首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated a new gene, NUP2, that encodes a constituent of the yeast-nuclear pore complex (NPC). The NUP2 protein sequence shares a central repetitive domain with NSP1 and NUP1, the two previously characterized yeast nucleoporins. Like NUP1 and NSP1, NUP2 localizes to discrete spots in the nuclear envelope, as determined by indirect immunofluorescence. Although the sequence similarity among these three nucleoporins suggests that they have a similar role in the nuclear pore complex, NUP2, in contrast to NSP1 and NUP1, is not required for growth. Some combinations of mutant alleles of NUP1, NSP1, and NUP2 display "synthetic lethal" relationships that provide evidence for functional interaction between these NPC components. This genetic evidence of overlapping function suggests that the nucleoporins act in concert, perhaps participating in the same step of the recognition or transit of macromolecules through the NPC.  相似文献   

2.
A new family of yeast nuclear pore complex proteins   总被引:47,自引:19,他引:28       下载免费PDF全文
We have identified a novel family of yeast nuclear pore complex proteins. Three individual members of this family, NUP49, NUP100, and NUP116, have been isolated and then characterized by a combination of molecular genetics and immunolocalization. Employing immunoelectron and immunofluorescence microscopy on yeast cells, we found that the binding of a polyspecific monoclonal antibody recognizing this family was predominantly at the nuclear pore complexes. Furthermore, the tagging of NUP49 with a unique epitope enabled the immunolocalization of this protein to the nuclear pore complex by both fluorescence and electron microscopy. DNA sequence analysis has shown that the amino-terminal regions of NUP49, NUP100, and NUP116 share repeated "GLFG" motifs separated from each other by glutamine, asparagine, serine and threonine rich spacers. All three proteins lack a repetitive domain found in the two precisely described yeast nuclear pore complex proteins. Only NUP49 is essential for cell viability. NUP116-deficient cells grow very slowly and are temperature sensitive, whereas the lack of NUP100 has no detectable phenotype. NUP100 and NUP116 are homologous over their entire lengths. Interestingly, NUP100 and NUP116 are both flanked by a histidine tRNA gene and a transposon element suggesting that they may have arisen by gene duplication. We propose that subfamilies of pore complex proteins can be defined by their characteristic combinations of different modular domains.  相似文献   

3.
P Grandi  V Doye    E C Hurt 《The EMBO journal》1993,12(8):3061-3071
The essential C-terminal domain of NSP1 mediates assembly into the nuclear pore complex (NPC). To identify components which interact physically with this yeast nucleoporin, the tagged C-terminal domain of NSP1 (ProtA-NSP1) was isolated by affinity chromatography under non-denaturing conditions. The purified complex contains ProtA-NSP1, two previously identified 'GLFG' nucleoporins, NUP49 (NSP49) and p54 and a novel protein designated NIC96 (for Nucleoporin-Interacting Component of 96 kDa). Conversely, affinity purification of tagged NSP49 enriches for NSP1, the p54 and the NIC96 component. The NIC96 gene was cloned; it encodes a novel 839 amino acid protein essential for cell growth. By immunofluorescence, protein A-tagged NIC96 exhibits a punctate nuclear membrane staining indicative of nuclear pore location. Therefore, affinity purification of tagged nucleoporins has allowed the definition of a subcomplex of the NPC and analysis of physical interactions between nuclear pore proteins.  相似文献   

4.
The FG nucleoporins are a conserved family of proteins, some of which bind to the nuclear localization sequence receptor, karyopherin. Distinct members of this family are found in each region of the nuclear pore complex (NPC), spanning from the cytoplasmically disposed filaments to the distal end of the nuclear basket. Movement of karyopherin from one FG nucleoporin to the next may be required for translocation of substrates across the NPC. So far, nothing is known about how the FG nucleoporins are localized within the NPC. To identify proteins that interact functionally with one member of this family, the Saccharomyces cerevisiae protein Nup1p, we previously identified 16 complementation groups containing mutants that are lethal in the absence of NUP1 These mutants were referred to as nle (Nup-lethal) mutants. Mutants in the nle3/nlel7 complementation group are lethal in combination with amino-terminal nup1 truncation mutants, which we have previously shown to be defective for localization to the NPC. Here we show that NLE3 (which is allelic to NUP170) encodes a protein with similarity to the mammalian nucleoporin Nup155. We show that Nle3p coprecipitates with glutathione S-transferase fusions containing the amino-terminal domain of Nup1p. Furthermore, a deletion of Nle3p leads to changes in the stoichiometry of several of the XFXFG nucleoporins, including the loss of Nup1p and Nup2p. These results suggest that Nle3p plays a role in localizing specific FG nucleoporins within the NPC. The broad spectrum of synthetic phenotypes observed with the nle3delta mutant provides support for this model. We also identify a redundant yeast homolog that can partially substitute for Nle3p and show that together these proteins are required for viability.  相似文献   

5.
NSP1 is an essential nuclear pore protein in yeast. We observed that anti-NSP1 antibodies label mammalian nuclear pore complexes and recognize nucleoporin p62. Also peptide antibodies raised against the NSP1 carboxy-terminal end cross-react with p62, a conserved component of the nuclear pore complex in higher eukaryotes. To further analyze the structural and functional similarity between NSP1 and mammalian nucleoporins, we cloned and sequenced nucleoporin p62 from a HeLa cDNA library. Human p62 consists of a carboxy-terminal domain homologous to the essential yeast NSP1 carboxy-terminal domain and an amino-terminal half resembling the repetitive middle domain of NSP1. The full-length p62 and a fusion protein consisting of cytosolic mouse dihydrofolate reductase (DHFR) and the p62 carboxy-terminal domain were expressed in transfected HeLa cells. Only overexpressed full-length p62, but not the DHFR-C-p62 fusion protein, binds wheat germ agglutinin (WGA). This suggests that modification by N-acetylglucosamine is mainly restricted to the repetitive amino-terminal half of p62 and implies a role of this type of repetitive sequences in nuclear transport. In the transfected HeLa cells, the DHFR-C-p62 fusion protein forms patchy aggregates that accumulate at the nuclear periphery but are also scattered through the cytoplasm. It is suggested that nucleoporin p62 may be targeted and anchored to the pore complex via its carboxy-terminal domain which reveals a hydrophobic heptad repeat organization similar to that found in lamins and other intermediate filament proteins.  相似文献   

6.
The NUP1 gene of Saccharomyces cerevisiae encodes one member of a family of nuclear pore complex proteins (nucleoporins) conserved from yeast to vertebrates. We have used mutational analysis to investigate the function of Nup1p. Deletion of either the amino- or carboxy- terminal domain confers a lethal phenotype, but partial truncations at either end affect growth to varying extents. Amino-terminal truncation causes mislocalization and degradation of the mutant protein, suggesting that this domain is required for targeting Nup1p to the nuclear pore complex. Carboxy-terminal mutants are stable but do not have wild-type function, and confer a temperature sensitive phenotype. Both import of nuclear proteins and export of poly(A) RNA are defective at the nonpermissive temperature. In addition, nup1 mutant cells become multinucleate at all temperatures, a phenotype suggestive of a defect in nuclear migration. Tubulin staining revealed that the mitotic spindle appears to be oriented randomly with respect to the bud, in spite of the presence of apparently normal cytoplasmic microtubules connecting one spindle pole body to the bud tip. EM analysis showed that the nuclear envelope forms long projections extending into the cytoplasm, which appear to have detached from the bulk of the nucleus. Our results suggest that Nup1p may be required to retain the structural integrity between the nuclear envelope and an underlying nuclear scaffold, and that this connection is required to allow reorientation of the nucleus in response to cytoskeletal forces.  相似文献   

7.
The nuclear pore complex (NPC) mediates all nucleocytoplasmic transport, yet its structure and biogenesis remain poorly understood. In this study, we have functionally characterized interaction partners of the yeast transmembrane nucleoporin Ndc1. Ndc1 forms a distinct complex with the transmembrane proteins Pom152 and Pom34 and two alternative complexes with the soluble nucleoporins Nup53 and Nup59, which in turn bind to Nup170 and Nup157. The transmembrane and soluble Ndc1-binding partners have redundant functions at the NPC, and disruption of both groups of interactions causes defects in Ndc1 targeting and in NPC structure accompanied by significant pore dilation. Using photoconvertible fluorescent protein fusions, we further show that the depletion of Pom34 in cells that lack NUP53 and NUP59 blocks new NPC assembly and leads to the reversible accumulation of newly made nucleoporins in cytoplasmic foci. Therefore, Ndc1 together with its interaction partners are collectively essential for the biosynthesis and structural integrity of yeast NPCs.  相似文献   

8.
9.
《The Journal of cell biology》1995,130(6):1275-1281
We have isolated and characterized the gene encoding a novel essential nucleoporin of 82 kD, termed NUP82. Indirect immunofluorescence of cells containing an epitope tagged copy of the NUP82 localized it to the nuclear pore complex (NPC). Primary structure analysis indicates that the COOH-terminal 195 amino acids contain a putative coiled-coil domain. Deletion of the COOH-terminal 87 amino acids of this domain causes slower cell growth; deletion of the COOH-terminal 108 amino acids results in slower growth at 30 degrees C and lethality at 37 degrees C. Cells in which the last 108 amino acids of NUP82 have been deleted, when shifted to 37 degrees C, do not display any gross morphological defects in their nuclear pore complexes or nuclear envelopes. They do, however, accumulate poly(A)+ RNA in their nuclei at 37 degrees C. We propose that NUP82 acts as a linker to tether nucleoporins directly involved in nuclear transport to pore scaffolding via its coiled-coil domain.  相似文献   

10.
《The Journal of cell biology》1996,133(6):1153-1162
We have isolated a major protein constituent from a highly enriched fraction of yeast nuclear pore complexes (NPCs). The gene encoding this protein, Nup188p, was cloned, sequenced, and found to be nonessential upon deletion. Nup188p cofractionates with yeast NPCs and gives an immunofluorescent staining pattern typical of nucleoporins. Using immunoelectron microscopy, Nup188p was shown to localize to both the cytoplasmic and nucleoplasmic faces of the NPC core. There, Nup188p interacts with an integral protein of the pore membrane domain, Pom152p, and another abundant nucleoporin, Nic96p. The effects of various mutations in the NUP188 gene on the structure of the nuclear envelope and the function of the NPC were examined. While null mutants of NUP188 appear normal, other mutants allelic to NUP188 exhibit a dominant effect leading to the formation of NPC-associated nuclear envelope herniations and growth inhibition at 37 degrees C. In addition, depletion of the interacting protein Pom152p in cells lacking Nup188p resulted in severe deformations of the nuclear envelope. We suggest that Nup188p is one of a group of proteins that form the octagonal core structure of the NPC and thus functions in the structural organization of the NPC and nuclear envelope.  相似文献   

11.
Salt-detergent extraction of purified plant nuclei yields a fraction enriched in putative structural proteins known as the nuclear matrix. Compared with mammalian nuclear matrices, which contain three major proteins, plant nuclear matrices are complex, containing at least 100 polypeptides. In order to characterise more fully the plant nuclear matrix we have used antibodies raised against both yeast (Saccharomyces cerevisiae) and mammalian (rat) nuclear pore proteins. We have shown that the nuclear matrix of carrot (Daucus carota L.) contains at least one nucleoporin-like protein of about 100 kDa which is immunologically related to both the yeast nuclear pore protein NSP1 and mammalian nucleoporins (p62). Antibody labelling of a variety of plant cells at the light-microscope and electron-microscope levels confirms that this antigen is located at the nuclear pores. This, to our knowledge, is the first identification of a nuclear pore protein in plants.Abbreviations IgG immunoglobulin G - kDa kilodaltons - DAPI 4,6-diamidino-2-phenylindole - FITC fluorescein isothioganate The authors would like to thank Dr. E. Hurt (European Molecular Biology Laboratory, Heidelberg, FRG) for antibodies against yeast nucleoporins, and Dr. L. Davis (Whitehead Institute for Biomedical Research, Cambridge, Mass., USA) for the monoclonal antibodies MAb 414 & 350. We thank Brian Wells for useful advice on electron microscopy. We also thank Peter Scott, Andrew Davis, and Nigel Hannant for photography, and Sue Bunnewell for development and printing of electronmicrographs.  相似文献   

12.
13.
De Souza CP  Horn KP  Masker K  Osmani SA 《Genetics》2003,165(3):1071-1081
The Aspergillus nidulans NIMA kinase is essential for mitotic entry. At restrictive temperature, temperature-sensitive nimA alleles arrest in G2, before accumulation of NIMA in the nucleus. We performed a screen for extragenic suppressors of the nimA1 allele and isolated two cold-sensitive son (suppressor of nimA1) mutants. The sonA1 mutant encoded a nucleoporin that is a homolog of yeast Gle2/Rae1. We have now cloned SONB, a second nucleoporin genetically interacting with NIMA. sonB is essential and encodes a homolog of the human NUP98/NUP96 precursor. Similar to NUP98/NUP96, SONB(NUP98/NUP96) is autoproteolytically cleaved to generate SONB(NUP98) and SONB(NUP96). SONB(NUP98) localizes to the nuclear pore complex and contains a GLEBS domain (Gle2 binding sequence) that binds SONA(GLE2). A point mutation within the GLEBS domain of SONB1(NUP98) suppresses the temperature sensitivity of the nimA1 allele and compromises the physical interaction between SONA(GLE2) and SONB1(NUP98). The sonB1 mutation also causes sensitivity to hydroxyurea. We isolated the histone H2A-H2B gene pair as a copy-number suppressor of sonB1 cold sensitivity and hydroxyurea sensitivity. The data suggest that the nucleoporins SONA(GLE2) and SONB(NUP98) and the NIMA kinase interact and regulate nuclear accumulation of mitotic regulators to help promote mitosis.  相似文献   

14.
The nuclear pore complex (NPC) mediates protein and RNP import in and RNA and RNP export out of the nucleus of eukaryotic cells. Due to its genetic tractability, yeast offers a versatile system for investigating the chemical composition and molecular architecture of the NPC. In this context, protein A tagging is a commonly used tool for characterizing and localizing yeast NPC proteins (nucleoporins). By preembedding anti-protein A immunogold electron microscopy (immunogold EM), we have localized two yeast nucleoporins, Nsp1p and Nic96p, in mutant yeast strains recombinantly expressing these nucleoporins tagged with four (Nsp1p) or two (Nic96p) IgG binding domains of protein A (i.e., ProtA-Nsp1p and ProtA-Nic96p). We have compared the location of the recombinant fusion proteins ProtA-Nsp1p and ProtA-Nic96p (i.e., as specified by their protein A tag) to the location of authentic Nsp1p and Nic96p (i.e., as defined by the epitopes recognized by corresponding nucleoporin antibodies) and found all of them to reside at the same three NPC sites. Hence, recombinant expression and protein A tagging of the nucleoporins Nsp1p and Nic96p have not caused any significant mislocation of the fusion proteins and thus enabled mapping of these two yeast nucleoporins at the ultrastructural level in a faithful manner.  相似文献   

15.
We have isolated and characterized the gene encoding a fourth yeast glycine-leucine-phenylalanine-glycine (GLFG) repeat nucleoporin with a calculated molecular mass of 145.3 kD, and therefore termed NUP145. The amino-terminal half of Nup145p is similar to two previously identified GLFG nucleoporins, Nup116p and Nup100p (Wente, S. R., M. P. Rout, and G. Blobel. 1992. J. Cell Biol. 119:705-723). A deletion/disruption in the amino-terminal half of NUP145 (nup145 delta N) had only a slight effect on cell growth at temperatures between 17 and 37 degrees C. However, immunofluorescence microscopy of nup145 delta N cells with antinucleoporin antibodies showed that the characteristic punctate nuclear staining normally seen in wild-type yeast cells was reduced, with the majority of the signal located in one or two intense spots at the nuclear periphery. Thin section electron microscopy analysis revealed the presence of what appeared to be successive herniations of the nuclear envelope forming grape-like structures at primarily one site on the nup145 delta N nuclei. These successive herniations contained numerous NPC-like structures, correlating to the limited bright patches of anti-nucleoporin immunofluorescence signal. In some cases the successive herniations were small. Occasionally, however, multi-lobulated nuclei were seen. We suggest that the ultrastructural phenotype of nup145 delta N cells is due to a defective interaction of nup145 delta N NPCs with the surrounding pore membrane domain of the nuclear envelope. We have also analyzed the synthetic lethal phenotypes among GLFG nucleoporin mutant alleles, and found that strains harboring nup116 and either nup100 or nup145 mutations were not viable. This, in combination with the morphological analysis, may reflect overlapping yet distinct roles for these three GLFG nucleoporins in NPC-nuclear envelope interactions.  相似文献   

16.
The regulated transport of proteins across the nuclear envelope occurs through nuclear pore complexes (NPCs), which are composed of >30 different protein subunits termed nucleoporins. While some nucleoporins are glycosylated, little about the role of glycosylation in NPC activity is understood. We have identified loss-of-function alleles of ALG12, encoding a mannosyltransferase, as suppressors of a temperature-sensitive mutation in the gene encoding the FXFG-nucleoporin NUP1. We observe that nup1Delta cells import nucleophilic proteins more efficiently when ALG12 is absent, suggesting that glycosylation may influence nuclear transport. Conditional nup1 and nup82 mutations are partially suppressed by the glycosylation inhibitor tunicamycin, while nic96 and nup116 alleles are hypersensitive to tunicamycin treatment, further implicating glycosylation in NPC function. Because Pom152p is a glycosylated, transmembrane nucleoporin, we examined genetic interactions between pom152 mutants and nup1Delta. A nup1 deletion is lethal in combination with pom152Delta, as well as with truncations of the N-terminal and transmembrane regions of Pom152p. However, truncations of the N-glycosylated, lumenal domain of Pom152p and pom152 mutants lacking N-linked glycosylation sites are viable in combination with nup1Delta, suppress nup1Delta temperature sensitivity, and partially suppress the nuclear protein import defects associated with the deletion of NUP1. These data provide compelling evidence for a role for glycosylation in influencing NPC function.  相似文献   

17.
Genetic alterations causing constitutive tyrosine kinase activation are observed in a broad spectrum of cancers. Thus far, these mutant kinases have been localized to the plasma membrane or cytoplasm, where they engage proliferation and survival pathways. We report that the NUP214-ABL1 fusion is unique among these because of its requisite localization to the nuclear pore complex for its transforming potential. We show that NUP214-ABL1 displays attenuated transforming capacity as compared to BCR-ABL1 and that NUP214-ABL1 preferentially transforms T cells, which is in agreement with its unique occurrence in T cell acute lymphoblastic leukemia. Furthermore, NUP214-ABL1 differs from BCR-ABL1 in subcellular localization, initiation of kinase activity, and signaling and lacks phosphorylation on its activation loop. In addition to delineating an unusual mechanism for kinase activation, this study provides new insights into the spectrum of chromosomal translocations involving nucleoporins by indicating that the nuclear pore context itself may play a central role in transformation.  相似文献   

18.
NSP1 is a nuclear pore protein (nucleoporin) essential for cell growth. To identify the components that functionally interact with NSP1 in the living cell, we developed a genetic screen for mutants that are lethal in a genetic background of mutated, but not wild type NSP1. Fourteen synthetic lethal mutants were obtained, belonging to at least four different complementation groups. The genes of two complementation groups, NSP116 and NSP49, were cloned. Like the previously described nucleoporins, these genes encode proteins with many repeat sequences. NSP116 and NSP49, however, contain a new repetitive sequence motif 'GLFG', which classifies them as a subclass of nucleoporins. NSP116 and NSP49, tagged with the IgG binding domain of protein A and expressed in yeast, are located at the nuclear envelope. These data provide in vivo evidence that distinct subclasses of nucleoporins physically interact or share overlapping function in nuclear pore complexes.  相似文献   

19.
Proteins to be transported into the nucleus are recognized by members of the importin-karyopherin nuclear transport receptor family. After docking at the nuclear pore complex (NPC), the cargo-receptor complex moves through the aqueous pore channel. Once cargo is released, the importin then moves back through the channel for new rounds of transport. Thus, importin and exportin, another member of this family involved in export, are thought to continuously shuttle between the nuclear interior and the cytoplasm. In order to understand how nuclear transporters traverse the NPC, we constructed functional protein fusions between several members of the yeast importin family, including Pse1p, Sxm1p, Xpo1p, and Kap95p, and the green fluorescent protein (GFP). Complexes containing nuclear transporters were isolated by using highly specific anti-GFP antibodies. Pse1-GFP was studied in the most detail. Pse1-GFP is in a complex with importin-α and -β (Srp1p and Kap95p in yeast cells) that is sensitive to the nucleotide-bound state of the Ran GTPase. In addition, Pse1p associates with the nucleoporins Nsp1p, Nup159p, and Nup116p, while Sxm1p, Xpo1p, and Kap95p show different patterns of interaction with nucleoporins. Association of Pse1p with nucleoporins also depends on the nucleotide-bound state of Ran; when Ran is in the GTP-bound state, the nucleoporin association is lost. A mutant form of Pse1p that does not bind Ran also fails to interact with nucleoporins. These data indicate that transport receptors such as Pse1p interact in a Ran-dependent manner with certain nucleoporins. These nucleoporins may represent major docking sites for Pse1p as it moves in or out of the nucleus via the NPC.  相似文献   

20.
Nucleoporins (Nups) are building blocks of the nuclear pore complex (NPC) that mediate cargo trafficking between the nucleus and the cytoplasm. Although the physical structure of the NPC is well studied in yeast and vertebrates, little is known about the structure of NPCs or the function of most Nups in plants. Recently we demonstrated two Nups in Arabidopsis: LONO1 (LNO1), homolog of human NUP214 and yeast Nup159, and AtGLE1, homolog of yeast Gle1, are required for early embryogenesis and seed development. To identify LNO1 and AtGLE1 homologs in other plant species, we searched the protein databases and identified 30 LNO1-like and 35 AtGLE1-like proteins from lower plant species to higher plants. Furthermore, phylogenetic analyses indicate that the evolutionary trees of these proteins follow expected plant phylogenies. High sequence homology and conserved domain structure of these nucleoporins suggest important functions of these proteins in nucleocytoplasmic transport, growth and development in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号