首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten strains of Frankia isolated from root nodules of plant species from five genera of the host family Rhamnaceae were assayed in cross inoculation assays. They were tested on host plants belonging to four actinorhizal families: Trevoa trinervis (Rhamnaceae), Elaeagnus angustifolia (Elaeagnaceae), Alnus glutinosa (Betulaceae) and Casuarina cunninghamiana (Casuarinaceae). All Frankia strains from the Rhamnaceae were able to infect and nodulate both T. trinervis and E. angustifolia. Strain ChI4 isolated from Colletia hystrix was also infective on Alnus glutinosa. All nodules showed a positive acetylene reduction indicating that the microsymbionts used as inoculants were effective in nitrogen fixation. The results suggest that Frankia strains from Rhamnaceae belong to the Elaeagnus-infective subdivision of the genus Frankia.  相似文献   

2.
Abstract The term ``actinorhiza' refers both to the filamentous bacteria Frankia, an actinomycete, and to the root location of nitrogen-fixing nodules. Actinorhizal plants are classified into four subclasses, eight families, and 25 genera comprising more than 220 species. Although ontogenically related to lateral roots, actinorhizal nodules are characterized by differentially expressed genes, supporting the idea of the uniqueness of this new organ. Two pathways for root infection have been described for compatible Frankia interactions: root hair infection or intercellular penetration. Molecular phylogeny groupings of host plants correlate with morphologic and anatomic features of actinorhizal nodules. Four clades of actinorhizal plants have been defined, whereas Frankia bacteria are classified into three major phylogenetic groups. Although the phylogenies of the symbionts are not fully congruent, a close relationship exists between plant and bacterial groups. A model for actinorhizal specificity is proposed that includes different levels or degrees of specificity of host-symbiont interactions, from fully compatible to incompatible. Intermediate, compatible, but delayed or limited interactions are also discussed. Actinorhizal plants undergo feedback regulation of symbiosis involving at least two different and consecutive signals that lead to a mechanism controlling root nodulation. These signals mediate the opening or closing of the window of susceptibility for infection and inhibit infection and nodule development in the growing root, independently of infection mechanism. The requirement for at least two molecular recognition steps in the development of actinorhizal symbioses is discussed.  相似文献   

3.
New distributional recores of hydroxycinnamoyl spermidines (HCS), including novel trisubstituted HCSs and flavonol glycosides, in pollen of Higher Hamamelidae are presented. The 51 taxa analyzed by HPLC and TLC included members of the families Fagaceae (Castanoideae, Fagoideae, Quercoideae), Betulaceae, Juglandaceae, Myricaceae, Hamamelidaceae, Rosaceae, and Buxaceae (Simmondsia). The results support generic concepts in the Higher Hamamelidae derived from morphological and chloroplast DNA data and support a close evolutionary relationship between the Higher Hamamelidae and the Rosidae.  相似文献   

4.
In search of plant genes expressed during early interactions between Casuarina glauca and Frankia, we have isolated and characterized a C. glauca gene that has strong homology to subtilisin-like protease gene families of several plants including the actinorhizal nodulin gene ag12 of another actinorhizal plant, Alnus glutinosa. Based on the expression pattern of cg12 in the course of nodule development, it represents an early actinorhizal nodulin gene. Our results suggest that subtilisin-like proteases may be a common element in the process of infection of plant cells by Frankia in both Betulaceae (Alnus glutinosa) and Casuarinaceae (Casuarina glauca) symbioses.  相似文献   

5.
The phylogeny of 13 species of Myricaceae, the most ancient actinorhizal family involved in a nitrogen-fixing symbiosis with the actinomycete Frankia, was established by the analysis of their rbcL gene and 18S-26S ITS. The phylogenetic position of those species was then compared to their specificity of association with Frankia in their natural habitat and to their nodulation potential determined on greenhouse-grown seedlings. The results showed that Genus Myrica, including M. gale and M. hartwegii, and Genus Comptonia, including C. peregrina, belong to a phylogenetic cluster distinct from the other Myrica species transferred in a new genus, Morella. This grouping parallels the natural specificity of each cluster with Comptonia-Myrica and Morella being nodulated by two phylogenetically divergent clusters of Frankia strains, the Alnus and Elaeagnaceae-infective strains clusters, respectively. Under laboratory conditions, Comptonia and Morella had a nodulation potential larger than under natural conditions. From this study it appears that the Myricaceae are split into two different specificity groups. It can be hypothesized that the early divergence of the genera led to the selection of genetically diverse Frankia strains which is contradictory to the earlier proposal that evolution has proceeded toward narrower promiscuity within the family.  相似文献   

6.
7.
Molecular phylogenetic approaches have begun to outline the origin, distribution and diversity of actinorhizal partners. Geographic isolation of Frankia and its host plants resulting from shifting continents and dispersal patterns have apparently led to the development of Frankia genotypes with differing affinities for host genera, even within the same plant family. Actinorhizal plant genera of widespread global distribution tend to nodulate readily even outside their native ranges. These taxa may maintain infective Frankia populations of considerable diversity on a broad scale. Arid environments seem to have distinctive actinorhizal partnerships, with smaller and more specific sets of Frankia symbionts. This has led to the hypothesis that some host families have taxa that are evolving towards narrow strain specificity, perhaps because of drier habitats where fewer Frankia strains would be able to survive. Harsh conditions such as water-saturated soils near lakes, swamps or bogs that are typically acidic and low in oxygen may similarly lessen the diversity of Frankia strains present in the soil, perhaps limiting the pool of frankiae available for infection locally and, at a larger scale, for natural selection of symbiotic partnerships with host plants. Recent molecular ecological studies have also provided examples of Frankia strain sorting by soil environment within higher order cluster groupings of Frankia host specificity. Future frontiers for ecological research on Frankia and actinorhizal plants include the soil ecosystem and the genome of Frankia and its hosts.  相似文献   

8.
Indigenous species of actinorhizal plants of Casuarinaceae, Elaeagnaceae and Rhamnaceae are found in specific regions of Australia. Most of these plants belong to Casuarinaceae, the dominant actinorhizal family in Australia. Many of them have significant environmental and economical value. The other two families with their indigenous actinorhizal plants have only a minor presence in Australia. Most Australian actinorhizal plants have their native range only in Australia, whereas two of these plants are also found indigenously elsewhere. The nitrogen-fixing ability of these plants varies between species. This ability needs to be investigated in some of these plants. Casuarinas form a distinctive but declining part of the Australian landscape. Their potential has rarely been applied in forestry in Australia despite their well-known uses, which are being judiciously exploited elsewhere. To remedy this oversight, a programme has been proposed for increasing and improving casuarinas that would aid in greening more regions of Australia, increasing the soil fertility and the area of wild life habitat (including endangered species). Whether these improved clones would be productive with local strains of Frankia or they need an external inoculum of Frankia should be determined and the influence of mycorrhizal fungi on these clones also should be investigated.  相似文献   

9.
Robert F. Thorne 《Brittonia》1973,25(4):395-405
The various contributions to this symposium on the “Amentiferae” reach the general conclusion that the group is an artificial aggregation of taxa of diverse origin that have converged to a common evolutionary plateau in possessing a large syndrome of characteristics that adapt them for successful cross-pollination by wind. Aside from those few families (Eucommiaceae, Casuarinaceae, Fagaceae, and Betulaceae) that apparently do have close relationships (close common origin) with each other and with the Hamamelidales, the following taxa should be removed from the Hamamelidae: Juglandales (Juglandaceae and Rhoipteleaceae) to the Rutales as the Juglandineae near the Anacardiineae; Myricaceae and Leitneriaceae respectively to the Myricales and Leitneriales near the Rutales in the Rutiflorae; Urticales (excludingBarbeya andEucommia) to the Malviflorae near the Malvales and Euphorbiales;Picrodendron to the Euphorbiaceae; Didymelaceae to the Euphorbiales; Myrothamnaceae to the Brunineae of the Pittosporales; andBalanops, Barbeya, andCanacomyrica, along withBatis, to “taxa incertae sedis.”  相似文献   

10.
The symbiotic interactions between Frankia strains and their associated plants from the Casuarinaceae under controlled conditions are well documented but little is known about these interactions under natural conditions. We explored the symbiotic interactions between eight genotypically characterized Frankia strains and five Casuarinaceae species in long-term field trials. Characterization of strains was performed using the polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) for the nifD – nifK intergenic transcribed spacer (ITS) and 16S–23S ITS. Assessments of the symbiotic interactions were based on nodulation patterns using nodule dry weight and viability, and on actual N2 fixation using the δ15N method. The PCR–RFLP patterns showed that the analyzed strains belonged to the same genotypic group (CeD group), regardless of the host species and environment of origin. The nodule viability index is introduced as a new tool to measure the viability of perennial nodules and to predict their effectiveness. The host Casuarinaceae species was a key factor influencing both the actual N2-fixing activity of the associated Frankia strain and the viability of nodules within a location. This is the first study providing information on the symbiotic interactions between genotypically characterized Frankia strains and actinorhizal plants under natural conditions. The results revealed a way to improve a long-term management of the Casuarinaceae symbiosis.  相似文献   

11.
To construct an evolutionary hypothesis for the genus Frankia, gyrB (encoding gyrase B), nifH (encoding nitrogenase reductase) and glnII (encoding glutamine synthetase II) gene sequences were considered for 38 strains. The overall clustering pattern among Frankia strains based on the three analyzed sequences varied among themselves and with the previously established 16S rRNA gene phylogeny and they did not reliably reflect clear evolution of the four discerned Frankia clusters (1, 2, 3 and 4). Based on concatenated gyrB, nifH and glnII, robust phylogenetic trees were observed with the three treeing methods (Maximum Likelihood, Parsimony and Neighbor-Joining) and supported by strong bootstrap and posterior probability values (>75%) for overall branching. Cluster 4 (non-infective and/or non-nitrogen-fixing Frankia) was positioned at a deeper branch followed by cluster 3 (Rhamnaceae and Elaeagnaceae infective Frankia), while cluster 2 represents uncultured Frankia microsymbionts of the Coriariaceae, Datiscaceae, Rosaceae and of Ceanothus sp. (Rhamnaceae); Cluster 1 (Betulaceae, Myricaceae and Casuarinaceae infective Frankia) appears to have diverged more recently. The present study demonstrates the utility of phylogenetic analyses based upon concatenated gyrB, nifH and glnII sequences to help resolve previously unresolved or poorly resolved nodes and will aid in describing species among the genus Frankia.  相似文献   

12.
According to morphologically based classification systems, actinorhizal plants, engaged in nitrogen-fixing symbioses with Frankia bacteria, are considered to be only distantly related. However, recent phylogenetic analyses of seed plants based on chloroplast rbcL gene sequences have suggested closer relationships among actinorhizal plants. A more thorough sampling of chloroplast rbcL gene sequences from actinorhizal plants and their nonsymbiotic close relatives was conducted in an effort to better understand the phylogenetic relationships of these plants, and ultimately, to assess the homology of the different actinorhizal symbioses. Sequence data from 70 taxa were analyzed using parsimony analysis. Strict consensus trees based on 24 equally parsimonious trees revealed evolutionary divergence between groups of actinorhizal species suggesting that not all symbioses are homologous. The arrangement of actinorhizal species, interspersed with nonactinorhizal taxa, is suggestive of multiple origins of the actinorhizal symbiosis. Morphological and anatomical characteristics of nodules from different actinorhizal hosts were mapped onto the rbclL-based consensus tree to further assess homology among rbcL-based actinorhizal groups. The morphological and anatomical features provide additional support for the rbcL-based groupings, and thus, together, suggest that actinorhizal symbioses have originated more than once in evolutionary history.  相似文献   

13.
Actinomycetes from the genus Frankia induce nitrogen-fixing root nodules on actinorhizal plants in the "core rosid" clade of eudicots. Reported here are nine partial Frankia 16S rRNA gene sequences including the first from host plants of the rosaceous genera Cercocarpus and Chamaebatia, 24 partial glutamine synthetase (GSI; glnA) sequences from Frankia in nodules of 17 of the 23 actinorhizal genera, and the partial glnA sequence of Acidothermus cellulolyticus. Phylogenetic analyses of combined Frankia 16S rDNA and glnA sequences indicate that infective strains belong to three major clades (I-III) and that Clade I strains consisting of unisolated symbionts from the Coriariaceae, Datiscaceae, Rosaceae, and Ceanothus of the Rhamnaceae are basal to the other clades. Clock-like mutation rates in glnA sequence alignments indicate that all three major Frankia clades diverged early during the emergence of eudicots in the Cretaceous period, and suggest that present-day symbioses are the result of an ancestral symbiosis that emerged before the divergence of extant actinorhizal plants.  相似文献   

14.
Patterns of nodulation, growth, andFrankia — host specificity have not been well characterized for the actinorhizal genera in the family Rosaceae because of the scarcity ofFrankia isolates from these taxa. Furthermore, the few isolates available from actinorhizal Rosaceae have consistently failed to nodulate plants from the host genus. In a series of experiments, species of rosaceousDryas, Cowania, Cercocarpus, Fallugia, andPurshia were inoculated withFrankia isolates, crushedDryas actinorhizae, and neoglacial soils to ascertain whether any of these inocula would effectively induce nodulation. Neoglacial soils from Alaska and Canada nodulated not only the localDryas drummondii, but alsoCercocarpus betuloides, Cowania mexicana andPurshia tridentata from distant and ecologically diverse locales as well as nonrosaceous, actinorhizal species ofAlnus, Elaeagnus, Myrica, andShepherdia. But of eightFrankia isolates, including two fromPurshia tridentata and one fromCowania mexicana, none were able to induce nodulation onPurshia orCowania species. Globular, actinorhizae-like nodules incapable of acetylene reduction were produced onC. betuloides inoculated withFrankia isolates. Crushed nodule suspensions fromDryas drummondii nodulated rosaceousCowania, Dryas andPurshia, as well as non-rosaceousElaeagnus, Myrica, andShepherdia species. Nodules produced by inoculation ofCowania mexicana andPurshia tridentata with crushed, dried nodule suspensions fromDryas drummondii reduced acetylene to ethylene, indicating nitrogenase activity for these nodulated plants. These data suggest that a similar microsymbiont infects the actinorhizal genera in the family Rosaceae.  相似文献   

15.
cg12 is an early actinorhizal nodulin gene from Casuarina glauca encoding a subtilisin-like serine protease. Using transgenic Casuarinaceae plants carrying cg12-gus and cg12-gfp fusions, we have studied the expression pattern conferred by the cg12 promoter region after inoculation with Frankia. cg12 was found to be expressed in root hairs and in root and nodule cortical cells containing Frankia infection threads. cg12 expression was also monitored after inoculation with ineffective Frankia strains, during mycorrhizae formation, and after diverse hormonal treatments. None of these treatments was able to induce its expression, therefore suggesting that cg12 expression is linked to plant cell infection by Frankia strains. Possible roles of cg12 in actinorhizal symbiosis are discussed.  相似文献   

16.
Swensen  Susan M.  Mullin  Beth C. 《Plant and Soil》1997,194(1-2):185-192
Current taxonomic schemes place plants that can participate in root nodule symbioses among disparate groups of angiosperms. According to the classification scheme of Cronquist (1981) which is based primarily on the analysis of morphological characters, host plants of rhizobial symbionts are placed in subclasses Rosidae and Hamamelidae, and those of Frankia are distributed among subclasses Rosidae, Hamamelidae, Magnoliidae and Dilleniidae. This broad phylogenetic distribution of nodulated plants has engendered the notion that nitrogen fixing endosymbionts, particularly those of actinorhizal plants, can interact with a very broad range of unrelated host plant genotypes. New angiosperm phylogenies based on DNA sequence comparisons reveal a markedly different relationship among nodulated plants and indicate that they form a more coherent group than has previously been thought (Chase et al., 1993; Swensen et al., 1994; Soltis et al., 1995). Molecular data support a single origin of the predisposition for root nodule symbiosis (Soltis et al., 1995) and at the same time support the occurrence of multiple origins of symbiosis within this group (Doyle, 1994; Swensen, 1996; Swensen and Mullin, In Press).  相似文献   

17.
The actinomycete genus Frankia forms nitrogen-fixing symbioses with 8 different families of actinorhizal plants, representing more than 200 different species. Very little is known about the initial molecular interactions between Frankia and host plants in the rhizosphere. Root exudates are important in Rhizobium-legume symbiosis, especially for initiating Nod factor synthesis. We measured differences in Frankia physiology after exposure to host aqueous root exudates to assess their effects on actinorhizal symbioses. Casuarina cunninghamiana root exudates were collected from plants under nitrogen-sufficient and -deficient conditions and tested on Frankia sp. strain CcI3. Root exudates increased the growth yield of Frankia in the presence of a carbon source, but Frankia was unable to use the root exudates as a sole carbon or energy source. Exposure to root exudates caused hyphal "curling" in Frankia cells, suggesting a chemotrophic response or surface property change. Exposure to root exudates altered Congo red dye binding, which indicated changes in the bacterial surface properties at the fatty acid level. Fourier transform infrared spectroscopy (FTIR) confirmed fatty acid changes and revealed further carbohydrate changes. Frankia cells preexposed to C. cunninghamiana root exudates for 6 days formed nodules on the host plant significantly earlier than control cells. These data support the hypothesis of early chemical signaling between actinorhizal host plants and Frankia in the rhizosphere.  相似文献   

18.
“Mallín” (plural mallines) is a particular kind of wetland occurring in Patagonian steppe and forests. In Northwest Patagonia, mallines are humid meadows with high net primary production. It was previously found that a mallín soil in the steppe devoid of actinorhizal plants had a higher Frankia nodulation capacity in Ochetophila trinervis (sin. Discaria trinervis) than other soils in the region. Under the hypothesis that mallín wetland meadows are reservoir of infective Frankia, we studied the Frankia nodulation capacity in O. trinervis of 12 mallín and their neighbouring steppe soils, by using plant bioassays. A qualitative plant bioassay showed that infective Frankia was present in most soils. The number of nodules per plant in seedlings inoculated with mallín soils was negatively correlated with soil water content while the opposite was true for plants inoculated with soils from neighbouring steppe. A quantitative bioassay was performed with eight representative soils, selected according to the number of nodules per plant produced in the qualitative assay and to the presence or not of different actinorhizal plants at the sites. Frankia nodulation units per cm3 of soil (NU) in mallín soils were higher than those in steppe. Water and organic matter content of soils were correlated with the higher nodulation capacity of mallines, which may account for the saprotrophic growth of Frankia in soils. The symbiosis was effective in plants inoculated with all soil samples. These results suggest that Northwestern Patagonian mallín wetland meadows are reservoirs of infective and effective Frankia propagules in O. trinervis.  相似文献   

19.
Summary Fifteen species from three genera of the Casuarinaceae were inoculated with suspensions ofFrankia prepared from single nodule-lobes collected from different species and genera within the Casuarinaceae. Host-endophyte specificity was expressed mainly at the generic level. There was marked cross-inoculation within Casuarina and little nodulation ofCasuarina species from Allocasuarina sources with the exception of 3 sources ofFrankia fromA. torulosa which showed a high tendency to nodulateCasuarina species. Few sources from Casuarina nodulated species of Allocasuarina and while cross-inoculation within Allocasuarina was frequent it was less marked than within Casuarina. SomeFrankia inocula had wider host ranges than others, nodulating outside the genus or series of origin. It was not possible to determine if these apparent wider ranges in host spectra reflected genotypic differences betweenFrankia or were associated with the presence of more than oneFrankia strain in some inocula.  相似文献   

20.
张爱梅  殷一然  孔维宝  朱学泰  孙坤 《生态学报》2021,41(20):8212-8221
根瘤是微生物侵染植物根部并与之形成的共生结构,这些微生物都可被称为植物内生菌。豆科植物根瘤中的内生菌常常又被称为根瘤菌,而侵染非豆科植物形成根瘤的主要是放线菌弗兰克氏菌,这些非豆科植物又被称为放线菌结瘤植物。西藏沙棘是一种典型的放线菌结瘤植物,由于其分布生境的特殊性,对其根瘤内生菌的研究具有重要的生态意义。对于西藏沙棘根瘤内生菌的研究,培养方法因难以模拟自然条件而不易获得纯培养,高通量测序技术对其多样性的研究提供了便利。因此,本研究以生长在甘肃省天祝县金强河河滩地的西藏沙棘根瘤为材料,采用16S rRNA基因扩增子高通量测序方法,结合OTU分析,对西藏沙棘根瘤内生菌的多样性进行探讨。实验结果表明,西藏沙棘根瘤内生菌具有丰富的多样性,根瘤内的优势属为共生固氮的弗兰克氏菌属(Frankia),其相对丰度为47.63%,共检测到7个弗兰克氏菌属的OTUs;根瘤内除弗兰克氏菌外,还存在大量的非弗兰克氏菌,共检测到1523个OTUs,隶属于22个门、33个纲、69个目、113个科和202个属,相对丰度排名前9的属中有25个非弗兰克氏菌属的OTUs。该研究也表明,西藏沙棘根瘤内生菌具有丰富的多样性,西藏沙棘根瘤中不仅存在着可共生固氮的弗兰克氏菌,并且还分布着非弗兰克氏菌;在同一根瘤样品中,弗兰克氏菌属还具有不同的物种。本研究不仅拓展了西藏沙棘根瘤内生菌多样性的研究方法,还为同一寄主植物中弗兰克氏菌多样性的研究提供了分析思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号