首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Donadeu FX  Ginther OJ 《Theriogenology》2003,60(8):1423-1434
The role of estradiol and inhibin in suppression of FSH and LH during the initiation of follicle deviation was examined in mares. In Experiment 1, the two largest follicles (F1, F2) were retained during a wave and the rest were ablated as they reached > or =10 mm. The largest follicle was left intact (control, n=12) or was ablated when it reached > or =20.0 mm (Day 0; expected beginning of deviation). The second largest follicle continued growing (n=9) or regressed (n=4) after F1 ablation. Circulating estradiol and total inhibin decreased after Day 0 in the F2-regressing group, whereas estradiol increased after Day 0.5 and inhibin was unaltered in the control and F2-growing groups. Circulating FSH decreased in the control group and increased in the F2-regressing group after Day 0. In the F2-growing group, FSH increased between Days 0 and 0.5 and then decreased. Circulating LH increased between Days 0 and 2 in the F2-regressing group and between Days 0 and 0.5 in the F2-growing group. In Experiment 2, 0 or 1 follicle was retained in a wave followed by administration of 0 or 1 mg of estradiol at the expected beginning of deviation (Hour 0; 2 x 2 factorial design, n=4-6/group). Circulating total inhibin was higher and FSH was lower at Hour 0 in the 1-follicle than in the 0-follicle groups. Follicle-stimulating hormone decreased after Hour 0 in the 1-mg but not in the 0-mg groups, and the decrease in the 0-follicle/1-mg group was not to the level of that in the 1-follicle/1-mg group. Circulating LH was not affected by follicle number but was reduced by estradiol. Results supported the hypotheses that F1 near the beginning of deviation produces inhibin and estradiol and that the increase in circulating estradiol at the beginning of deviation induces FSH suppression in combination with other follicle substances (presumably inhibin). Results also indicated that the increase in estradiol induces suppression of LH.  相似文献   

2.
Relationships between double ovulations and plasma hormone concentrations were compared between 18 single ovulating and 6 double ovulating mares. The study began when the first follicle reached >or=30 mm, and ultrasound scanning and blood sampling were done every 12h to Day 3 (ovulation=Day 0). Data were analyzed for 2.5 d after the largest follicle was >or=30 mm and after Day -2.5 to encompass the mean 5-d interval between a >or=30 mm follicle and Day 0. During the 2.5 d after >or=30 mm, the increasing diameter of the largest follicle was less pronounced and plasma FSH concentrations were lower (approached significance) in the double ovulators than in the single ovulators. By Day -2.5, the largest follicle was smaller (P<0.01) and plasma FSH was lower (P<0.04) in the double ovulators. Plasma estradiol concentrations were higher (P<0.001) during the 2.5 d after >or=30 mm in the double ovulators and the correlation between estradiol and FSH was negative (r=-0.39, P<0.0001). In double ovulators, compared to single ovulators, the largest follicle was smaller, FSH was lower and estradiol was higher on most occasions between Days -2.5 and -0.5 (P<0.05), but plasma concentrations of LH and ir-inhibin were not significantly different. In conclusion, smaller preovulatory follicles in double ovulators were a response to lower FSH concentrations, due to higher estradiol concentrations from two preovulatory follicles; preovulatory differences in hormone concentrations between single and double ovulators were an effect rather than a cause of the double ovulations.  相似文献   

3.
Donadeu FX  Ginther OJ 《Theriogenology》2004,61(7-8):1395-1405
The changes in circulating concentrations of FSH, LH, estradiol, and total inhibin associated with the beginning of follicle diameter deviation were compared among the last anovulatory follicular wave of the year and the first and second ovulatory waves in pony mares ( n=7 ). Follicle diameters and circulating hormone concentrations for each wave were normalized to the observed beginning of deviation (Day 0). Follicle deviation was demonstrated during the anovulatory wave as well as during the ovulatory waves, and the diameter of the future dominant follicle at the beginning of deviation was similar for the three waves (overall mean: 23.7+/-0.6 mm). Circulating estradiol concentrations did not increase during the last anovulatory wave but increased similarly for the two ovulatory waves, beginning near the onset of deviation. There were no differences among waves in concentrations of inhibin encompassing deviation. The FSH concentrations for the wave-stimulating FSH surge did not differ significantly among the three waves; combined for the three waves, concentrations decreased between Days -3 and 7. Circulating LH did not increase during the last anovulatory wave but increased during the first and second ovulatory waves beginning on Days 6 and -2, respectively. Results indicated that the increase in circulating estradiol at the beginning of deviation was not required for suppression of the wave-stimulating FSH surge and the initiation of deviation, based on an estradiol increase in association with deviation during the ovulatory waves but not during the anovulatory wave. Concentrations of inhibin were similar among waves and, therefore on a temporal basis, the similar suppression of FSH was attributable to inhibin. The later increase in LH before the first ovulation was not attributable to estradiol, based on the similarity between the two ovulatory waves in the increasing estradiol concentrations.  相似文献   

4.
The effect of altered LH concentrations on the deviation in growth rates between the 2 largest follicles was studied in pony mares. The progestational phase was shortened by administration of PGF2alpha on Day 10 (Day 0=ovulation; n=9) or lengthened by daily administration of 100 mg of progesterone on Days 10 to 30 (n=11; controls, n=10). All follicles > or = 5 mm were ablated on Day 10 in all groups to initiate a new follicular wave. The interovulatory interval was not altered by the PGF2alpha treatment despite a 4-day earlier decrease in progesterone concentrations. Time required for growth of the follicles of the new wave apparently delayed the interval to ovulation after luteolysis. The FSH concentrations of the first post-ablation FSH surge were not different among groups. A second FSH surge with an associated follicular wave began by Day 22 in 7 of 11 mares in the progesterone group and in 0 of 19 mares in the other groups, indicating reduced functional competence of the largest follicle. A prolonged elevation in LH concentrations began on the mean day of wave emergence (Day 11) in the prostaglandin group (19.2 +/- 2.2 vs 9.0 +/- 0.7 ng/mL in controls; P<0.05), an average of 4 d before an increase in the controls. Concentrations of LH in the progesterone group initially increased until Day 14 and then decreased so that by Day 18 the concentrations were lower (P<0.05) than in the control group (12.9 +/- 1.6 vs 20.2 +/- 2.6 ng/mL). Neither the early and prolonged increase nor the early decrease in LH concentrations altered the growth profile of the second-largest follicle, suggesting that LH was not involved in the initiation of deviation. However, the early decrease in LH concentrations in the progesterone group was followed by a smaller (P<0.05) diameter of the largest follicle by Day 20 (26.9 +/- 1.7 mm) than the controls (30.3 +/- 1.7 mm), suggesting that LH was necessary for continued growth of the largest follicle after deviation.  相似文献   

5.
The effects of several doses of progesterone on FSH and LH concentrations were used to study the role of the gonadotropins on deviation in growth rates of the two largest follicles during the establishment of follicle dominance. Progesterone was given to pony mares at a daily dose rate of 0 mg (controls), 30 mg (low dose), 100 mg (intermediate dose), and 300 mg (high dose). All follicles > or = 6 mm were ablated at Day 10 (Day 0 = ovulation) to initiate a new follicular wave; prostaglandin F(2alpha) was given to induce luteolysis, and progesterone was given from Days 10 to 24. The low dose did not significantly alter any of the ovarian or gonadotropin end points. The high dose reduced (P < 0.05) the ablation-induced FSH concentrations on Day 11. Maximum diameter of the largest follicle (17.2 +/- 0.6 mm) and the second-largest follicle (15.5 +/- 0.9 mm) in the high-dose group was less (P < 0.04) than the diameter of the second-largest follicle in the controls (20.0 +/- 1.0 mm) at the beginning of deviation (Day 16.7 +/- 0.4). Thus, the growth of the two largest follicles was reduced by the high dose, presumably through depression of FSH, so that the follicles did not attain a diameter characteristic of deviation in the controls. The intermediate dose did not affect FSH concentrations. However, the LH concentrations increased in the control, low, and intermediate groups, but then decreased (P < 0.05) in the intermediate group to pretreatment levels. The LH decrease in the intermediate group occurred 2 days before deviation in the controls. The maximum diameter of the largest follicle was less (P < 0.0001) in the intermediate group (27.3 +/- 1.8 mm) than in the controls (38.9 +/- 1.5 mm), but the maximum diameter of the second-largest follicle was not different between the two groups (19.0 +/- 1.1 vs. 20.3 +/- 1.0 mm). Thus, the onset of deviation, as assessed by the second-largest follicle, was not delayed by the decrease in LH. Diameter of the largest follicle by Day 18 in the intermediate group (23.1 +/- 1.6 mm) was less (P < 0.05) than in the controls (28.0 +/- 1.0 mm). These results suggest that circulating LH was not involved in the initiation of dominance (inhibition of other follicles by the largest follicle) but was required for the continued growth of the largest follicle after or concurrently with its initial expression of dominance.  相似文献   

6.
Follicle deviation is proposed to be the eminent event in follicle selection in monovular species. At deviation, the largest follicle establishes dominance apparently before the second-largest follicle can reach a similar diameter. In cattle, based on diameters of the two follicles at the beginning of deviation, the mechanism becomes established in <8 h. An FSH:follicle-coupling hypothesis has been supported as the essence of follicle selection. According to the hypothesis, the growing follicles cause the FSH decline from the peak of the wave-stimulating FSH surge until deviation, even though the follicles continue to require FSH (two-way functional coupling involving multiple follicles). During multiple-follicle coupling, inhibin is the primary FSH suppressant. Near the beginning of deviation, the largest follicle secretes increased estradiol, and apparently both estradiol and inhibin contribute to the continuing FSH decline; only the more-developed largest follicle is able to utilize the low FSH concentrations (single-follicle coupling). Deviation is encompassed by a transient elevation in LH in heifers and by a component, often distinct, of the long ovulatory LH surge in mares. In heifers, receptors for LH appear in the granulosa cells of the future dominant follicle about 8 h before the beginning of deviation. The LH stimulates the production of estradiol and insulin-like growth factor-1. These intrafollicular factors and perhaps others account for the responsiveness of the largest follicle to the low concentrations of FSH. The smaller follicles have not reached a similar developmental stage and because of their continued and close dependency on FSH become susceptible to the low concentrations. Thereby, follicle selection is established.  相似文献   

7.
The circulating concentrations of LH were reduced by administration of 50 mg of progesterone every 8 h for 72 h, beginning when the largest follicle was 6.0 mm (experiment 1; n = 10). Progesterone treatment prevented the transient increase in LH that accompanied deviation (partitioning into dominant and subordinate categories) in control heifers (n = 10). The reduced LH concentrations were associated with reduced growth of the largest follicle, beginning a mean of 31 h after deviation, but did not alter the time of deviation or the growth and regression of the second-largest follicle. In experiment 2, 0 mg (controls) or 50 mg of progesterone was given every 8 h for three injections, beginning when the largest follicle was 7.0 mm (predeviation group) or 9.0 mm (postdeviation group; n = 8 for each of the four groups). Blood samples from the jugular vein and follicular-fluid samples from the two largest follicles were taken 8 h after the last treatment when the largest follicle was a mean of 8.7 mm in the predeviation group and 10.8 mm in the postdeviation group. In the controls, follicular-fluid concentrations of estradiol and free insulin-like growth factor (IGF)-1 in the largest follicle and IGF binding protein (IGFBP)-2 in the second-largest follicle were higher (P: < 0.05) in the postdeviation group than in the predeviation group. Progesterone treatment lowered (P: < 0.006) the circulating LH concentrations to a similar extent in both groups. In the predeviation group, progesterone treatment did not have a significant effect on any of the characteristics of the largest follicle. In the postdeviation group, the largest follicle of the progesterone-treated heifers had significant reductions in diameter and in follicular-fluid concentrations of estradiol and free IGF-1. Follicular-fluid concentrations of immunoreactive inhibin were not different for any of the comparisons. The results supported the hypothesis that LH has a positive effect on diameter of the largest follicle but not until after the beginning of diameter deviation. In addition, the results indicated that LH is involved in the production of estradiol by the largest follicle and that free IGF-1 concentrations increase in the largest follicle during deviation.  相似文献   

8.
A two-follicle model was used to study the nature of selection of the dominant follicle in mares by ablating neither or one of the two follicles on the day the larger follicle reached >/= 20 mm (Day 0). The larger follicle became the dominant follicle in all mares in which both follicles (n = 8) or only the larger follicle (n = 10) was retained. When only the smaller follicle (n = 9) was retained, it became dominant and ovulated in six mares and became atretic in three mares; the difference in diameter between the two follicles on Day 0 was less (p < 0.01) in mares in which the retained smaller follicle grew and ovulated (2.2 +/- 0.6 mm) than in the mares in which the follicle became atretic (5.9 +/- 1.2 mm). A decline (p < 0. 0001) in FSH concentrations occurred over Days -4 (8.4 +/- 0.7 ng/ml) to 0 (5.9 +/- 0.3 ng/ml), averaged over all groups, and the decline continued for several more days in the groups with both follicles or with only the larger follicle retained. In the group with only the smaller follicle retained, compared to the group with both follicles retained, FSH concentrations and diameter of the smaller follicle increased between Days 0 and 1 (significant interaction for each end point). After Day 1, FSH concentrations continued to increase when the smaller retained follicle became atretic; concentrations decreased when the smaller retained follicle became dominant. An increase (p < 0.0001) in LH concentrations occurred over Days -4 (12.2 +/- 1.1 pg/ml) to 0 (21.1 +/- 2.0 pg/ml), averaged over the three groups. In 23 of 27 mares, a transient peak in LH concentrations occurred within 2 days of Day 0. In the groups with both follicles or with only the larger follicle retained, an increase (p < 0.0001) in systemic estradiol concentrations occurred between Day 0 (5.3 +/- 0.6 pg/ml) and Day 2 (7.5 +/- 0.4 pg/ml). When only the smaller follicle was retained, estradiol did not begin to increase until Day 2, and it increased only when the retained follicle grew and became dominant. The beginning of an increase in estradiol and continued decrease in FSH at the expected beginning of deviation were attributable to the future dominant follicle; there was no indication that the smaller follicle was involved.  相似文献   

9.
The effect of an injection of a supraphysiologic dose of rhIGF1 into the second-largest ovarian follicle (F2) at the expected beginning of deviation (F1, > or =20 mm; Day 0) on development of dominance by F2 was studied in mares (n=16; controls, n=8). F1 became dominant (> or =28 mm) in 8 of 8 and 15 of 16 follicles in the controls and treated groups, respectively. The incidence of dominance (P<0.001) and ovulation (P<0.02) for F2 was greater for the IGF1 group (13 of 16 and 10 of 16) than for the controls (1 of 8 and 1 of 8). There were day effects but no group effects or group-by-day interactions for systemic FSH, LH, estradiol, or ir-inhibin during the 4 days after treatment. In another experiment, treatment of every follicle, excluding F1, when it reached > or =20mm after the expected beginning of deviation resulted in dominance by 8 of 12 follicles treated with rhIGF1 on Days 1-3 (n=8 mares). Results demonstrated that the IGF1 system plays a pivotal intrafollicular role in the deviation mechanism without altering systemic concentrations of the gonadotropins and ovarian follicular hormones.  相似文献   

10.
Diameter deviation is a distinctive change in growth rates among the follicles of a wave, heralding the formation of a dominant follicle and subordinate follicles. When the follicles are about 5mm in cattle and 13 mm in horses, the wave-stimulating FSH surge reaches peak concentrations. Follicle and FSH manipulation studies in both species have shown that the declining portion of the surge before the beginning of deviation is a function of multiple growing follicles that require the decreasing FSH. During this time, all follicles of the wave have the potential for future dominance. Deviation begins when the two largest follicles on average are 8.5 and 7.7 mm in cattle and 22.5 and 19.0 mm in horses or about 3 days after the FSH peak in both species. The FSH/follicle relationship is close so that a change in one event soon causes a detectable change in the other. Thus, the difference in diameter between the two largest follicles at the beginning of deviation is compatible with rapid establishment of the destiny of the two follicles before the second-largest follicle can also show dominance. The deviation mechanism is initiated when FSH concentrations are low and the most advanced follicle reaches a specific developmental stage. In cattle, the future dominant follicle develops greater LH-receptor expression than the other follicles about 8 h before the beginning of diameter deviation. Estradiol and free IGF-1 begin to establish higher concentrations in the future dominant follicle than in other follicles and activin-A is transiently elevated in both follicles a few hours before the beginning of diameter deviation. In horses, estradiol, free IGF-1, activin-A, and inhibin-A begin to increase differentially in the future dominant follicle about 1 day before deviation. These changes underlie a greater responsiveness to LH and FSH by the developing dominant follicle than for other follicles, thereby accounting for deviation. Results of in vitro studies, although frequently done in other species, support this conclusion.  相似文献   

11.
The functional and temporal relationships between circulating gonadotropins and ovarian hormones in mares during Days 7-27 (ovulation = Day 0) was studied using control, follicle ablation, and ovariectomy groups (n = 6 mares/group). In the follicle-ablation group, all follicles > or = 6 mm were ablated on Day 7, and every 2 days thereafter, newly emerging follicles were also ablated. Estradiol concentrations decreased (P < 0.01) similarly in the controls and the follicle-ablation group between Days 7 and 11 and by Day 15 began to increase in the controls and continued to decrease in the follicle-ablation group. Concentrations of progesterone were not affected by follicle ablation, but diameter of the corpus luteum was greater (P < 0.05) by Day 21 in the follicle-ablation group; these results indicated that the follicles were involved in morphologic luteolysis, but not in functional luteolysis. Concentrations of LH were higher (P < 0.05) on Days 15 and 16 in the follicle-ablation group than in the controls, indicating an initial negative effect of follicles on LH. Immunoreactive inhibin and estradiol decreased (P < 0.0001) and FSH and LH increased (P < 0.05) within 1 or 2 days after ovariectomy; these changes occurred more slowly in the follicle-ablation group. The maximum value for an FSH surge in each control mare was below the lower 95% confidence limit in the ovariectomy group. Maximum concentration for the periovulatory LH surge in the controls was not different from the mean maximum LH concentrations in the ovariectomy group. Our interpretation is that the gonadotropin surges resulted from changes in the magnitude of the negative effects of ovarian hormones on the positive effects of extraovarian control. There was no indication of a positive ovarian effect on either FSH or LH.  相似文献   

12.
Ovarian changes determined by daily transrectal ultrasound and its relationship with FSH, LH, estradiol-17beta, progesterone, and inhibin were investigated in six goats for three consecutive interovulatory intervals. Estrous cycles were synchronized using two injections of prostaglandin F2alpha analogue 11 days apart. All follicles 3 mm or greater in diameter and corpora lutea were measured daily. A follicular wave was defined as one or more follicles growing to 5 mm or greater in diameter. The day that the follicles reached 3 mm in diameter was defined as the day of wave emergence, and the first wave after ovulation was defined as wave 1. During the interovulatory interval (mean +/- SEM, 21.3 +/- 0.4 days; n = 18), follicular waves emerged at 0.3 +/- 0.5, 6.5 +/- 0.2, and 12.1 +/- 0.4 days for wave 1, wave 2, and wave 3, respectively, in goats with three waves of follicular development and at -0.6 +/- 0.3, 4.7 +/- 0.2, 9.4 +/- 0.5, and 13.4 +/- 0.5 days for wave 1, wave 2, wave 3, and wave 4, respectively, in goats with four waves of follicular development (Day 0 = the day of ovulation). The mean diameter of the largest follicle of the ovulatory wave was significantly larger than those of the largest follicles of the other waves. Corpora lutea could be identified ultrasonically at Day 3 postovulation and attained 12.1 +/- 0.3 mm in diameter on Day 8. Transient increases in plasma concentrations of FSH were detected around the day of follicular wave emergence. The level of FSH was negatively correlated with that of inhibin. These results demonstrated that follicular waves occurred in goats and that the predominant follicular wave pattern was four waves with ovulation from wave 4. These results also suggested that the emergence of follicular waves was closely associated with increased secretion of FSH.  相似文献   

13.
Individual follicles >/=15 mm were monitored daily by ultrasonography in 12 mares during the estrous cycle. Follicular waves were designated as major waves (primary and secondary) and minor waves based on maximum diameter of the largest follicle of a wave (major waves, 34 to 47 mm; minor waves, 18 to 25 mm). Dominance of the largest follicle of major waves was indicated by a wide difference (mean, 18 mm) in maximum diameter relative to the second largest follicle. Dominant follicles of primary waves (n=12) emerged (attained 15 mm) at a mean of Day 12 and resulted in the ovulations associated with estrus (ovulation=Day 0). The dominant follicle of a secondary wave (n=1) emerged on Day 2 and subsequently ovulated in synchrony with the dominant follicle of the primary wave, which emerged on Day 9. The largest follicles of minor waves (n=4) emerged at a mean of Day 5, reached a mean maximum diameter 3 days later, and subsequently regressed. There was a significant increase in mean daily FSH concentrations either 6 days (primary wave) or 4 days (minor waves) before the emergence of a wave. Mean concentrations of FSH decreased significantly 2 days after emergence of the primary wave. Divergence between diameter of the dominant and largest subordinate follicle of the primary wave was indicated by a significantly greater mean diameter of the dominant follicle than of the largest subordinate follicle 3 days after wave emergence and by the cessation of growth of the largest subordinate follicle beginning 4 days after the emergence of a wave. Surges of FSH were identified in individual mares by a cycle-detection program; surges occurred every 3 to 7 days. Elevated mean FSH concentrations over the 6 days prior to emergence of the primary wave was attributable to a significantly greater frequency of individual FSH surges before wave emergence than after emergence and to an increase in magnitude of peak concentrations of FSH associated with individual surges.  相似文献   

14.
The functional coupling between the declining portion of the FSH surge and the growing follicles of a wave was studied by treating heifers with a minimal dose of estradiol to decrease FSH concentrations without an associated change in LH concentrations. Estradiol treatment when the largest follicle reached >/= 6.0 mm (Hour 0) resulted in depression of both FSH concentrations and diameter of the largest follicle by Hour 8. The smaller follicles were also inhibited. These results supported the hypothesis that FSH continues to be needed by the growing follicles even when the FSH concentrations are decreasing during the declining portion of the FSH surge. Estradiol treatment when the largest follicle was >/= 8.5 mm (expected time of follicular deviation) also resulted in a transient decrease in both FSH concentrations and diameter of the largest follicle, but the diameters of the smaller follicles were not affected. These results supported the hypothesis that the low concentrations of FSH at the expected time of deviation, although inadequate for the smaller follicles, were required for continued growth of the largest follicle. In another study, ablation (Hour 0) of the largest follicle was done at >/= 7.5 mm vs. >/= 8.5 mm. The mean FSH concentrations for the 8.5-mm groups were greater for the ablation group than for the control group at Hours 8 and 12, but there was no difference between the 7.5-mm groups at any hour. These results supported the hypothesis that by the time the largest follicle reaches the expected beginning of deviation it has developed a greater capacity for suppressing FSH. It is postulated that the essence of the selection of a dominant follicle is a close two-way functional coupling between changing FSH concentrations and follicular growth.  相似文献   

15.
A near steroid-free fraction of bovine follicular fluid was used to suppress FSH concentrations at the expected time of follicle deviation or when the largest follicle of Wave 1 reached > or = 8.0 mm (actual mean diameter, 8.4 mm; Hour 0). It was hypothesized that the low concentrations of FSH associated with deviation are inadequate for the smaller follicles but are needed for continued growth of the largest follicle. Control heifers (n=8) received 10 mL of saline, and treated heifers (n=16) received either 8.8 mL or 13.3 mL of the follicular-fluid fraction at Hours 0, 12, and 24. Between Hours -48 and 0, FSH concentrations decreased (P<0.05) and diameters of the 4 largest follicles increased (Hour effect, P<0.0001) similarly between groups. Concentrations of LH in the controls increased (P<0.05) between Hours -24 and -12 and decreased (P<0.05) between Hours 8 and 36, demonstrating a transient LH surge encompassing the expected beginning of deviation. In the treated group, a comparable increase in LH occurred before deviation but a decrease did not occur until after Hour 48. By Hour 4.5, the FSH concentrations in the treated group decreased (P<0.05) to below the concentrations in the controls. Suppressed diameter (P<0.001) of the largest follicle was detected at the first post-treatment examination (Hour 12; 7.5 h after FSH suppression) and was accompanied by reduced (P<0.04) systemic estradiol concentrations. The mean growth rates of the 3 smaller follicles in both the treated and control groups began to decrease at Hours -12 to 24 and were not different between groups during Hours 0 to 36. Concentrations of FSH in the treated group returned to control concentrations by Hour 24 (hour of last treatment). A rebound (P<0.05) in concentrations of FSH to >100% above control concentrations occurred by Hour 48 and was accompanied by resumed growth of the largest follicle in 75% of the heifers between Hours 48 and 72. The results demonstrated that the low concentrations of FSH associated with deviation can be further reduced by treatment with a nonsteroidal factor of follicular origin. Transient reduction of FSH concentrations to below the already low control concentrations inhibited the largest follicle but did not further inhibit the smaller follicles. These results support the hypothesis that the low FSH concentrations associated with follicle deviation are below the minimal requirements of the smaller or subordinate follicles but are needed for continued growth of the largest or dominant follicle in cattle.  相似文献   

16.
A few days after the first follicular wave emerges as 4-mm follicles, follicular deviation occurs wherein 1 follicle of the wave continues to grow (dominant follicle) while the others regress. The objectives of this study were to characterize follicle growth and associated changes in systemic concentrations of gonadotropins and estradiol at 8-h intervals encompassing the time of follicle deviation. Blood samples from heifers (n = 11) were collected and the ovaries scanned by ultrasound every 8 h from 48 h before to 112 h after the maximal value for the preovulatory LH surge. The follicular wave emerged at 5.8 +/- 5.5 h (mean +/- SEM) after the LH surge, and at this time the future dominant follicle (4.2 +/- 0.8 mm) was larger (P < 0.001) than the future largest subordinate follicle (3.6 +/- 0.1 mm). There was no difference in growth rates between the 2 follicles from emergence to the beginning of the deviation (0.5 mm/8 h for each follicle), indicating that, on average, the future dominant follicle maintained a size advantage over the future subordinate follicle. Deviation occurred when the 2 largest follicles were 8.3 +/- 0.2 and 7.8 +/- 0.2 mm in diameter, at 61.0 +/- 3.7 h after wave emergence. Diameter deviation was manifested between 2 adjacent examinations at 8-h intervals. Mean concentrations of FSH decreased, while mean concentrations of LH increased 24 and 32 h before deviation, respectively, and remained constant (no significant differences) for several 8-h intervals encompassing deviation. In addition to the increase and decrease in circulating estradiol concentrations associated with the preovulatory LH surge, an increase (P < 0.05) occurred between the beginning of deviation and 32 h after deviation. The results supported the hypotheses that deviation occurs rapidly (within 8 h), that elevated systemic LH concentrations are present during deviation, and that deviation is not preceded by an increase in systemic estradiol.  相似文献   

17.
Follicle deviation during bovine follicular waves is characterized by continued growth of a developing dominant follicle and reduction or cessation of growth of subordinate follicles. Characteristics of follicle deviation for waves with a single dominant follicle were compared between wave 1 (begins near ovulation; n = 15) and wave 2 (n = 15). Follicles were defined as F1 (largest), F2, and F3, according to maximum diameter. No mean differences were found between waves for follicle diameters at expected deviation (F1, > or =8.5 mm; Hour 0) or observed deviation or in the interval from follicle emergence at 4.0 mm to deviation. For both waves, circulating FSH continued to decrease (P < 0.05) after Hour 0, estradiol began to increase (P < 0.05) at Hour 0, and immunoreactive inhibin began to decrease (P < 0.05) before Hour 0. A transient elevation in circulating LH reached maximum concentration at Hour 0 (P < 0.01) in both waves and was more prominent (P < 0.0001) for wave 1. Waves with codominant follicles (both follicles >10 mm) were more common (P < 0.02) for wave 1 (35%) than for wave 2 (4%). Codominants (n = 6) were associated with more (P < 0.05) follicles > or=4 mm and a greater concentration (P < 0.04) of circulating estradiol at Hours -48 to -8 than were single dominant follicles (n = 15). A mean transient increase in FSH and LH occurred in the codominant group at Hour -24 and may have interfered with deviation of F2. In codominant waves, deviation of F3 occurred near Hour 0 (F1, approximately 8.5 mm). A second deviation involving F2 occurred in four of six waves a mean of 50 h after the F3 deviation and may have resulted from a greater suppression (P < 0.05) of FSH in the codominant group after Hour 0. In conclusion, follicle or hormone differences were similar for waves 1 and 2, indicating that the deviation mechanisms were the same for both waves. Waves that developed codominant follicles differed in hormone as well as follicle dynamics.  相似文献   

18.
Ginther OJ 《Theriogenology》2012,77(5):818-828
The mare is a good comparative model for study of ovarian follicles in women, owing to striking similarities in follicular waves and the mechanism for selection of a dominant follicle. Commonality in follicle dynamics between mares and women include: (1) a ratio of 2.2:1 (mare:woman) in diameter of the largest follicle at wave emergence when the wave-stimulating FSH surge reaches maximum, in diameter increase of the two largest follicles between emergence and the beginning of deviation between the future dominant and subordinate follicles, in diameter of each of the two largest follicles at the beginning of deviation, and in maximum diameter of the preovulatory follicle; (2) emergence of the future ovulatory follicle before the largest subordinate follicle; (3) a mean interval of 1 day between emergence of individual follicles of the wave; (4) percentage increase in diameter of follicles for the 3 days before deviation; (5) deviation 3 or 4 days after emergence; (6) 25% incidence of a major anovulatory follicular wave emerging before the ovulatory wave; (7) 40% incidence of a predeviation follicle preceding the ovulatory wave; (8) small but significant increase in estradiol and LH before deviation; (9) cooperative roles of FSH and insulin-like growth factor 1 and its proteases in the deviation process; (10) age-related effects on the follicles and oocytes; (11) approximate 37-hour interval between administration of hCG and ovulation; and (12) similar gray-scale and color-Doppler ultrasound changes in the preovulatory follicle. In conclusion, the mare may be the premier nonprimate model for study of follicle dynamics in women.  相似文献   

19.
Elephants express two luteinizing hormone (LH) peaks timed 3 wk apart during the follicular phase. This is in marked contrast with the classic mammalian estrous cycle model with its single, ovulation-inducing LH peak. It is not clear why ovulation and a rise in progesterone only occur after the second LH peak in elephants. However, by combining ovarian ultrasound and hormone measurements in five Asian elephants (Elephas maximus), we have found a novel strategy for dominant follicle selection and luteal tissue accumulation. Two distinct waves of follicles develop during the follicular phase, each of which is terminated by an LH peak. At the first (anovulatory) LH surge, the largest follicles measure between 10 and 19.0 mm. At 7 ± 2.4 days before the second (ovulatory) LH surge, luteinization of these large follicles occurs. Simultaneously with luteinized follicle (LUF) formation, immunoreactive (ir) inhibin concentrations rise and stay elevated for 41.8 ± 5.8 days after ovulation and the subsequent rise in progesterone. We have found a significant relationship between LUF diameter and serum ir-inhibin level (r(2) = 0.82, P < 0.001). The results indicate that circulating ir-inhibin concentrations are derived from the luteinized granulosa cells of LUFs. Therefore, it appears that the development of LUFs is a precondition for inhibin secretion, which in turn impacts the selection of the ovulatory follicle. Only now, a single dominant follicle may deviate from the second follicular wave and ovulate after the second LH peak. Thus, elephants have evolved a different strategy for corpus luteum formation and selection of the ovulatory follicle as compared with other mammals.  相似文献   

20.
The temporal relationships in the changes in concentrations of follicular fluid factors during follicle selection were characterized in mares. All follicles > or =5 mm were ablated 10 days after ovulation, followed by follicular fluid collection from the three largest follicles (F1, F2, and F3) when F1 of the new wave reached a diameter of 8.0-11.9, 12.0-15.9, 16.0-19.9, 20.0-23.9, 24.0-27.9, or 28.0-31.9 mm (n = 4-8 mares/range). Diameter deviation between F1 and F2 began during the 20.0- to 23.9-mm range, as indicated by a greater difference in diameter between the two follicles at the 24.0- to 27.9-mm range than at the 20.0- to 23.9-mm range. Androstenedione concentrations increased in F1, F2, and F3 between the 16.0- to 19.9- and 20.0- to 23.9-mm ranges. In contrast, estradiol, free insulin-like growth factor (IGF)-1, activin-A, and inhibin-A concentrations increased only in F1 beginning at the 16.0- to 19.9-mm range. As a result, the concentrations of all four factors were higher in F1 than in F2 and F3 at all the later ranges, including the 20.0- to 23.9-mm range (beginning of diameter deviation). Concentrations of progesterone differentially increased in F1, concentrations of androstenedione and IGF-binding protein (IGFBP)-2 increased only in F2 and F3, and concentrations of inhibin-B differentially decreased in F2 and F3 simultaneous with the beginning of deviation. Concentrations of FSH, LH, pro-alphaC inhibin, and total inhibin did not change differentially among follicles. Results indicated that, on a temporal basis, estradiol, free IGF-1, activin-A, and inhibin-A may have played a role in the initiation of follicle deviation. In addition, these four factors as well as progesterone, androstenedione, IGFBP-2, and inhibin-B may have been involved in the subsequent differential development of the follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号