首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the biological significance of Pleistocene glaciations requires knowledge of the nature and extent of habitat refugia during glacial maxima. An opportunity to examine evidence of glacial forest refugia in a maritime, Southern Hemisphere setting is found in New Zealand, where the extent of Pleistocene forests remains controversial. We used the mitochondrial phylogeography of a forest-edge cicada ( Kikihia subalpina ) to test the hypothesis that populations of this species survived throughout South Island during the Last Glacial Maximum. We also compared mitochondrial DNA phylogeographic patterns with male song patterns that suggest allopatric divergence across Cook Strait. Cytochrome oxidase I and II sequences were analyzed using network analysis, maximum-likelihood phylogenetic estimation, Bayesian dating and Bayesian skyline plots. K. subalpina haplotypes from North Island and South Island form monophyletic clades that are concordant with song patterns. Song divergence corresponds to approximately 2% genetic divergence, and Bayesian dating suggests that the North Island and South Island population-lineages became isolated around 761 000 years bp . Almost all South Island genetic variation is found in the north of the island, consistent with refugia in Marlborough Sounds, central Nelson and northwest Nelson. All central and southern South Island and Stewart Island haplotypes are extremely similar to northern South Island haplotypes, a 'northern richness/southern purity' pattern that mirrors genetic patterns observed in many Northern Hemisphere taxa. Proposed southern South Island forest habitat fragments may have been too small to sustain populations of K. subalpina , and/or they may have harboured ecological communities with no modern-day analogues.  相似文献   

2.
Lloyd BD 《Molecular ecology》2003,12(7):1895-1911
Short-tailed bats Mystacina tuberculata were widespread throughout the forest that dominated prehuman New Zealand, but extensive deforestation has restricted them to scattered populations in forest fragments. In a previous study, the species' intraspecific phylogeny was investigated using multiple mitochondrial gene sequences. Six phylogroups were identified with estimated divergences of 0.93-0.68 Ma. In the current study, the phylogeographical structure and demographic history of the phylogroups were investigated using control region sequences modified by removing homoplasic sites. Phylogeographical structure in the North Island was generally consistent with an isolation-by-distance dispersal model. Coalescent-based analyses (i.e. mismatch distributions, skyline plots, lineage dispersal analysis and nested clade analysis) indicated that the three phylogroups found in central and southern North Island expanded before the last glacial maximum, presumably during interstadials when Nothofagus forest was most extensive. Genetic structure within a central North Island hybrid zone was consistent with range expansion from separate refugia following reforestation after catastrophic volcanic eruptions. Phylogeographical structure in the South Island was consistent with southern populations originating during rapid southward range expansion from refugia in northern South Island following postglacial reforestation of the South Island 10-9 kya.  相似文献   

3.
We have used phylogeographic analysis of mitochondrial DNA (COI and COII genes) and ecological niche modelling (ENM) to reconstruct the population history of Argosarchus horridus (White), a widespread species of New Zealand stick insect. These data were used to address outstanding questions on the role of glacial refugia in determining the distribution and genetic structure of New Zealand species. Phylogeographic analysis shows a general pattern of high diversity in upper North Island and reduced diversity in lower North Island and South Island. The ENM indicates that during the last glacial maximum, A. horridus was largely restricted to refugia around coastal areas of North Island. The ENM also suggests refugia on the northeast coast of South Island and southeast coast of North Island and this prediction is verified by phylogeographic analysis, which shows a clade restricted to this region. Argosarchus horridus is also most likely a geographic parthenogen where males are much rarer at higher latitudes. The higher levels of genetic variation in northern, bisexual populations suggest southern and largely unisexual populations originated from southwardly expanding parthenogenetic lineages. Bayesian skyline analysis also provides support for a recent population size increase consistent with a large increase in geographic distribution in the late Pleistocene. These results exemplify the utility of integrating ENM and phylogeographic analysis in testing hypotheses on the origin of geographic parthenogenesis and effects of Pleistocene environmental change on biodiversity.  相似文献   

4.
Aim  It is well established that many groups of plants and animals have undergone long-distance dispersal, but the extent to which this continues beyond initial colonization is largely unknown. To provide further insight into the frequency of gene flow mediated by long-distance dispersal, we investigated the origins of the fern Asplenium hookerianum on the Chatham Islands, and present a review of the contribution of molecular data to elucidating the origins of this archipelago's biota.
Location  Chatham Islands and New Zealand. A. hookerianum is scarce on the Chatham Islands but common in New Zealand, some 800 km to the west.
Methods  We compared chloroplast trnL–trnF DNA sequence data from Chatham Islands' A. hookerianum with extensive phylogeographic data for this genetically variable species in mainland New Zealand.
Results  Our sequencing revealed the presence of two haplotypes in Chatham Islands' A. hookerianum . These haplotypes differed by four mutational events and were each more closely related to haplotypes found in New Zealand than to each other.
Main conclusions  Despite the rarity of A. hookerianum on the Chatham Islands, its populations there appear to derive from at least two long-distance dispersal events from New Zealand, these possibly originating from different areas. We suggest that long-distance transoceanic dispersal, and the gene flow it can mediate, may be more common than is generally appreciated.  相似文献   

5.
The small aquatic snail Potamopyrgus antipodarum is an important invading species in Europe, Australia and North America. European populations are generally believed to derive from accidental introductions from New Zealand, probably dating back to the mid-19th century. We have employed mitochondrial DNA sequences to test the proposed New Zealand origin of European Potamopyrgus, and to learn more about its genealogical history. Using a 481-bp region of the 16S ribosomal RNA gene, we identified 17 distinct haplotypes among 65 snails from New Zealand. In marked contrast, only two haplotypes were found across all European samples, which cover a large geographical area. Importantly, these two haplotypes are shared with snails from the North Island of New Zealand. Due to sampling limitations we cannot rule out a South Island origin for one of the haplotypes, but our results clearly demonstrate the New Zealand origin of European populations. The marked divergence among the two European haplotypes implies the successful colonization by two distinct mitochondrial lineages, which is consistent with previous data based on nuclear markers.  相似文献   

6.
Aim To examine the hypothesis raised by Graham S. Hardy that Pleistocene glacial cycles suffice to explain divergence among lineages within the endemic New Zealand speckled skink, Oligosoma infrapunctatum Boulenger. Location Populations were sampled from across the entire range of the species, on the North and South Islands of New Zealand. Methods We sequenced the mitochondrial genes ND2 (550 bp), ND4 + tRNAs (773 bp) and cytochrome b (610 bp) of 45 individuals from 21 locations. Maximum likelihood, maximum parsimony and Bayesian methods were used for phylogenetic reconstruction. The Shimodaira–Hasegawa test was used to examine hypotheses about the taxonomic status of morphologically distinctive populations. Results Our analysis revealed four strongly supported clades within O. infrapunctatum. Clades were largely allopatric, except on the west coast of the South Island, where representatives from all four clades were found. Divergences among lineages within the species were extremely deep, reaching over 5%. Two contrasting phylogeographical patterns are evident within O. infrapunctatum. Main conclusions The deep genetic divisions we found suggest that O. infrapunctatum is a complex of cryptic species which diverged in the Pliocene, contrary to the existing Pleistocene‐based hypothesis. Although Pleistocene glacial cycles do not underlie major divergences within this species, they may be responsible for the shallower phylogeographical patterns that are found within O. infrapunctatum, which include a radiation of haplotypes in the Nelson and Westland regions.  相似文献   

7.
Neiman M  Lively CM 《Molecular ecology》2004,13(10):3085-3098
Pleistocene glaciation has been identified as an important factor shaping present-day patterns of phylogeographical structure in a diverse array of taxa. The purpose of this study was to use mitochondrial sequence data to address whether Pleistocene glaciation is also a major determinant of phylogeographical patterns in Potamopyrgus antipodarum, a freshwater snail native to New Zealand. We found that haplotypes were separated by no more than 3.7% sequence divergence, and major genetic divisions tended to occur on a north-south axis. These data fit the predictions of the hypothesis that isolation of P. antipodarum in glacial refugia at the northern and southern tip of the South Island of New Zealand during the Pleistocene glaciation underlies the present-day phylogeographical structure. Because sexual P. antipodarum occasionally produce asexual offspring, we also used these data to show that the appearance of asexuality is not phylogeographically constrained. This means that the maintenance of sex in P. antipodarum cannot be wholly due to limited contact between sexual and asexual lineages and must instead be linked to a selective advantage of sexual reproduction.  相似文献   

8.
Despite only limited Pleistocene glacial activity in the southern hemisphere, temperate forest species experienced complex distributional changes resulting from the combined effects of glaciation, sea level change and increased aridity. The effects of these historical processes on population genetic structure are now overlain by the effects of contemporary habitat modification. In this study, 10 microsatellites and 629 bp of the mitochondrial control region were used to assess the effects of historical forest fragmentation and recent anthropogenic habitat change on the broad-scale population genetic structuring of a southern temperate marsupial, the Tasmanian pademelon. A total of 200 individuals were sampled from seven sites across Tasmania and two islands in Bass Strait. High mitochondrial and nuclear genetic diversity indicated the maintenance of large historical population sizes. There was weak phylogeographical structuring of haplotypes, although all King Island haplotypes and three Tasmanian haplotypes formed a divergent clade implying the mid-Pleistocene isolation of a far northwestern population. Both the mitochondrial and nuclear data indicated a division of Tasmanian populations into eastern and western regions. This was consistent with a historical barrier resulting from increased aridity in the lowland 'midlands' region during glacial periods, and with a contemporary barrier resulting from recent habitat modification in that region. In Tasmania, gene flow appears to have been relatively unrestricted during glacial maxima in the west, while in the east there was evidence for historical expansion from at least one large glacial refuge and recolonization of Flinders Island.  相似文献   

9.
Quaternary glacial cycles have played an important role in shaping the biodiversity in temperate regions. This is well documented in Northern Hemisphere, but much less understood for Southern Hemisphere. We used mitochondrial DNA and nuclear elongation factor 1α intron sequences to examine the Pleistocene glacial impacts on the phylogeographical pattern of the freshwater crab Aegla alacalufi in Chilean Patagonia. Phylogenetic analyses, which separated the glaciated populations on eastern continent into a north group (seven populations) and a south group (one population), revealed a shallow phylogenetic structure in the north group but a deep one in the non-glaciated populations on western islands, indicating the significant influence of glaciation on these populations. Phylogenies also identified the Yaldad population on Chiloé Island as a potentially unrecognized new species. The non-glaciated populations showed higher among population genetic divergence than the glaciated ones, but lower population genetic diversity was not detected in the latter. The two glaciated groups, which diverged from the non-glaciated populations at ~96 800–29 500 years ago and ~104 200–73 800 years ago, respectively, seem to have different glacial refugia. Unexpectedly, the non-glaciated islands did not serve as refugia for them. Demographic expansion was detected in the glaciated north group, with a constant population increase after the last glacial maximum. Nested clade analyses suggest a possible colonization from western islands to eastern continent. After arriving on the continent and surviving the last glacial period there, populations likely have expanded from high to low altitude, following the flood of melting ice. Aegla alacalufi genetic diversity has been primarily affected by Pleistocene glaciation and minimally by drainage isolation.  相似文献   

10.
Genetic variation has been studied in 32 Eastern Siberian and Far Eastern populations of Larix Mill. with the use of three mitochondrial markers based on polymerase chain reaction. Eight multilocus haplotypes with a heterogeneous spatial distribution (G(ST) = 0.788, N(ST) = 0.829) have been found, which indicates limited gene flows between populations. Several geographic regions with specific larch haplotype sets have been determined: (1) Japan, (2) southern Sakhalin and the Kuril Islands, (3) Primor'e and Korea, (4) Kamchatka, and (5) Eastern Siberia and the northern Far East. The haplotype fixed in the Kamchatka is absent in the Magadan oblast or Chukotka but is present in southern Primor'e and Sakhalin Island. This may be explained by either the postglacial recolonization of Kamchatka by larch that spread from Primor'e through Sakhalin and the Kuril Islands or its survival through the last glacial maximum in the Kamchatka Peninsula. The biogeography of larch and other woody plants indicate that boreal species have a common history of the colonization of Kamchatka.  相似文献   

11.
Because of its remoteness and mid-latitude position, New Zealand lacks access to the tropical climates that might have ensured straightforward survival for frost-sensitive species during glacial times. Nevertheless, the New Zealand lowland flora retains a substantial complement of plants sourced in the tropics. While there have been extinction pulses for elements of the frost-sensitive flora under glacial/stadial regimes, the surviving remnants have been able to recolonize large areas of habitat during successive warm climate periods. Refugia for such species in stadial New Zealand are likely to have been localized and ecologically suboptimal. To examine these relationships we have applied chloroplast DNA sequence data to the investigation of phylogeographical pattern for five endemic species of Metrosideros subg. Metrosideros , a wide-ranging group of mostly frost-sensitive woody plants in New Zealand. The results of this research verify the location of two generally mooted stadial refugia for the country and provide support for the existence of a third. A simple pattern of chloroplast haplotype diversity was recorded in extra-refugial areas, compared with a greater complexity in the vicinity of the identified refugia. This pattern was independently repeated in both main islands. The proposed refugia correspond to contemporary localities of high average winter temperatures. The sharing of chloroplast haplotypes between the different species of Metrosideros examined suggests that there has been a history of repeated hybridization and introgression for these plants, possibly initiated by periods of refugial confinement.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 399–412.  相似文献   

12.
Jack pine (Pinus banksiana Lamb.) is a broadly distributed North American conifer and its current range was covered by the Laurentian ice sheet during the last glacial maximum. To infer about the history and postglacial colonization of this boreal species, range-wide genetic variation was assessed using a new and highly variable minisatellite-like marker of the mitochondrial genome. Among the 543 trees analysed, 14 distinct haplotypes were detected, which corresponded to different repeat numbers of the 32-nucleotide minisatellite-like motif. Several haplotypes were rare with limited distribution, suggesting recent mutation events during the Holocene. At the population level, an average of 2.6 haplotypes and a mean haplotype diversity (H) of 0.328 were estimated. Population subdivision of genetic diversity was quite high with G(ST) and R(ST) values of 0.569 and 0.472, respectively. Spatial analyses identified three relatively homogeneous groups of populations presumably representative of genetically distinct glacial populations, one west and one east of the Appalachian Mountains in the United States and a third one presumably on the unglaciated northeastern coastal area in Canada. These results indicate the significant role of the northern part of the US Appalachian Mountains as a factor of vicariance during the ice age. A fourth distinct group of populations was observed in central Québec where the continental glacier retreated last. It included populations harbouring haplotypes present into the three previous groups, and it had higher level of haplotype diversity per population (H = 0.548) and lower population differentiation (G(ST) = 0.265), which indicates a zone of suture or secondary contact between the migration fronts of the three glacial populations. Introgression from Pinus contorta Dougl. var. latifolia Engelm. was apparent in one western population from Alberta. Altogether, these results indicate that the mitochondrial DNA variation of jack pine is geographically highly structured and it correlates well with large-scale patterns emerging from recent phylogeographical studies of other tree boreal species in North America.  相似文献   

13.
1. Nucleotide sequences of a 280 base pair region of the cytochrome b gene were used to assess genetic diversity and to infer population histories in the New Zealand mayfly Acanthophlebia cruentata. 2. A hierarchial examination of populations from 19 streams at different spatial scales in the central and northern North Island of New Zealand found 34 haplotypes. A common haplotype was found in all central region streams and unique haplotypes in northern streams. Several central streams had region specific haplotypes with genetically differentiated populations at the 70–100 km scale. 3. Haplotype diversity was high (0.53–0.8) at most sites, but low (0–0.22) in some central sites. amova analyses found significant genetic diversity among regions (69%) and among catchments (58%). Most population pairwise FST tests were significant, with non‐significant pairwise tests among sites in the central region and pairs of sites between neighbouring streams. 4. The levels of sequence divergence are interpreted as the result of Pleistocene divergence in multiple refugia, leading to the evolution of regionally unique haplotypes. The low diversity in some central region populations may result from recent colonisation following local extinctions, associated with volcanic events.  相似文献   

14.
Understanding how climatic and environmental changes, as well as human activities, induce changes in the distribution and population size of avian species refines our ability to predict future impacts on threatened species. Using multilocus genetic data, we show that the population of a threatened New Zealand endemic open-habitat specialist, the Black-fronted Tern Chlidonias albostriatus – in contrast to forest specialists – expanded during the last glacial period. The population has decreased subsequently despite the availability of extensive open habitat after human arrival to New Zealand. We conclude that population changes for open habitat specialists such as Black-fronted Terns in pre-human New Zealand were habitat-dependent, similar to Northern Hemisphere cold-adapted species, whereas post-human settlement populations were constrained by predators independent of habitat availability, similar to other island endemic species.  相似文献   

15.
The general phylogeographical paradigm for eastern North America (ENA) is that many plant and animal species retreated into southern refugia during the last glacial period, then expanded northward after the last glacial maximum (LGM). However, some taxa of the Gulf and Atlantic Coastal Plain (GACP) demonstrate complex yet recurrent distributional patterns that cannot be explained by this model. For example, eight co‐occurring endemic plant taxa with ranges from New York to South Carolina exhibit a large disjunction separating northern and southern populations by >300 km. Pyxidanthera (Diapensiaceae), a plant genus that exhibits this pattern, consists of two taxa recognized as either species or varieties. We investigated the taxonomy and phylogeography of Pyxidanthera using morphological data, cpDNA sequences, and amplified fragment length polymorphism markers. Morphological characters thought to be important in distinguishing Pyxidanthera barbulata and P. brevifolia demonstrate substantial overlap with no clear discontinuities. Genetic differentiation is minimal and diversity estimates for northern and southern populations of Pxyidanthera are similar, with no decrease in rare alleles in northern populations. In addition, the northern populations harbour several unique cpDNA haplotypes. Pyxidanthera appears to consist of one morphologically variable species that persisted in or near its present range at least through the latter Pleistocene, while the vicariance of the northern and southern populations may be comparatively recent. This work demonstrates that the refugial paradigm is not always appropriate and GACP endemic plants, in particular, may exhibit phylogeographical patterns qualitatively different from those of other ENA plant species.  相似文献   

16.
《新西兰生态学杂志》2011,20(2):147-161
Relationships between composition of secondary vegetation and environment were studied in central North Island, New Zealand. A classification procedure was used to identify broad compositional groups which included forest, broadleaved scrub, shrub-fernland, sclerophyllous scrub and shrubland, and tussock-shrubland. Generalised additive models (GAMs) were used to examine relationships between species' distributions and mean annual temperature and rainfall, stand age, distance from intact forest, slope, topography, and drainage. There were marked differences in the environmental relationships of individual species. We conclude that temperature and rainfall have a dominant role in determining succession after disturbance at a regional scale, but distance from intact forest, topography, slope and solar radiation, become important at local scales. Variation unaccounted for by these environmental factors is most likely linked to historical factors such as variation in disturbance and/or grazing and browsing regimes. Intervention by managers will probably be required in the future if the current diversity of secondary vegetation in central North Island is to be maintained.  相似文献   

17.
Glacial refugia considerably shaped the phylogeographical structure of species and may influence intra-specific morphological, genetic, and adaptive differentiation. However, the impact of the Quaternary ice ages on the phylogeographical structure of North American temperate mammalian species is not well-studied. Here, we surveyed ∼1600 individuals of the widely distributed woodland caribou (Rangifer tarandus caribou) using mtDNA control region sequences to investigate if glacial refugia contributed to the phylogeographical structure in this subspecies. Phylogenetic tree reconstruction, a median-joining network, and mismatch distributions supported postglacial expansions of woodland caribou from three glacial refugia dating back to 13544–22005 years. These three lineages consisted almost exclusively of woodland caribou mtDNA haplotypes, indicating that phylogeographical structure was mainly shaped by postglacial expansions. The putative centres of these lineages are geographically separated; indicating disconnected glacial refugia in the Rocky Mountains, east of the Mississippi, and the Appalachian Mountains. This is in congruence with the fossil record that caribou were distributed in these areas during the Pleistocene. Our results suggest that the last glacial maximum substantially shaped the phylogeographical structure of this large mammalian North American species that will be affected by climatic change. Therefore, the presented results will be essential for future conservation planning in woodland caribou.  相似文献   

18.
Abstract The amphibian fauna of New Zealand consists of three native species (Leiopelma spp.), and three Litoria species introduced from Australia in the last 140 years. We conducted a molecular phylogeographical study that aimed to identify the Australian origins of two species, Litoria aurea and Litoria raniformis. We used partial sequences of the mitochondrial cytochrome oxidase I (cox1) gene from 59 specimens sampled from across the range of both species to identify the probable source populations for the New Zealand introductions, and to describe the current genetic diversity among New Zealand Litoria populations. Our genetic data suggest that L. aurea was introduced into the North Island of New Zealand from two regions in Australia, once from the northern part of coastal New South Wales and once from the southern part of coastal New South Wales. Our data indicate that L. raniformis introductions originated from the Melbourne region of southern Victoria and once established in the South Island of New Zealand, the species subsequently spread throughout both islands. In addition, we found a distinct haplotype in L. raniformis from Tasmania that strongly suggests, contrary to earlier reports, that this species was not introduced into New Zealand from Tasmania. Finally, we identified two very distinctive mitochondrial lineages of L. raniformis within the mainland Australia distribution, which may be previously unrecognized species.  相似文献   

19.
Aim Alternative hypotheses concerning genetic structuring of the widespread endemic New Guinean forest pademelons (Thylogale) based on current taxonomy and zoogeography (northern, southern and montane species groupings) and preliminary genetic findings (western and eastern regional groupings) are investigated using mitochondrial sequence data. We examine the relationship between the observed phylogeographical structure and known or inferred geological and historical environmental change during the late Tertiary and Quaternary. Location New Guinea and associated islands. Methods We used primarily museum specimen collections to sample representatives from Thylogale populations across New Guinea and three associated islands. Mitochondrial cytochrome b and control region sequence data were used to construct phylogenies and estimate the timing of population divergence. Results Phylogenetic analyses indicated subdivision of pademelons into ‘eastern’ and ‘western’ regional clades. This was largely due to the genetic distinctiveness of north‐eastern and eastern peninsula populations, as the ‘western’ clade included samples from the northern, southern and central regions of New Guinea. Two tested island groups were closely related to populations north of the Central Cordillera; low genetic differentiation of pademelon populations between north‐eastern New Guinea and islands of the Bismarck Archipelago is consistent with late Pleistocene human‐mediated translocations, while the Aru Islands population showed divergence consistent with cessation of gene flow in the mid Pleistocene. There was relatively limited genetic divergence between currently geographically isolated populations in subalpine and nearby mid‐montane or lowland regions. Main conclusions Phylogeographical structuring does not conform to zoogeographical expectations of a north/south division across the cordillera, nor to current species designations, for this generalist forest species complex. Instead, the observed genetic structuring of Thylogale populations has probably been influenced by geological changes and Pleistocene climatic changes, in particular the recent uplift of the north‐eastern Huon Peninsula and the lowering of tree lines during glacial periods. Low sea levels during glacial maxima also allowed gene flow between the continental Aru Island group and New Guinea. More work is needed, particularly multi‐taxon comparative studies, to further develop and test phylogeographical hypotheses in New Guinea.  相似文献   

20.
Aim It has been proposed that the root vole subspecies, Microtus oeconomus finmarchicus, survived the last glacial period on islands on the north‐west coast of Norway. The Norwegian island of Andøya may have constituted the only site with permanent ice‐free conditions. Geological surveys and fossil finds from Andøya demonstrate that survival throughout the last glacial maximum was probably possible for some plants and animals. In this study we aim to infer the recent evolutionary history of Norwegian root vole populations and to evaluate the glacial survival hypothesis. Methods DNA sequence variation in the mitochondrial cytochrome b gene was studied in 46 root voles from 19 localities. Location Northern Fennoscandia and north‐west Russia with a focus on islands on the north‐west coast of Norway. Results The phylogeographical analyses revealed two North European phylogroups labelled ‘Andøya’ and ‘Fennoscandia’. The Andøya phylogroup contained root voles from the Norwegian islands of Andøya, Ringvassøya and Reinøya and two localities in north‐west Russia. The Fennoscandian phylogroup encompassed root voles from the three Norwegian islands of Kvaløya, Håkøya and Arnøya and the remaining specimens from Norway, northern Sweden and Finland. Nucleotide diversity within the Andøya and Fennoscandian phylogroups was similar, ranging from 0.5% to 0.7%. Main conclusions Both our genetic data and previously published morphological data are consistent with in situ glacial survival of root voles on Andøya during the last glacial maximum. However, the level of genetic diversity observed in the extant island populations, the past periods of severe climatic conditions on Andøya and the ecology of the root vole are somewhat difficult to reconcile with this model. A biogeographical scenario involving late glacial recolonization along the northern coasts of Russia and Norway therefore represents a viable alternative. Our results demonstrate that complex recolonization and extinction histories can generate intricate phylogeographical patterns and relatively high levels of genetic variation in northern populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号