首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu XG  Zhao JJ  Wu QY 《FEBS letters》2005,579(21):4571-4576
Inactivation of the chlN gene in Synechocystis sp. PCC 6803 resulted in no chlorophyll and photosystems when the mutant was grown in darkness, providing an in vivo system to study the structure and function of phycobilisomes (PBSs). The effects of hydrogen peroxide (H2O2) and metal ions on the mutant PBSs in vivo were investigated by low temperature fluorescence emission measurement. H2O2 induced an obvious disassembly of the cores of PBSs and interruption of energy transfer from allophycocyanin to the terminal emitter. Among many metal ions only silver induced disassembly of the cores of PBSs. Our results demonstrated for the first time that the cores of PBSs act as targets in vivo for oxidative stress or silver induced damage.  相似文献   

2.
Mao HB  Li GF  Li DH  Wu QY  Gong YD  Zhang XF  Zhao NM 《FEBS letters》2003,553(1-2):68-72
The effects of glycerol and high temperatures on structure and function of phycobilisomes (PBSs) in vivo were investigated in a chlL deletion mutant of the cyanobacterium Synechocystis sp. PCC 6803. When the mutant was grown under light-activated heterotrophic growth conditions, it contained intact and functional PBSs, but essentially no chlorophyll and photosystems. So the structural and functional changes of the mutant PBSs in vivo can be handily detected by measurement of low temperature (77 K) fluorescence emission spectra. High concentration glycerol induced an obvious disassembly of PBSs and the dissociation of phycocyanins in the rod substructures into their oligomers and monomers. PBSs also disassembled at high temperatures and allophycocyanins were more sensitive to heat stress than phycocyanins. Our results demonstrate that the chlL(-) mutant strain is an advantageous model for studying the mechanisms of assembly and disassembly of protein complexes in vivo.  相似文献   

3.
Phycobilisome (PBS) is a giant photosynthetic antenna associated with the thylakoid membranes of cyanobacteria and red algae. PBS consists of two domains: central core and peripheral rods assembled of disc-shaped phycobiliprotein aggregates and linker polypeptides. The study of the PBS architecture is hindered due to the lack of the data on the structure of the large ApcE-linker also called LCM. ApcE participates in the PBS core stabilization, PBS anchoring to the photosynthetic membrane, transfer of the light energy to chlorophyll, and, very probably, the interaction with the orange carotenoid protein (OCP) during the non-photochemical PBS quenching. We have constructed the cyanobacterium Synechocystis sp. PCC 6803 mutant lacking 235 N-terminal amino acids of the chromophorylated PBLCM domain of ApcE. The altered fluorescence characteristics of the mutant PBSs indicate that the energy transfer to the terminal emitters within the mutant PBS is largely disturbed. The PBSs of the mutant become unable to attach to the thylakoid membrane, which correlates with the identified absence of the energy transfer from the PBSs to the photosystem II. At the same time, the energy transfer from the PBS to the photosystem I was registered in the mutant cells and seems to occur due to the small cylindrical CpcG2-PBSs formation in addition to the conventional PBSs. In contrast to the wild type Synechocystis, the OCP-mediated non-photochemical PBS quenching was not registered in the mutant cells. Thus, the PBLCM domain takes part in formation of the OCP binding site in the PBS.  相似文献   

4.
In the large linker ArcE polypeptide of the phycobilisome (PBS) from the cyanobacterium Synechocystis sp. PCC 6803, the chromophore-containing 26-kDa domain was deleted with consequent disturbance of the main PBS functions. Phycobilisomes in mutant cells staying in contact with photosystem I cannot transfer energy to the photosystem II. Under the bright light conditions, the interaction of PBSs with the photoprotective orange carotenoid protein in the mutant was lost and the implementation of transition states 1 and 2 of the pigment apparatus was significantly reduced.  相似文献   

5.
The cyanobacterial phycobilisome (PBS) is a giant pigment-protein complex which harvests light energy for photosynthesis and comprises two structures: a core and peripheral rods. Most studies on PBS structure and function are based on mutants of unicellular strains. In this report, we describe the phenotypic and genetic characterization of a transposon mutant of the filamentous Anabaena sp. strain PCC 7120, denoted LC1, which cannot synthesize the phycobiliprotein phycocyanin (PC), the main component of the rods; in this mutant, the transposon had inserted into the cpcB gene (orf alr0528) which putatively encodes PC-β chain. Mutant LC1 was able to synthesize phycoerythrocyanin (PEC), a phycobiliprotein (PBP) located at the terminal region of the rods; but in the absence of PC, PEC did not attach to the PBSs that only retained the allophycocyanin (APC) core; ferredoxin: NADP+-oxidoreductase (FNR) that is associated with the PBS in the wild type, was not found in isolated PBSs from LC1. The performance of the mutant exposed to different environmental conditions was evaluated. The mutant phenotype was successfully complemented by cloning and transfer of the wild type complete cpc operon to mutant LC1. Interestingly, LC1 compensated its mutation by significantly increasing the number of its core-PBS and the effective quantum yield of photosystem II (PSII) photochemistry; this feature suggests a more efficient energy conversion in the mutant which may be useful for biotechnological applications.  相似文献   

6.
Functions of phycobiliprotein (PBP) linkers are less well studied than other PBP polypeptides that are structural components or required for the synthesis of the light-harvesting phycobilisome (PBS) complexes. Linkers serve both structural and functional roles in PBSs. Here, we report the isolation of a phycoerythrin (PE) rod-linker mutant and a novel PE-deficient mutant in Fremyella diplosiphon. We describe their phenotypic characterization, including light-dependent photosynthetic pigment accumulation and photoregulation of cellular morphology. PE-linker protein CpeE and a novel protein impact PE accumulation, and thus PBS function, primarily under green light conditions.  相似文献   

7.
We examined energy transfer dynamics in phycobilisomes (PBSs) of cyanobacteria in relation to the morphology and pigment compositions of PBSs. We used Gloeobacter violaceus PCC 7421 and measured time-resolved fluorescence spectra in three types of samples, i.e., intact cells, PBSs, and rod assemblies separated from cores. Fremyella diplosiphon, a cyanobacterial species well known for its complementary chromatic adaptation, was used for comparison after growing under red or green light. Spectral data were analyzed by the fluorescence decay-associated spectra with components common in lifetimes with a time resolution of 3 ps/channel and a spectral resolution of 2 nm/channel. This ensured a higher resolution of the energy transfer kinetics than those obtained by global analysis with fewer sampling intervals. We resolved four spectral components in phycoerythrin (PE), three in phycocyanin (PC), two in allophycocyanin, and two in photosystem II. The bundle-like PBSs of G. violaceus showed multiple energy transfer pathways; fast (≈ 10 ps) and slow (≈ 100 ps and ≈ 500 ps) pathways were found in rods consisting of PE and PC. Energy transfer time from PE to PC was two times slower in G. violaceus than in F. diplosiphon grown under green light.  相似文献   

8.
The Escherichia coli dnaW mutation is an allele of the adk gene   总被引:3,自引:0,他引:3  
Summary A dnaW mutant, isolated on the basis of inability to effect conjugal DNA transfer at high temperature, has been shown by complementation and enzyme assay to be defective in the adk (adenylate kinase; EC 2.7.4.3) locus. The adk mutant, known to have reduced ATP concentration at the nonpermissive temperature (Cousin and Belaich 1966), was used to demonstrate a donor energy requirement for stable aggregate formation and for chromosome transfer in conjugation.  相似文献   

9.
Temperature-induced decoupling of phycobilisomes from reaction centers   总被引:4,自引:0,他引:4  
Temperature-induced decoupling of phycobilisomes (PBSs) from the reaction centers in the PBS-thylakoid membrane complexes was observed at 0 degrees C. The fluorescence yields of photosystem (PS) I and PSII decreased and that of PBSs increased with selective excitation of PBSs at 0 degrees C, while the yield of PBSs decreased and those of the two photosystems increased with selective excitation of chlorophyll a at room temperature (RT). It indicated that the decoupling of PBSs from the two photosystems led to changes of energy transfer efficiencies, which can be explained by partial detachment of PBSs from thylakoid membrane. The temperature-dependent processes were reversible, i.e. with temperature going up to RT, the complexes could restore to the functionally coupled state with a time constant about 30 s. Based on these results, it could be deduced that PBSs should be in parallel connection with the two photosystems.  相似文献   

10.
Phycobilisomes (PBSs) are supramolecular pigment–protein complexes that serve as light-harvesting antennae in cyanobacteria. They are built up by phycobiliproteins assembled into allophycocyanin core cylinders (ensuring the physical interaction with the photosystems) and phycocyanin rods (protruding from the cores and having light-harvesting function), the whole PBSs structure being maintained by linker proteins. PBSs play major role in light-harvesting optimization in cyanobacteria; therefore, the characterization of their structural integrity in intact cells is of great importance. The present study utilizes differential scanning calorimetry and spectroscopy techniques to explore for the first time, the thermodynamic stability of PBSs in intact Synechocystis sp. PCC 6803 cells and to probe its alteration as a result of mutations or under different growth conditions. As a first step, we characterize the thermodynamic behavior of intact and dismantled PBSs isolated from wild-type cells (having fully assembled PBSs) and from CK mutant cells (that lack phycocyanin rods and contain only allophycocyanin cores), and identified the thermal transitions of phycocyanin and allophycocyanin units in vitro. Next, we demonstrate that in intact cells PBSs exhibit sharp, high amplitude thermal transition at about 63 °C that strongly depends on the structural integrity of the PBSs supercomplex. Our findings implicate that calorimetry could offer a valuable approach for the assessment of the influence of variety of factors affecting the stability and structural organization of phycobilisomes in intact cyanobacterial cells.  相似文献   

11.
《BBA》2021,1862(12):148494
Quenching of excess excitation energy is necessary for the photoprotection of light-harvesting complexes. In cyanobacteria, quenching of phycobilisome (PBS) excitation energy is induced by the Orange Carotenoid Protein (OCP), which becomes photoactivated under high light conditions. A decrease in energy transfer efficiency from the PBSs to the reaction centers decreases photosystem II (PS II) activity. However, quantitative analysis of OCP-induced photoprotection in vivo is complicated by similar effects of both photochemical and non-photochemical quenching on the quantum yield of the PBS fluorescence overlapping with the emission of chlorophyll. In the present study, we have analyzed chlorophyll a fluorescence induction to estimate the effective cross-section of PS II and compared the effects of reversible OCP-dependent quenching of PBS fluorescence with reduction of PBS content upon nitrogen starvation or mutations of key PBS components. This approach allowed us to estimate the dependency of the rate constant of PS II primary electron acceptor reduction on the amount of PBSs in the cell. We found that OCP-dependent quenching triggered by blue light affects approximately half of PBSs coupled to PS II, indicating that under normal conditions, the concentration of OCP is not sufficient for quenching of all PBSs coupled to PS II.  相似文献   

12.
13.
Li  Ye  Zhang  Jianping  Zhao  Jingquan  Jiang  Lijing 《Photosynthetica》2001,39(2):227-232
Regulation mechanism of excitation energy transfer between phycobilisomes (PBS) and the photosynthetic reaction centres was studied by the state transition techniques in PBS-thylakoid membrane complexes. DCMU, betaine, and N-ethylmaleimide were applied to search for the details of energy transfer properties based on the steady fluorescence measurement and individual deconvolution spectra at state 2 or state 1. The closure of photosystem (PS) 2 did not influence on fluorescence yields of PS1, i.e., energy could not spill to PS1 from PS2. When the energy transfer pathway from PBS to PS1 was disturbed, the relative fluorescence yield of PS2 was almost the same as that of PS2 in complexes without treatment. If PBSs were fixed by betaine, the state transition process was restrained. Hence PBS may detach from PS2 and become associated to PS1 at state 2. Our results contradict the proposed "spill-over" or "PBS detachment" models and support the mobile "PBS model".  相似文献   

14.
We examined energy transfer dynamics in phycobilisomes (PBSs) of cyanobacteria in relation to the morphology and pigment compositions of PBSs. We used Gloeobacter violaceus PCC 7421 and measured time-resolved fluorescence spectra in three types of samples, i.e., intact cells, PBSs, and rod assemblies separated from cores. Fremyella diplosiphon, a cyanobacterial species well known for its complementary chromatic adaptation, was used for comparison after growing under red or green light. Spectral data were analyzed by the fluorescence decay-associated spectra with components common in lifetimes with a time resolution of 3 ps/channel and a spectral resolution of 2 nm/channel. This ensured a higher resolution of the energy transfer kinetics than those obtained by global analysis with fewer sampling intervals. We resolved four spectral components in phycoerythrin (PE), three in phycocyanin (PC), two in allophycocyanin, and two in photosystem II. The bundle-like PBSs of G. violaceus showed multiple energy transfer pathways; fast ( approximately 10 ps) and slow ( approximately 100 ps and approximately 500 ps) pathways were found in rods consisting of PE and PC. Energy transfer time from PE to PC was two times slower in G. violaceus than in F. diplosiphon grown under green light.  相似文献   

15.
Summary A mutant ofZymomonas mobilis deficient in the utilization of fructose for growth and ethanol formation was shown to lack fructokinase activity. When grown in media which contained glucose+fructose or sucrose, both the mutant and wild type produced sorbitol in amounts up to 60 g·l-1, depending on the initial concentrations of sugars. Sorbitol formation was accompanied by an accumulation of acetaldehyde, gluconate, and acetoin. A ferricyanide-dependent sorbitol dehydrogenase could be localized in the cell membrane; it thus resembles the sorbitol dehydrogenase ofGluconobacter suboxydans. Neither a NAD(P)H dependent reduction of fructose nor a NAD(P) dependent dehydrogenation of sorbitol could be detected in cell-free extracts. The use of fructose-negative mutants ofZ. mobilis for the enrichment of fructose in glucose+fructose mixtures is discussed.  相似文献   

16.
《BBA》2023,1864(4):148993
Phycobilisomes (PBSs), which are huge pigment-protein complexes displaying distinctive color variations, bind to photosystem cores for excitation-energy transfer. It is known that isolation of supercomplexes consisting of PBSs and photosystem I (PSI) or PBSs and photosystem II is challenging due to weak interactions between PBSs and the photosystem cores. In this study, we succeeded in purifying PSI-monomer-PBS and PSI-dimer-PBS supercomplexes from the cyanobacterium Anabaena sp. PCC 7120 grown under iron-deficient conditions by anion-exchange chromatography, followed by trehalose density gradient centrifugation. The absorption spectra of the two types of supercomplexes showed apparent bands originating from PBSs, and their fluorescence-emission spectra exhibited characteristic peaks of PBSs. Two-dimensional blue-native (BN)/SDS-PAGE of the two samples showed a band of CpcL, which is a linker protein of PBS, in addition to PsaA/B. Since interactions of PBSs with PSI are easily dissociated during BN-PAGE using thylakoids from this cyanobacterium grown under iron-replete conditions, it is suggested that iron deficiency for Anabaena induces tight association of CpcL with PSI, resulting in the formation of PSI-monomer-PBS and PSI-dimer-PBS supercomplexes. Based on these findings, we discuss interactions of PBSs with PSI in Anabaena.  相似文献   

17.
Absorption and low temperature fluorescence emission spectra were measured on chloroplast thylakoids and on purified reaction center chlorophyll a-protein complexes of photosystem I, CP-a1. A clear association between the presence of ß-carotene and the occurrence of far red absorbing and emitting chlorophyll a components of the reaction center antennae of photosystem I was demonstrated. For this study chloroplasts and CP-a1 were obtained from normal and carotenoid deficient plant material of various sources. The experimental material included 1) lyophilized pea chloroplasts extracted with petroleum ether, 2) the carotenoid deficient mutant C-6E of Scenedesmus obliquus and 3) wheat chloroplasts derived from normal and SAN-9789 treated plants. Removal of carotenoids, most likely principally ß-carotene, caused a loss of long wavelength absorbing chlorophylls in chloroplasts and purified CP-a1, and the loss or diminution of the long wavelength peak seen in the low temperature fluorescence emission spectrum. This association between ß-carotene and special chlorophyll a forms may explain both the photoprotective and antenna functions ascribed to ß-carotene. In the absence of carotenoids in wheat and in the Scenedesmus mutant, the chlorophyll a antenna of photosystem I was extremely photosensitive. A triplet-triplet resonance energy transfer from chlorophyll a to ß-carotene and a singlet-singlet energy transfer from excited ß-carotene to chlorophyll would explain the photoprotective and antenna functions, respectively. The role of this association in determining some of the fluorescence properties of photosystem I is also discussed.  相似文献   

18.
The photochemical apparatus organization in Synechococcus 6301 (Cyanophyceae) was investigated under various experimental conditions. Wild type (WT) Synechococcus produced phycobilisomes (PBSs) containing normal levels of phycocyanin (Phc) and allophycocyanin (Aphc). The ratio of reaction centers(RC) RCII/RCI of 0.4 was the same in WT and the mutant strain AN112, whereas RCH/PBS was 1.9:1 in WT and 1:1 in AN112. Excitation of WT cells with broad-band 620 nm light, which is absorbed primarily by Phc and Aphc and to a much lesser extent by chlorophyll (Chl), sensitized the RC of photosystem (PS) II at about 15 times the rate it sensitized RCI. This implies that PBSs are associated exclusively with PSII complexes and that PBS excitation is not transferred to PSI. The AN112 mutant of Synechococcus produced smaller PBSs consisting of the Aphc-containing core and of only six Phc-containing hexamers, respectively. It lacked about 65% of the Phccontaining rod substractures. Under our experimental conditions, the effective absorption cross section of the mutant PBS was only about half that of the WT. In agreement, the rate of RCII excitation by 620 nm light was also about half of that measured in the WT. Thus, the rate of light absorption by PSII depends directly on PBS size and composition. The low rate of RCI excitation with 620 nm light was the same in WT and AN112 cells, apparently independent of the PBS effective absorption cross section. We propose a strict structural-functional association between PBS and PSII complex. PSI is a structurally distinct entity and it receives excitation independently from its own Chl light-harvesting antenna.Abbreviations PBS phycobilisome - Phc phycocyanin - Aphc allophycocyanin - PS photosystem - RC reaction center - P700 reaction center of PSI - Q primary electron acceptor of PSII - Chl chlorophyll - MV methyl viologen - Tris Tris(hydroxymethyl)-aminomethane - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

19.
Phycobilisomes (PBSs) are light-harvesting antennae that transfer energy to photosynthetic reaction centers in cyanobacteria and red algae. PBSs are supermolecular complexes composed of phycobiliproteins (PBPs) that bear chromophores for energy absorption and linker proteins. Although the structures of some individual components have been determined using crystallography, the three-dimensional structure of an entire PBS complex, which is critical for understanding the energy transfer mechanism, remains unknown. Here, we report the structures of an intact PBS and a PBS in complex with photosystem II (PSII) from Anabaena sp. strain PCC 7120 using single-particle electron microscopy in combination with biochemical and molecular analyses. In the PBS structure, all PBP trimers and the conserved linker protein domains were unambiguously located, and the global distribution of all chromophores was determined. We provide evidence that ApcE and ApcF are critical for the formation of a protrusion at the bottom of PBS, which plays an important role in mediating PBS interaction with PSII. Our results provide insights into the molecular architecture of an intact PBS at different assembly levels and provide the basis for understanding how the light energy absorbed by PBS is transferred to PSII.  相似文献   

20.
The Chl-protein complexes of three maize (Zea mays L.) mutants and one barley (Hordeum vulgare L.) mutant were analyzed using low temperature Chl fluorescence emissions spectroscopy and LDS-polyacrylamide gel electrophoresis. The maize mutants hcf-3, hcf-19, and hcf-114 all exhibited a high Chl fluorescence (hcf) phenotype indicating a disruption of the energy transfer within the photosynthetic apparatus. The mutations in each of these maize mutants affects Photosystem II. The barley mutant analyzed was the well characterized Chl b-less mutant chlorina-f2, which did not exhibit the hcf phenotype. Chlorina-f2 was used because no complete Chl b-less mutant of maize is available. Analysis of hcf-3, hcf-19, and hcf-114 revealed that in the absence of CP43, LHC II can still transfer excitation energy to CP47. These results suggest that in mutant membranes LHC II can interact with CP47 as well as CP43. This functional interaction of LHC II with CP47 may only occur in the absence of CP43, however, it is possible that LHC II is positioned in the thylakoid membranes in a manner which allows association with both CP43 and CP47.Abbreviations hcf high chlorophyll fluorescence - LDS lithium dodecyl sulfate - LHC II light-harvesting complex of Photosystem II - LHC I light-harvesting complex of Photosystem I - CPIa chlorophyll-protein complex consisting of LHC I and the PS I core complex - CPI chlorophyll-protein complex consisting of the PS I core complex - CP47 47 kDa chlorophyll-protein of the Photosystem II core - CP43 43 kDa chlorophyll-protein of the Photosystem II core - CP29 29 kDa chlorophyll-protein of Photosystem II - CP26 26 kDa chlorophyll-protein of Photosystem II - CP24 24 kDa chlorophyll-protein of Photosystem II - fp free pigments  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号