首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA repair protein XPA recognizes a wide variety of bulky lesions and interacts with several other proteins during nucleotide excision repair. We recently identified regions of intrinsic order and disorder in full length Xenopus XPA (xXPA) protein using an experimental approach that combined time-resolved trypsin proteolysis and electrospray ionization interface coupled to a Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry (MS). MS data were consistent with the interpretation that xXPA contains no post-translational modifications. Here we characterize the discrepancy between the calculated molecular weight (31 kDa) for xXPA and its apparent molecular weight on SDS-PAGE (multiple bands from approximately 40-45 kDa) and gel filtration chromatography ( approximately 92 kDa), as well as the consequences of DNA binding on its anomalous mobility. Iodoacetamide treatment of xXPA prior to SDS-PAGE yielded a single 42-kDa band, showing that covalent modification of Cys did not correct aberrant mobility. Determination of sulfhydryl content in xXPA with Ellman's reagent revealed that all nine Cys in active protein are reduced. Unexpectedly, structural constraints induced by intramolecular glutaraldehyde crosslinks in xXPA produced a approximately 32-kDa monomer in closer agreement with its calculated molecular weight. To investigate whether binding to DNA alters xXPA's anomalous migration, we used gel filtration chromatography. For the first time, we purified stable complexes of xXPA and DNA +/- cisplatin +/- mismatches. xXPA showed at least 10-fold higher affinity for cisplatin DNA +/- mismatches compared to undamaged DNA +/- mismatches. In all cases, DNA binding did not correct xXPA's anomalous migration. To test predictions that a Glu-rich region (EEEEAEE) and/or disordered N- and C-terminal domains were responsible for xXPA's aberrant mobility, the molecular weights of partial proteolytic fragments from approximately 5 to 25 kDa separated by reverse-phase HPLC and precisely determined by ESI-FTICR MS were correlated with their migration on SDS-PAGE. Every partial tryptic fragment analyzed within this size range exhibited 10%-50% larger molecular weights than expected. Thus, both the disordered domains and the Glu-rich region in xXPA are primarily responsible for the aberrant mobility phenomena.  相似文献   

2.
Information on the structure and character of immunoglobulin of fishes is essential in health management. A study was carried out to characterize the serum immunoglobulin (IgM) of the Indian major carp, rohu Labeo rohita (Ham.). Rohu (500g) were immunised with bovine serum albumin (BSA) and the anti-BSA antibody was purified employing BSA-CL agarose affinity column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the purified Ig in a 3% gel under non-reduced conditions revealed a single protein having a molecular weight of 850kDa. Analysis of the purified serum in 10% SDS-PAGE under reduced conditions revealed that the immunoglobulin contained heavy and light chains with molecular weights of 85 and 23kDa, respectively. A polyclonal mouse anti-rohu IgM was prepared and used in an immunodot test which showed a specific reaction of the crude rohu anti-BSA antiserum and the purified anti-BSA IgM with BSA. Results indicate that the immunoglobulin of L. rohita is tetrameric IgM, similar to that of other fishes.  相似文献   

3.
The mosquito-larvicidal binary toxin produced by Bacillus sphaericus is composed of BinB and BinA, which have calculated molecular weights of 51.4 and 41.9 kDa, respectively. NaOH extracts of B. sphaericus spores were analyzed using SDS-PAGE. Stained gels showed bands with molecular weights corresponding to those of BinB and BinA as well as two additional bands at 110 and 125 kDa. The matrix-assisted laser desorption/ionization mass spectrum of the purified 110 and 125 kDa bands showed two peaks at 104,160 and 87,358 Da that are assigned to dimers of BinB and BinA, respectively. Mass spectral analysis of trypsin-digested 110 and 125 kDa bands showed peaks at 51,328, 43,523, 43,130, and 40,832 Da that assigned to undigested BinB, two forms of digested BinB and digested BinA, respectively. Dynamic light scattering studies showed a solution of the purified 110 and 125 kDa bands was comprised almost entirely (99.6% of total mass) of a particle with a hydrodynamic radius of 5.6+/-1.2 nm and a calculated molecular weight of 186+/-38 kDa. These data demonstrate that the binary toxin extracted from B. sphaericus spores can exist in solution as an oligomer containing two copies each of BinB and BinA.  相似文献   

4.
Some fish are warm-bodied, e.g. the bluefin tuna (Thunnus thynnus), which has a muscle temperature 12-17 degrees C higher than its environment. This endothermy is achieved by aerobic metabolism and conserved by means of a heat-exchanger system. The hemoglobins of bluefin tuna are adapted to these conditions by their endothermic oxygenation, thus contributing to the preservation of the body energy. This is a new and so far unique property of tuna hemoglobin. The primary structure of the alpha and beta chains of bluefin tuna hemoglobins is presented. The sequence was determined after enzymatic and chemical cleavages of the chains and sequencing of the peptides in gas- and liquid-phase sequencers. The alpha chains consists of 143 residues and are N-terminally acetylated. The beta chains have 146 amino acids and show two ambiguities at positions 140 and 142. The alpha chains differ from the human alpha chains in 65 amino-acid residues, the beta chains in 76. The hemoglobins of bluefin tuna, carp and man are compared and their different physiological properties are discussed in relation to the sequence data. From the primary structure of tuna hemoglobins, it is possible to propose a molecular basis for their peculiar endothermic transition from the T to the R structure.  相似文献   

5.
Bluefin tuna are endothermic and have higher temperatures, heart rates, and cardiac outputs than tropical tuna. We hypothesized that the increased cardiovascular capacity to deliver oxygen in bluefin may be associated with the evolution of higher metabolic rates. This study measured the oxygen consumption of juvenile Pacific bluefin Thunnus orientalis and yellowfin tuna Thunnus albacares swimming in a swim-tunnel respirometer at 20 degrees C. Oxygen consumption (Mo2) of bluefin (7.1-9.4 kg) ranged from 235+/-38 mg kg(-1) h(-1) at 0.85 body length (BL) s(-1) to 498+/-55 mg kg(-1) h(-1) at 1.80 BL s(-1). Minimal metabolic rates of swimming bluefin were 222+/-24 mg O(2) kg(-1) h(-1) at speeds of 0.75 to 1.0 BL s(-1). Mo2 of T. albacares (3.7-7.4 kg) ranged from 164+/-18 mg kg(-1) h(-1) at 0.65 BL s(-1) to 405+/-105 mg kg(-1) h(-1) at 1.8 BL s(-1). Bluefin tuna had higher metabolic rates than yellowfin tuna at all swimming speeds tested. At a given speed, bluefin had higher metabolic rates and swam with higher tailbeat frequencies and shorter stride lengths than yellowfin. The higher M dot o2 recorded in Pacific bluefin tuna is consistent with the elevated cardiac performance and enhanced capacity for excitation-contraction coupling in cardiac myocytes of these fish. These physiological traits may underlie thermal-niche expansion of bluefin tuna relative to tropical tuna species.  相似文献   

6.
T J Eddinger  R A Murphy 《Biochemistry》1988,27(10):3807-3811
Smooth muscle myosin heavy chains [SM1, approximately 205 kilodaltons (kDa), and SM2, approximately 200 kDa] were separated on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Peptide maps of the two heavy chains showed unique patterns. Limited proteolytic cleavage of purified swine stomach myosin was performed by using a variety of proteases to produce the major myosin fragments which were resolved on SDS gels. A single band was obtained for heavy meromyosin in the soluble fraction following chymotrypsin digestion. However, a variable number of bands were observed for light meromyosin fragments in the insoluble fraction after chymotrypsin digestion. Peptide mapping indicated that the two bands observed after short digestion times with chymotrypsin had relative mobility and solubility properties consistent with approximately 100- and 95-kDa light meromyosin (LMM) fragments. These results indicate that the region of difference between SM1 and SM2 lies in the LMM fragment.  相似文献   

7.
The objectives were to separate canine seminal plasma proteins (with SDS-PAGE) and to determine the correlation between specific proteins and semen characteristics. Three ejaculates from 20 mixed-breed dogs, of unknown fertility, were collected by digital manipulation. Ejaculate volume and color, sperm motility, sperm vigor, percentage of morphologically normal spermatozoa, and membrane integrity (hypoosmotic swelling test and fluorescent staining) were assessed. For each dog, seminal plasma was pooled from all three ejaculates and proteins were separated with SDS-PAGE, using polyacrylamide concentrations of 13% and 22% in the separation gels. After staining, gel images were digitized to estimate molecular weights (MW) and integrated optical density (IOD) of each lane and of individual bands. Total seminal plasma protein concentration was 2.19+/-1.56 g/dL (mean+/-SD; range 1.12-5.19 g/dL). A total of 37 protein bands were identified (although no dog had all 37 bands). In the 13% gel, molecular weights ranged from 100.6 to 17.1 kDa, with four bands (49.7, 33.2, 26.4, and 19.5 kDa) present in samples from all dogs. In the 22% gel, molecular weights ranged from 15.6 to 3.6 kDa, with nine bands (15.6, 13.5, 12.7, 11.7, 10.5, 8.7, 7.8, 5.6, and 4.9 kDa) present in samples from all dogs. Combined for both gels, the majority of bands (85%) had molecular weights <17 kDa, with B20 (15.6 kDa) in high concentrations in samples from all dogs. There were positive correlations (P < or = 0.01) between two bands, B4 (67 kDa) and B5 (58.6 kDa), and sperm motility (r=0.66 and r=0.46), sperm vigor (r=0.56 and r=0.66), percentage of morphologically normal spermatozoa (r=0.55 and r=0.59), the hypoosmotic swelling test (r=0.76 and r=0.68), and fluorescent staining (r=0.56 and r=0.59), respectively. In conclusion, 37 proteins were identified in seminal plasma; two were significantly correlated with semen characteristics.  相似文献   

8.
The diets of 1219 southern bluefin tuna, Thunnus maccoyii, from inshore (shelf) and offshore (oceanic) waters off eastern Tasmania were examined between 1992 and 1994. Immature fish (< 155 cm fork length) made up 88% of those examined. In all, 92 prey taxa were identified. Inshore, the main prey were fish (Trachurus declivis and Emmelichthys nitidus) and juvenile squid (Nototodarus gouldi). Offshore, the diversity was greater, reflecting the diversity of micronekton in these waters. Interestingly, macrozooplankton prey (e.g. Phronima sedentaria) were prevalent in tuna > 150 cm. The offshore tuna, when in subantarctic waters, ate relatively more squid than when in the East Australia Current. In the latter, fish and crustacea were more important, although there were variations between years. No relationship was found between either prey type or size with size of tuna. Feeding was significantly higher in the morning than at other times of the day. The mean weight of prey was significantly higher in inshore-caught tuna than in those caught offshore. We estimated that the mean daily ration of southern bluefin tuna off eastern Tasmania was 0.97% of wet body weight day−1. However, the daily ration of inshore-caught tuna was ∼ 3 times higher (2.7%) than for tuna caught offshore (0.8%) indicating that feeding conditions on the shelf were better than those offshore. Our results indicate that the inshore waters of eastern Tasmania are an important feeding area for, at least, immature southern bluefin tuna. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Serum immunoglobulins [Ig] of rohu [Labeo rohita] were purified by affinity chromatography using bovine serum albumin as capture ligand. The purified rohu Ig [r-Ig] had a molecular weight [MW] of 880 kDa as determined with gel filtration chromatography. The heavy chain of r-Ig had an MW of 77.8 kDa and that of light chain was 26.4 kDa in SDS-PAGE. Purified r-Ig was used for the production of two anti-rohu Ig monoclonal antibodies [D7 and H4] that belonged to subclass IgG2b and IgG1, respectively. Both the MAbs were specific to heavy chain of r-Ig as seen in Western blotting. Anti-rohu Ig MAb was used as a diagnostic reagent in ELISA and immunocytochemical assays to demonstrate its application for sero-surveillance and for immunological studies in rohu. A competitive ELISA was used to demonstrate the antigenic relatedness of r-Ig with whole serum Ig of other fish species. Cross reactivity of anti-rohu Ig MAb was observed with serum Ig of Catla catla and Cirrihinus mrigala. No reactivity to serum Ig of Ophiocephalus striatus and Clarias gariepinus was seen. Anti-rohu Ig MAb was found to be suitable for the detection of pathogen specific [Edwardsiella tarda] antibodies in serum of immunized rohu by an indirect ELISA. In flow cytometry using D7 MAb, the mean percentage [+/-SE] of Ig positive cells in spleen and blood of rohu were found to be 64.85% [+/-2.34] and 51.84% [+/-2.55] of gated lymphocytes, respectively. Similarly, D7 MAb also stained 52.84% [+/-1.30] and 10.5% of gated lymphocytes in kidney and thymus, respectively. The anti-rohu Ig MAbs also showed specific staining of Ig bearing cells in spleen sections by the indirect immunoperoxidase test.  相似文献   

10.
RNA/DNA ratio is a useful and reliable indicator of the nutritional status of fish larvae and juveniles. In order to assess the nutritional status of field-caught larval Pacific bluefin tuna Thunnus orientalis (Temminck et Schlegel), starvation experiments of hatchery-reared larvae were conducted and changes in the RNA/DNA ratio of fed and starved larvae were analyzed. Starvation experiments were conducted every 3 days after first feeding. The survival rate of Pacific bluefin tuna larvae ranged 10-50% after 1 day of starved conditions and growth retardation was observed immediately. These results suggest that Pacific bluefin tuna larvae have a very low tolerance to starvation. The RNA/DNA ratios of fed larvae were approximately 2.0-4.0. On the other hand, the value of starved larvae significantly decreased to 1.0-3.0. The nutritional status of 3 cohorts of field-caught tuna larvae collected in the northwestern Pacific Ocean was examined based on the value of the RNA/DNA ratio of the 1 day starved larvae. 4.35-25.77% of the cohorts were regarded as the “starving condition”, which was negatively correlated to the ambient prey densities. These findings suggest that the nutritional condition of larval Pacific bluefin tuna was influenced by the ambient prey density, and starvation itself and starvation-induced predation could greatly contribute to mortality in the larval period of Pacific bluefin tuna.  相似文献   

11.
Structures of three pectic arabinogalactans, one from Vernonia kotschyana (Vk2a) and two from Cochlospermum tinctorium (Ct50A1 and Ct50A2), and their complement fixation and induction of B cell proliferation in vitro were compared. The polysaccharide Vk2a expressed potent biological activity in both assays compared with Ct50A1 and Ct50A2. Vk2a possessed a very high molecular weight (1150 +/- 20 kDa) compared with Ct50A1 and Ct50A2 which both showed a polydisperse nature with the highest molecular weight polymers in each fraction estimated at approximately 105 kDa (Ct1a) and 640 +/- 100 kDa (Ct2a), respectively. The HMW polymers showed complement fixation in the same range as the native fractions. The arabinogalactan II content was low in Vk2a (2%) compared with that in Ct50A1 (23%) and Ct50A2 (12%). The high molecular weight polymers were subjected to digestion with a beta-d-(1, 3)-galactanase-rich fraction from Driselase, oligomers were isolated by HPAEC, and their finer structures were determined by MALDI- and ES-qoToF-MS, linkage, and monosaccharide composition analyses. Vk2a consists of both a galacturonan core and a rhamnogalacturonan core rich in neutral side chains. The backbones of both Ct-polysaccharides consist mainly of RG-I regions with numerous neutral side chains dominated by galactosyl residues, whereas the homogalacturonan regions seem to be small. Differences in the chain lengths of the 6-linked galacto-oligosaccharides attached to the 3-linked galactan core could not be related to the differences in the potencies of the biological activities observed.  相似文献   

12.
Sepharose 4B affinity chromatography of Trichosanthes anguina seed extract and subsequent elution with galactose resulted in the isolation of an apparently single lectin with molecular weight of 45,000 +/- 700. However, major amount of the hemagglutinating activity was recovered as unadsorbed protein fraction. High affinity matrix Lactamyl Seralose could retain most of the galactose specific lectin activity from fraction 'A' which was eluted with lactose. It is evident from PAGE and SDS-PAGE analysis of the purified protein that T. anguina seeds contains a mixture of isolectins ranging in molecular weight from 30,000 to 50,000 +/- 1300. Periodic Acid Schiff's staining of the gels revealed this lectin complex to be a combination of glycosylated and non-glycosylated lectins. Two Isolectins SLc and IEL from within this complex have been isolated by affinity and ion exchange chromatography respectively. Apparent homology of these two lectins is indicated by their identical molecular weight (45 kDa), sub unit composition, non glycoprotein nature and immunological identity. However, these two lectins show minor differences in their biological and physicochemical properties. The peptide maps of the two lectins obtained after digestion with Trypsin and Pronase E also indicate minor changes in the primary structure.  相似文献   

13.
The molecular dimensions of the extracellular, hexagonal bilayer chlorocruorin of the polychaete Eudistylia vancouverii, determined by scanning transmission electron microscopy (STEM) of negatively stained specimens, were diameter of 27.5 nm and height of 18.5 nm. STEM mass measurements of unstained, freeze-dried specimens provided a molecular mass (Mm) of 3480 +/- 225 kDa. The chlorocruorin had no carbohydrate and its iron content was 0.251 +/- 0.021 wt%, corresponding to a minimum Mm of 22.4 kDa. Mass spectra and nuclear magnetic resonance spectra of the prosthetic group confirmed it to be protoheme IX with a formyl group at position 3. SDS/polyacrylamide gel electrophoresis, reversed-phase chromatography and N-terminal sequencing suggested that the chlorocruorin consists of at least three chains of approximately 30 kDa and five chains of approximately 16 kDa; the two types of subunits occur in the ratio 0.26:0.74(+/- 0.08). Complete dissociation of the chlorocruorin at neutral pH in the presence of urea or guanidine hydrochloride, followed by gel filtration, produced elution profiles consisting of three peaks, B, C and D. Fractions B and C consisted of the approximately 16 kDa chains and fraction D consisted of the approximately 30 kDa subunits. Mass measurements of particles in STEM images of unstained, freeze-dried fractions B and C provided Mm of 208 +/- 23 kDa and 65 +/- 12 kDa, respectively, in agreement with 191 +/- 13 kDa and 67 +/- 5 kDa obtained by gel filtration. Particles with Mm = 221 +/- 21 kDa were also observed in STEM images of unstained, freeze-dried chlorocruorin. These results imply that the chlorocruorin structure, in addition to the approximately 30 kDa linker subunits that have 0.26 to 0.47 heme groups/chain, comprises approximately 65 kDa tetramers and approximately 200 kDa dodecamers (trimers of tetramers) of globin chains. The stoichiometry of the tetramer and linker subunits calculated from molar amino acid compositions was 34 +/- 4 and 43 +/- 9. The complete dissociation of the chlorocruorin was accompanied by a 50 to 75% loss of the 55 +/- 14 Ca2+/mol protein, and was decreased to approximately 35% by the presence of 10 to 25 mM-Ca2+. Reassociation of dissociated chlorocruorin was maximal in the presence of 2.5 to 5 mM-Ca2+. The dodecamer and/or tetramer subunits in the absence or presence of Ca2+ exhibited very limited (less than 10%) reassociation into hexagonal bilayer structures, only in the presence of the linker subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Biochemical and structural studies of tenascin/hexabrachion proteins   总被引:4,自引:0,他引:4  
Tenascin is a large, disulfide-bonded glycoprotein of the extracellular matrix. The predominant form of tenascin observed by electron microscopy is a six-armed oligomer, termed a hexabrachion. We have determined the molecular mass of the native human hexabrachion to be 1.9 x 10(6) Da by sedimentation equilibrium analysis and by electrophoresis on non-reducing agarose gels. On reducing polyacrylamide gel electrophoresis (SDS-PAGE), human tenascin showed a single prominent band at 320 kDa and minor bands of 220 and 230 kDa. The molecular weight of the native human hexabrachion is thus consistent with a disulfide-bonded hexamer of the 320 kDa subunits. Upon treatment with neuraminidase, the apparent molecular weights of all human and chicken tenascin subunits on reducing SDS-PAGE were decreased by about 10 kDa. Prolonged incubation with alpha-mannosidase, however, caused no apparent change in the apparent molecular weight of tenascin subunits. Sedimentation in a cesium chloride gradient gave a higher buoyant density for human tenascin than for fibronectin, suggesting that it has a higher degree of glycosylation. The far-UV circular dichroism spectrum indicates a predominance of beta-structure and a lack of collagen-like or alpha-helical structure. When human hexabrachions were reduced and acetylated, the resulting fragments were single arms which sedimented at 6 S in glycerol gradients and migrated at 320 kDa on non-reducing gels. Treatment of tenascin with trypsin and alpha-chymotrypsin also produced large fragments which were fractionated by gradient sedimentation and analyzed by non-reducing SDS-PAGE and electron microscopy. We present a structural model for the assembly of the observed fragments into the elaborate native hexabrachion.  相似文献   

15.
Distinct Ig H chains in a primitive vertebrate, Eptatretus stouti   总被引:2,自引:0,他引:2  
Serum Ig from the Pacific hagfish, Eptatretus stouti, was isolated by affinity chromatography using a specific mAb (H.45). Analysis of the approximately 210-kDa molecule by SDS-PAGE under reducing conditions revealed two H chains of approximately 77 kDa (H1) and approximately 70 kDa (H2) and L chains of approximately 30 kDa. H1 and H2 were shown to differ with respect to their peptide maps, amino-terminal amino acid sequences, and reactivity to the mAb H.45, suggesting that they represent discrete H chain isotypes. Two-dimensional nonreducing/reducing SDS-PAGE demonstrated that H and L chains were covalently linked predominantly as H-H-L and H-L configurations. Noncovalently bound L chains were also found. H-H-L complexes were shown to contain H1-H2 heterodimers of H chains in addition to H1-H1 homodimers.  相似文献   

16.
Detergent-solubilization of hog gastric microsomal membrane proteins followed by affinity chromatography using wheat germ agglutinin or Ricinus communis I agglutinin resulted in the isolation of five glycoproteins with the apparent molecular masses on sodium dodecyl sulfate polyacrylamide gels of (in kDa): 60-80 (two glycoproteins sharing this molecular mass); 125-150; and 190-210. In the nonionic detergent Nonidet P-40 (NP-40), the 94 kDa H+/K(+)-ATPase was recovered exclusively in the lectin-binding fraction; however, in the cationic detergent dodecyltrimethylammonium bromide, most of the ATPase was recovered in the nonbinding fraction. Detection of glycoproteins either by periodic acid-dansyl hydrazine staining of carbohydrate in polyacrylamide gels or by Western blots probed with lectins indicated that the majority of the ATPase molecules are not glycosylated. In addition, in the absence of microsomal glycoproteins, the NP-40-solubilized ATPase does not bind to a lectin column. Taken together, these results suggest that the recovery of NP-40-solubilized ATPase in the lectin-binding fraction is due to its noncovalent interaction with a gastric microsomal glycoprotein. Immunoprecipitation of the ATPase from NP-40-solubilized microsomal membrane proteins resulted in the co-precipitation of a single 60-80 kDa glycoprotein. Characterization of the 60-80 kDa glycoprotein associated with the ATPase revealed that: it is a transmembrane protein; it has an apparent core molecular mass of 32 kDa; and, it has five asparagine-linked oligosaccharide chains. Given its similarity to the glycosylated beta-subunit of the Na+/K(+)-ATPase, this 60-80 kDa gastric microsomal glycoprotein is suggested to be a beta-subunit of the H+/K(+)-ATPase.  相似文献   

17.
AMP-deaminase was purified from skeletal muscle of rat by the affinity chromatography on phosphocellulose and gel-filtration on Sephadex G-200. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE) has shown three protein bands on each step of purification. One of them corresponds to the subunit of tetrameric AMP-deaminase molecule with molecular weight of 76 kDa and two others--to the protein subunit with molecular weight of 42 and 33 kDa. Repeated SDS-PAGE of the main subunit band has revealed again all these protein bands. The data obtained indicate that AMP-deaminase subunit of 76 kDa is able to dissociate on two polypeptide chains with similar values of molecular weights in the presence of SDS.  相似文献   

18.
Y Gao  R Jiang  J Qie  Y Chen  D Xu  W Liu  Q Gao 《Carbohydrate polymers》2012,90(4):1411-1414
Zymosan was hydrolysed with HCl and fractionated by ultrafiltration and dialysis to obtain water-soluble fragments A, B and C. Physical and chemical analyses showed that these fractions are composed primarily of glucose and have molecular weights of 8kDa, 5kDa and 2kDa, respectively. A glycosidic linkage analysis indicated that they are mainly composed of β-1,3-glucans. Fragment A, which has the highest molecular weight, contains approximately 30% β-1,6-linked glucans, but fragment C is almost entirely composed of linear β-1,3-glucan chains. The anti-chronic atrophic gastritis activity experiments showed that fragment A has significant activity, the activity of zymosan is quite low and the activities of fragments B and C are in between those of fragment A and zymosan.  相似文献   

19.
Attempts were made to separate and characterize cellulose-binding proteins (CBPs) from both the culture supernatant and cell lysate of Eubacterium cellulosolvens 5. Once the CBPs were bound to Avicel cellulose, they were then effectively eluted with the solution containing 3.2 or 5% sodium dodecyl sulfate (SDS), but not eluted with the solution containing various kinds of carbohydrates and reagents. Namely, CBPs in both the culture supernatant and cell lysate of the bacterium bound tightly and strongly to cellulose. The SDS-polyacrylamide gel electrophoresis (SDS-PAGE) of the eluted CBPs indicated that the CBPs contained the two major proteins having the molecular weights of approximately 160 and 84 kilodaltons (kDa) and one sub-major protein having a molecular weight of approximately 140 kDa. Zymogram analysis after the SDS-PAGE of the eluted CBPs showed that two proteins exhibited the highest levels of carboxymethyl cellulase (CMCase) activity corresponding to the molecular weights of approximately 160 and 90 kDa. A major protein having the molecular weight of approximately 160 kDa exhibited a distinct CMCase activity and was designated as CBPE1. Western immunoblot analysis indicated that the proteins prepared from 16 representative strains of rumen bacteria did not cross-react with rabbit antiserum raised against CBPE1. Thus, CBPE1 may be a unique CBP that plays an important role in the adhesion of the bacterium to cellulose.  相似文献   

20.
Routine metabolic rate (RMR) was measured in fasting southern bluefin tuna, Thunnus maccoyii, the largest tuna species studied so far (body mass=19.6 kg (+/-1.9 SE)). Mean mass-specific RMR was 460 mg kg(-1) h(-1) (+/-34.9) at a mean water temperature of 19 degrees C. When evaluated southern bluefin tuna standard metabolic rate (SMR) is added to published values of other tuna species, there is a strong allometeric relationship with body mass (423 M(0.86), R(2)=0.97). This demonstrates that tuna interspecific SMR scale with respect to body mass similar to that of other active teleosts, but is approximately 4-fold higher. However, RMR (not SMR) is most appropriate in ram-ventilating species that are physiologically unable to achieve complete rest. Respiration was measured in a large (250,000 l) flexible polypropylene respirometer (mesocosm respirometer) that was deployed within a marine-farm sea cage for 29 days. Fasted fish were maintained within the respirometer up to 42 h while dissolved oxygen dropped by 0.056 (+/-0.004) mg l(-1) h(-1). Fish showed no obvious signs of stress. They swam at 1.1 (+/-0.1) fork lengths per second and several fed within the respirometer immediately after measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号