首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Helix-helix interactions are important for the folding, stability, and function of membrane proteins. Here, two independent and complementary methods are used to investigate the nature and distribution of amino acids that mediate helix-helix interactions in membrane and soluble alpha-bundle proteins. The first method characterizes the packing density of individual amino acids in helical proteins based on the van der Waals surface area occluded by surrounding atoms. We have recently used this method to show that transmembrane helices pack more tightly, on average, than helices in soluble proteins. These studies are extended here to characterize the packing of interfacial and noninterfacial amino acids and the packing of amino acids in the interfaces of helices that have either right- or left-handed crossing angles, and either parallel or antiparallel orientations. We show that the most abundant tightly packed interfacial residues in membrane proteins are Gly, Ala, and Ser, and that helices with left-handed crossing angles are more tightly packed on average than helices with right-handed crossing angles. The second method used to characterize helix-helix interactions involves the use of helix contact plots. We find that helices in membrane proteins exhibit a broader distribution of interhelical contacts than helices in soluble proteins. Both helical membrane and soluble proteins make use of a general motif for helix interactions that relies mainly on four residues (Leu, Ala, Ile, Val) to mediate helix interactions in a fashion characteristic of left-handed helical coiled coils. However, a second motif for mediating helix interactions is revealed by the high occurrence and high average packing values of small and polar residues (Ala, Gly, Ser, Thr) in the helix interfaces of membrane proteins. Finally, we show that there is a strong linear correlation between the occurrence of residues in helix-helix interfaces and their packing values, and discuss these results with respect to membrane protein structure prediction and membrane protein stability.  相似文献   

2.
Left-handed polyproline II helices (PPII) are contiguous elements of protein secondary structure in which the phi and psi angles of constituent residues are restricted to around -75 degrees and 145 degrees, respectively. They are important in structural proteins, in unfolded states and as ligands for signaling proteins. Here, we present a survey of 274 nonhomologous polypeptide chains from proteins of known structure for regions that form these structures. Such regions are rare, but the majority of proteins contain at least one PPII helix. Most PPII helices are shorter than five residues, although the longest found contained 12 amino acids. Proline predominates in PPII, but Gln and positively charged residues are also favored. The basis of Gln's prevalence is its ability to form an i, i + 1 side-chain to main-chain hydrogen bond with the backbone carbonyl oxygen of the proceeding residue; this helps to fix the psi angle of the Gln and the phi and psi of the proceeding residue in PPII conformations and explains why Gln is favored at the first position in a PPII helix. PPII helices are highly solvent exposed, which explains why apolar amino acids are disfavored despite preferring this region of phi/psi space when in isolation. PPII helices have perfect threefold rotational symmetry and within these structures we find significant correlation between the hydrophobicity of residues at i and i + 3; thus, PPII helices in globular proteins can be considered to be amphipathic.  相似文献   

3.
Pal L  Basu G  Chakrabarti P 《Proteins》2002,48(3):571-579
An analysis of the shortest 3(10)-helices, containing three helical residues and two flanking capping residues that participate in two consecutive i + 3 --> i hydrogen bonds, shows that not all helices belong to the classic 3(10)-helix, where the three central residues adopt the right-handed helical conformation (alpha(R)). Three variants identified are: 3L10-helix with all residues in the left-handed helical region (alpha(L)), 3EL10-helix where the first residue is in the extended region followed by two residues in the alpha(L) conformation, and its mirror-image, the 3E'R10-helix. In the context of these helices, as well as the equivalent variants of alpha-helices, the length dependence of the handedness of secondary structures in protein structure is discussed. There are considerable differences in the amino acid preferences at different positions in the various types of 3(10)-helices. Each type of 3(10)-helix can be thought to be made up of an extension of a particular type of beta-turn (made up of residues i to i + 3) such that the (i + 3)th residue assumes the same conformation as the preceding residue. Distinct residue preferences at i and i + 3 positions seem to decide whether a particular stretch of four residues will be a beta-turn or a 3(10)-helix in the folded structure.  相似文献   

4.
Higher-order interactions are important for protein folding and assembly. We introduce the concept of interhelical three-body interactions as derived from Delaunay triangulation and alpha shapes of protein structures. In addition to glycophorin A, where triplets are strongly correlated with protein stability, we found that tight interhelical triplet interactions exist extensively in other membrane proteins, where many types of triplets occur far more frequently than in soluble proteins. We developed a probabilistic model for estimating the value of membrane helical interaction triplet (MHIT) propensity. Because the number of known structures of membrane proteins is limited, we developed a bootstrap method for determining the 95% confidence intervals of estimated MHIT values. We identified triplets that have high propensity for interhelical interactions and are unique to membrane proteins, e.g. AGF, AGG, GLL, GFF and others. A significant fraction (32%) of triplet types contains triplets that may be involved in interhelical hydrogen bond interactions, suggesting the prevalent and important roles of H-bond in the assembly of TM helices. There are several well-defined spatial conformations for triplet interactions on helices with similar parallel or antiparallel orientations and with similar right-handed or left-handed crossing angles. Often, they contain small residues and correspond to the regions of the closest contact between helices. Sequence motifs such as GG4 and AG4 can be part of the three-body interactions that have similar conformations, which in turn can be part of a higher-order cooperative four residue spatial motif observed in helical pairs from different proteins. In many cases, spatial motifs such as serine zipper and polar clamp are part of triplet interactions. On the basis of the analysis of the archaeal rhodopsin family of proteins, tightly packed triplet interactions can be achieved with several different choices of amino acid residues.  相似文献   

5.

Background  

Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids.  相似文献   

6.
Handedness in plant growth may be most familiar to us when we think of tendrils or twining plants, which generally form consistent right- or left-handed helices as they climb. The petals of several species are sometimes arranged like fan blades that twist in the same direction. Another less conspicuous example is 'circumnutation', the oscillating growth of axial organs, which alternates between a clockwise and an anti-clockwise direction. To unravel molecular components and cellular determinants of handedness, we screened Arabidopsis thaliana seedlings for helical growth mutants with fixed handedness. Recessive spiral1 and spiral2 mutants show right-handed helical growth in roots, hypocotyls, petioles and petals; semi-dominant lefty1 and lefty2 mutants show opposite left-handed growth in these organs. lefty mutations are epistatic to spiral mutations. Arabidopsis helical growth mutants with fixed handedness may be impaired in certain aspects of cortical microtubule functions, and characterization of the mutated genes should lead us to a better understanding of how microtubules function in left-right handedness in plants.  相似文献   

7.
Beta-turns are sites at which proteins change their overall chain direction, and they occur with high frequency in globular proteins. The Protein Data Bank has many instances of conformations that resemble beta-turns but lack the characteristic N-H(i) --> O=C(i - 3) hydrogen bond of an authentic beta-turn. Here, we identify potential hydrogen-bonded beta-turns in the coil library, a Web-accessible database utility comprised of all residues not in repetitive secondary structure, neither alpha-helix nor beta-sheet (http://www.roselab.jhu.edu/coil). In particular, candidate turns were identified as four-residue segments satisfying highly relaxed geometric criteria but lacking a strictly defined hydrogen bond. Such candidates were then subjected to a minimization protocol to determine whether slight changes in torsion angles are sufficient to shift the conformation into reference-quality geometry without deviating significantly from the original structure. This approach of applying constrained minimization to known structures reveals a substantial population of previously unidentified, stringently defined, hydrogen-bonded beta-turns. In particular, 33% of coil library residues were classified as beta-turns prior to minimization. After minimization, 45% of such residues could be classified as beta-turns, with another 8% in 3(10) helixes (which closely resemble type III beta-turns). Of the remaining coil library residues, 37% have backbone dihedral angles in left-handed polyproline II structure.  相似文献   

8.
Hicks JM  Hsu VL 《Proteins》2004,55(2):330-338
The poly-proline type II extended left-handed helical structure is well represented in proteins. In an effort to determine the helix's role in nucleic acid recognition and binding, a survey of 258 nucleic acid-binding protein structures from the Protein Data Bank was conducted. Results indicate that left-handed helices are commonly found at the nucleic acid interfacial regions. Three examples are used to illustrate the utility of this structural element as a recognition motif. The third K homology domain of NOVA-2, the Epstein-Barr nuclear antigen-1, and the Drosophila paired protein homeodomain all contain left-handed helices involved in nucleic acid interactions. In each structure, these helices were previously unidentified as left-handed helices by secondary structure algorithms but, rather, were identified as either having small amounts of hydrogen bond patterns to the rest of the protein or as being "unstructured." Proposed mechanisms for nucleic acid interactions by the extended left-handed helix include both nonspecific and specific recognition. The observed interactions indicate that this secondary structure utilizes an increase in protein backbone exposure for nucleic acid recognition. Both main-chain and side-chain atoms are involved in specific and nonspecific hydrogen bonding to nucleobases or sugar-phosphates, respectively. Our results emphasize the need to classify the left-handed helix as a viable nucleic acid recognition and binding motif, similar to previously identified motifs such as the helix-turn-helix, zinc fingers, leucine zippers, and others.  相似文献   

9.
We report a comprehensive analysis of the numbers, lengths and amino acid compositions of transmembrane helices in 235 high-resolution structures of integral membrane proteins. The properties of 1551 transmembrane helices in the structures were compared with those obtained by analysis of the same amino acid sequences using topology prediction tools. Explanations for the 81 (5.2%) missing or additional transmembrane helices in the prediction results were identified. Main reasons for missing transmembrane helices were mis-identification of N-terminal signal peptides, breaks in α-helix conformation or charged residues in the middle of transmembrane helices and transmembrane helices with unusual amino acid composition. The main reason for additional transmembrane helices was mis-identification of amphipathic helices, extramembrane helices or hairpin re-entrant loops. Transmembrane helix length had an overall median of 24 residues and an average of 24.9 ± 7.0 residues and the most common length was 23 residues. The overall content of residues in transmembrane helices as a percentage of the full proteins had a median of 56.8% and an average of 55.7 ± 16.0%. Amino acid composition was analysed for the full proteins, transmembrane helices and extramembrane regions. Individual proteins or types of proteins with transmembrane helices containing extremes in contents of individual amino acids or combinations of amino acids with similar physicochemical properties were identified and linked to structure and/or function. In addition to overall median and average values, all results were analysed for proteins originating from different types of organism (prokaryotic, eukaryotic, viral) and for subgroups of receptors, channels, transporters and others.  相似文献   

10.
Sistla RK  K V B  Vishveshwara S 《Proteins》2005,59(3):616-626
We present a novel method for the identification of structural domains and domain interface residues in proteins by graph spectral method. This method converts the three-dimensional structure of the protein into a graph by using atomic coordinates from the PDB file. Domain definitions are obtained by constructing either a protein backbone graph or a protein side-chain graph. The graph is constructed based on the interactions between amino acid residues in the three-dimensional structure of the proteins. The spectral parameters of such a graph contain information regarding the domains and subdomains in the protein structure. This is based on the fact that the interactions among amino acids are higher within a domain than across domains. This is evident in the spectra of the protein backbone and the side-chain graphs, thus differentiating the structural domains from one another. Further, residues that occur at the interface of two domains can also be easily identified from the spectra. This method is simple, elegant, and robust. Moreover, a single numeric computation yields both the domain definitions and the interface residues.  相似文献   

11.
Adjacent N11L and L12N mutations in the antiparallel beta-ribbon of Arc repressor result in dramatic changes in local structure in which each beta-strand is replaced by a right-handed helix. The full solution structure of this "switch" Arc mutant shows that irregular 3(10) helices compose the new secondary structure. This structural metamorphosis conserves the number of main-chain and side-chain to main-chain hydrogen bonds and the number of fully buried core residues. Apart from a slight widening of the interhelical angle between alpha-helices A and B and changes in side-chain conformation of a few core residues in Arc, no large-scale structural adjustments in the remainder of the protein are necessary to accommodate the ribbon-to-helix change. Nevertheless, some changes in hydrogen-exchange rates are observed, even in regions that have very similar structures in the two proteins. The surface of switch Arc is packed poorly compared to wild-type, leading to approximately 1000A(2) of additional solvent-accessible surface area, and the N termini of the 3(10) helices make unfavorable head-to-head electrostatic interactions. These structural features account for the positive m value and salt dependence of the ribbon-to-helix transition in Arc-N11L, a variant that can adopt either the mutant or wild-type structures. The tertiary fold is capped in different ways in switch and wild-type Arc, showing how stepwise evolutionary transformations can arise through small changes in amino acid sequence.  相似文献   

12.
Stabilization of secondary structure elements by specific combinations of hydrophobic and hydrophilic amino acids has been studied by the way of analysis of pentapeptide fragments from twelve partial bacterial proteomes. PDB files describing structures of proteins from species with extremely high and low genomic GC-content, as well as with average G + C were included in the study. Amino acid residues in 78,009 pentapeptides from alpha helices, beta strands and coil regions were classified into hydrophobic and hydrophilic ones. The common propensity scale for 32 possible combinations of hydrophobic and hydrophilic amino acid residues in pentapeptide has been created: specific pentapeptides for helix, sheet and coil were described. The usage of pentapeptides preferably forming alpha helices is decreasing in alpha helices of partial bacterial proteomes with the increase of the average genomic GC-content in first and second codon positions. The usage of pentapeptides preferably forming beta strands is increasing in coil regions and in helices of partial bacterial proteomes with the growth of the average genomic GC-content in first and second codon positions. Due to these circumstances the probability of coil-sheet and helix-sheet transitions should be increased in proteins encoded by GC-rich genes making them prone to form amyloid in certain conditions. Possible causes of the described fact that importance of alpha helix and coil stabilization by specific combinations of hydrophobic and hydrophilic amino acids is growing with the decrease of genomic GC-content have been discussed.  相似文献   

13.
Maquettes are de novo designed mimicries of nature used to test the construction and engineering criteria of oxidoreductases. One type of scaffold used in maquette construction is a four-alpha-helical bundle. The sequence of the four-alpha-helix bundle maquettes follows a heptad repeat pattern typical of left-handed coiled-coils. Initial designs were molten globular due partly to the minimalist approach taken by the designers. Subsequent iterative redesign generated several structured scaffolds with similar heme binding properties. Variant [I(6)F(13)](2), a structured scaffold, was partially resolved with NMR spectroscopy and found to have a set of mobile inter-helical packing interfaces. Here, the X-ray structure of a similar peptide ([I(6)F(13)M(31)](2) i.e. ([CGGG EIWKL HEEFLKK FEELLKL HEERLKKM](2))(2) which we call L31M), has been solved using MAD phasing and refined to 2.8A resolution. The structure shows that the maquette scaffold is an anti-parallel four-helix bundle with "up-up-down-down" topology. No pre-formed heme-binding pocket exists in the protein scaffold. We report unexpected inter-helical crossing angles, residue positions and translations between the helices. The crossing angles between the parallel helices are -5 degrees rather than the expected +20 degrees for typical left-handed coiled-coils. Deviation of the scaffold from the design is likely due to the distribution and size of hydrophobic residues. The structure of L31M points out that four identical helices may interact differently in a bundle and heptad repeats with an alternating [HPPHHPP]/[HPPHHPH] (H: hydrophobic, P: polar) pattern are not a sufficient design criterion to generate left-hand coiled-coils.  相似文献   

14.
S Kumar  M Bansal 《Biophysical journal》1996,71(3):1574-1586
Elucidation of the detailed structural features and sequence requirements for alpha helices of various lengths could be very important in understanding secondary structure formation in proteins and, hence, in the protein folding mechanism. An algorithm to characterize the geometry of an alpha helix from its C(alpha) coordinates has been developed and used to analyze the structures of long alpha helices (number of residues > or = 25) found in globular proteins, the crystal structure coordinates of which are available from the Brookhaven Protein Data Bank. All long alpha helices can be unambiguously characterized as belonging to one of three classes: linear, curved, or kinked, with a majority being curved. Analysis of the sequences of these helices reveals that the long alpha helices have unique sequence characteristics that distinguish them from the short alpha helices in globular proteins. The distribution and statistical propensities of individual amino acids to occur in long alpha helices are different from those found in short alpha helices, with amino acids having longer side chains and/or having a greater number of functional groups occurring more frequently in these helices. The sequences of the long alpha helices can be correlated with their gross structural features, i.e., whether they are curved, linear, or kinked, and in case of the curved helices, with their curvature.  相似文献   

15.
Mottamal M  Zhang J  Lazaridis T 《Proteins》2006,62(4):996-1009
Using an implicit membrane model (IMM1), we examine whether the structure of the transmembrane domain of Glycophorin A (GpA) could be predicted based on energetic considerations alone. The energetics of native GpA shows that van der Waals interactions make the largest contribution to stability. Although specific electrostatic interactions are stabilizing, the overall electrostatic contribution is close to zero. The GXXXG motif contributes significantly to stability, but residues outside this motif contribute almost twice as much. To generate non-native states a global conformational search was done on two segments of GpA: an 18-residue peptide (GpA74-91) that is embedded in the membrane and a 29-residue peptide (GpA70-98) that has additional polar residues flanking the transmembrane region. Simulated annealing was done on a large number of conformations generated from parallel, antiparallel, left- and right-handed starting structures by rotating each helix at 20 degrees intervals around its helical axis. Several crossing points along the helix dimer were considered. For 18-residue parallel topology, an ensemble of native-like structures was found at the lowest effective energy region; the effective energy is lowest for a right-handed structure with an RMSD of 1.0 A from the solid-state NMR structure with correct orientation of the helices. For the 29-residue peptide, the effective energies of several left-handed structures were lower than that of the native, right-handed structure. This could be due to deficiencies in modeling the interactions between charged sidechains and/or omission of the sidechain entropy contribution to the free energy. For 18-residue antiparallel topology, both IMM1 and a Generalized Born model give effective energies that are lower than that of the native structure. In contrast, the Poisson-Boltzmann solvation model gives lower effective energy for the parallel topology, largely because the electrostatic solvation energy is more favorable for the parallel structure. IMM1 seems to underestimate the solvation free energy advantage when the CO and NH dipoles just outside the membrane are parallel. This highlights the importance of electrostatic interactions even when these are not obvious by looking at the structures.  相似文献   

16.
Members of the spectrin superfamily of proteins contain different numbers of homologous repeats arranged in tandem. Each of these consists of a three-alpha-helix motif, comprising two similarly and one oppositely directed alpha-helical segment joined by nonhelical linkers of characteristic length. The right-handed alpha-helices each display a heptad repeat in their amino acid sequences indicative of left-handed coiled-coil-like packing. We have calculated the potential number of inter-helix ionic interactions that specify the spatial arrangement of the helices in the motif in terms of both the handedness of helix connectivity (left or right) and the relative axial stagger between the three alpha-helices. All of the models examined were constrained to have optimal coiled-coil packing. For alpha-spectrin and alpha-actinin the results provide strong support for a left-handed connectivity of the three helices and axial repeat lengths of 5.05 and 6.24 nm, respectively. Furthermore, the axial staggers between homologous segments in the preferred models are identical. The insights provided into the topography of this widespread tertiary fold may prove of value to those concerned with the problem of de novo protein design.  相似文献   

17.
Regions of left-handed polyproline II type conformation in globular proteins were studied throughout the PDB bank. The length and sequence of corresponding fragments were analyzed. It was found that a lot of tetrapeptides (from combinatorial possible ones) show the tendency to be included in the left-handed helices. Much more tetrapeptides do not occur in this structure type.  相似文献   

18.
Wang J  Feng JA 《Protein engineering》2003,16(11):799-807
This paper reports an extensive sequence analysis of the alpha-helices of proteins. alpha-Helices were extracted from the Protein Data Bank (PDB) and were divided into groups according to their sizes. It was found that some amino acids had differential propensity values for adopting helical conformation in short, medium and long alpha-helices. Pro and Trp had a significantly higher propensity for helical conformation in short helices than in medium and long helices. Trp was the strongest helix conformer in short helices. Sequence patterns favoring helical conformation were derived from a neighbor-dependent sequence analysis of proteins, which calculated the effect of neighboring amino acid type on the propensity of residues for adopting a particular secondary structure in proteins. This method produced an enhanced statistical significance scale that allowed us to explore the positional preference of amino acids for alpha-helical conformations. It was shown that the amino acid pair preference for alpha-helix had a unique pattern and this pattern was not always predictable by assuming proportional contributions from the individual propensity values of the amino acids. Our analysis also yielded a series of amino acid dyads that showed preference for alpha-helix conformation. The data presented in this study, along with our previous study on loop sequences of proteins, should prove useful for developing potential 'codes' for recognizing sequence patterns that are favorable for specific secondary structural elements in proteins.  相似文献   

19.
The possible existence of one-sided dominance in the face, similar to the phenomena of handedness and footedness, has been investigated by studying smiling pattern, movements of the angles of mouth, winking, platysma contraction, raising and everting the upper lip with dilatation of the nostril, and vertical wrinkling of the forehead, on 300 right-handed and 30 left-handed persons. The conclusions are as follows: 1. The large majority of persons investigated do not use the two sides of face equally. 2. Facial ambilaterality is a rare feature. 3. There is no clear-cut correlation between handedness and the dominant side of the face. 4. The greater percentage (58.66%) of right-handed persons show a left-sided smile and find it more convenient to perform almost all exercises with the left side of the face. A still greater percentage (73.33%) of left-handed persons shows a right-sided smile and a better performance of all exercises with the right side of the face. The contralateral relationship of handedness to the dominant side of the face is significant in the right-handed and more so, in the left-handed persons.  相似文献   

20.
Incorporation of alpha,beta-dehydrophenylalanine (DeltaPhe) residue in peptides induces folded conformations: beta-turns in short peptides and 3(10)-helices in larger ones. A few exceptions-namely, alpha-helix or flat beta-bend ribbon structures-have also been reported in a few cases. The most favorable conformation of DeltaPhe residues are (phi,psi) approximately (-60 degrees, -30 degrees ), (-60 degrees, 150 degrees ), (80 degrees, 0 degrees ) or their enantiomers. DeltaPhe is an achiral and planar residue. These features have been exploited in designing DeltaPhe zippers and helix-turn-helix motifs. DeltaPhe can be incorporated in both right and left-handed helices. In fact, consecutive occurrence of three or more DeltaPhe amino acids induce left-handed screw sense in peptides containing L-amino acids. Weak interactions involving the DeltaPhe residue play an important role in molecular association. The C--H.O==C hydrogen bond between the DeltaPhe side-chain and backbone carboxyl moiety, pi-pi stacking interactions between DeltaPhe side chains belonging to enantiomeric helices have shown to stabilize folding. The unusual capability of a DeltaPhe ring to form the hub of multicentered interactions namely, a donor in aromatic C--H.pi and C--H.O==C and an acceptor in a CH(3).pi interaction suggests its exploitation in introducing long-range interactions in the folding of supersecondary structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号