3 conveyed strong resistance to late blight and pink rot phytopathogens in addition to the bacterial pathogen Erwinia carotovora. Transgenic tubers remained disease-free during storage for more than 2 years. These results provide a timely, sustainable, effective, and environmentally friendly means of control of potato diseases while simultaneously preventing storage losses.  相似文献   

16.
Potato virus Y (PVY) infection may cause a severe yield depression up to 80%. To develop the potato (Solanum tuberosum L. ) cultivars that resist PVY infection is very crucial in potato production. The authors have been cloned the coat protein gene of PVY from its Chinese isolate. A chimaeric gene containing the cauliflower mosaic virus 35S promoter and PVY coat protein coding region was introduced into the potato cultivars “Favorita”, “Tiger head” and “K4” via Agrobacterium tumefaciens. Results from PCR and Southern blot analysis confirmed that the foreign gene has integrated into the potato chromosomes. These transgenic potato plants were mechanically inoculated with PVY virus (20 mg/L). The presence of the virus in the potato plants was determined by ELISA and method of back inoculation into tobacco. The authors observed a drastic reduction in the accumulation of virus in some transgenic potato lines. Furthermore, some transgenic potato lines produced more tubers per plant than the untransformed potato did, and the average weight of these transgenic plant tubers was also increased. In the field test, the morphology and development of these transgenic potato plants were normal, 3 transgenic lines of “Favorita” exhibited a higher yield than the untrasformed virus-free potato with an increase ranged from 20% to 30%. From these transgenic lines, it will be very hopeful to develop a potato cultivar which not only has a significant resistance to PVY infection, but also a good harvest in potato production.  相似文献   

17.
Liquid suspensions and dry formulations of a granulovirus (family Baculoviridae, genus Granulovirus, PoGV) derived from infected larvae and the bacterium Bacillus thuringiensis subsp. kurstaki (Berliner) (Btk) were evaluated for control of the potato tuberworm, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), in stored tubers. Laboratory bioassays at 25 degrees C showed that both PoGV and a wettable powder (WP) formulation of Btk incorporated with carriers (water, talc, sand, diatomaceous earth, and kaolin clay), were effective against neonate larvae. Depending on the technique, 100% larval mortality was achieved at concentrations as low as 0.025 larval equivalents (LE) PoGV per kg tuber and 150 mg Btk WP per kg tuber. However, 100% mortality was never achieved with tests on preinfested tubers, ostensibly due to the higher dosage required to kill older instars inside tubers. The most effective PoGV formulations were dipping (water) and talc, with dipping most effective for postinfestation treatments, causing up to 91.6% mortality at 0.4 LE per kg. There was no significant effect of formulation in the Btk treatments. The protective effects of residues were also evaluated under longer-term storage conditions. Batches of tubers treated with PoGV or Btk via dipping (up to 0.1 LE and 150 mg WP per kg tuber) were stored in cages containing an initial potato tuberworm infestation (10% of tubers). Although potato tuberworm populations were reduced by up to 98.4% after 2 mo at 25 degrees C, no treatments prevented the development and reproduction of the F1 generation. The sprouting of stored tubers seemed to be a limiting factor for sustained control. No significant treatment effects were detected in similar cages held at 12 degrees C for 4.5 mo. Improved strategies for the application of PoGV and Btk for long-term potato tuberworm control in tuber stores, including the use of chemical sprout suppressants, are discussed.  相似文献   

18.
It has been previously shown that expression of a high-molecular-weight glutenin (HMW-GS) in transgenic wheat seeds resulted in the improvement of flour functional properties. In this study, potato flour viscosity was improved through a specific expression of a low-molecular-weight glutenin (LMW-GS-MB1) gene in tuber. The resulting construct was introduced into potato leaf explants (Solanum tuberosum cv Kennebec) through Agrobacterium tumefaciens-mediated gene transfer. Southern and Northern analysis of transgenic potato confirmed that the integration of LMW-GS-MB1 in genomic DNA was stable and its mRNA was abundant in transgenic line 16 tubers. Western blot analysis of line 16 extract shows a LMW-GS subunit accumulation in tuber. To demonstrate the capacity of transgenic lines to produce tubers with improved flour functional properties, transgenic lines 9 and 16 exhibiting, respectively, moderate and high expression of LMW-GS-MB1 mRNA and nontransgenic plants were transferred to field plots. The mean viscosity value of flour obtained from the field-grown tubers of transgenic line 16 exhibited a 3-fold increase in viscosity at 23 degrees C when compared to flour from nontransgenic tubers.  相似文献   

19.
Bacillus thuringiensis (Bt) transgenic cotton, Gossypium hirsutum L., kills several economically important pests, reducing injury and increasing yields. Refuges of non-Bt cotton are currently planted with Bt cotton in different designs to slow pest resistance evolution. To compare the effects of differences in Bt/non-Bt plant heterogeneity found in different refuge designs on square (flower bud) damage, abscissions, sap-feeding herbivore densities, and yield in cotton, four types of 24-row cotton plots were planted in 2001 and 2002: 1) seed mixtures of Bt and non-Bt varieties, 2) 12-row strips of Bt and non-Bt, 3) solid Bt, and 4) solid non-Bt. For both years cotton bollworm, Helicoverpa zea (Boddie), damage was less in solid Bt plots than strips and mixtures and all were less than solid non-Bt plots. Cotton fleahopper, Pseudatomoscelis seriatus (Reuter), damage was affected by refuge, but only in 2002 when damage was greater in solid Bt plots than all other plots and greater in strips than solid non-Bt plots. Abscissions were least in solid non-Bt plots, and less in mixtures and strips than solid Bt plots. In 2001, western flower thrips, Frankliniella occidentalis (Pergande), density was greatest in mixtures, whereas sweetpotato whitefly, Bemisia tabaci (Gennadius), was greatest in solid Bt plots, and greater in mixtures than solid non-Bt plots. Yield also was affected by refuge, it was greater for solid Bt plots than for solid non-Bt plots and mixtures in 2001, but the reverse was true in 2002.  相似文献   

20.
鉴定转Bt甘蔗抗条螟的方法   总被引:1,自引:0,他引:1  
通过采集蔗田条螟Proceras venosatus Walker的蛹,在室内可控条件下进行羽化、交配、产卵、孵化的方式获得虫源,并将初孵幼虫接于检疫温室桶栽的13个转Bt基因甘蔗品系的心叶上,7 d后调查幼虫的生长死亡情况以及甘蔗受害程度.结果表明,综合幼虫的生长死亡情况和甘蔗受害程度二项指标,能更准确评价甘蔗的抗虫...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号