首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 219 毫秒
1.
R B Devlin  C P Emerson 《Cell》1978,13(4):599-611
The synthesis of contractile proteins has been studied during the differentiation of quail skeletal muscle myoblasts in culture. Myoblast differentiation was synchronized by transferring secondary cultures of rapidly dividing myoblasts into medium lacking cell division-promoting factors. Cultures at various stages of differentiation were then pulse-labeled with 35S-methionine, and cell extracts were resolved by electrophoresis on two-dimensional gels. Incorporation into specific proteins was quantitated by autoradiography and fluorography using a scanning densitometer. Contractile proteins synthesized by muscle cultures were identified by their co-electrophoresis on two-dimensional gels with contracile proteins purified from quail breast muscle. Our results show that the synthesis of myosin heavy chain, two myosin light chains, two subunits of troponin and two subunits of tropomyosin is first detected at the time of myoblast fusion and then rapidly increase at least 500 fold to maximum rates which remain constant in muscle fibers. Both the kinetics of activation and the molar rates of synthesis of these contractile proteins are virtually identical. Muscle-specific actin (alpha) synthesis also increases at the time of myoblast fusion, but this actin (alpha) is synthesized at 3 times the rate of other contractile proteins. The synthesis of 30 other muscle cell proteins was quantitated, and most of these are shown to follow different patterns of regulation. From these results, we conclude that the contractile proteins are regulated coordinately during myoblast differentiation.  相似文献   

2.
The gram-negative bacterium Caulobacter crescentus progresses through three distinct morphological transitions, including both motile and nonmotile cell types, during its cell cycle. Assessment of the extent of regulation of polypeptide synthesis during these transitions was carried out with two-dimensional gel electrophoresis of whole-cell extracts. Synchronous cells were pulse-labeled with 14C-amino acids for 10-min intervals throughout the entire 2-h cell cycle. The radioactively labeled polypeptides were analyzed by two-dimensional polyacrylamide gel electrophoresis. Autoradiograms resulting from fluorography of the second dimension provided the detection of approximately 1,000 unique spots. The 600 predominant polypeptide spots, representing approximately 40% of the coding capacity of Caulobacter deoxyribonucleic acid, were analyzed for major changes in their synthetic rates. Quantitation by densitometric scanning of individual polypeptide spots represented on the sequential fluorograms demonstrated significant changes in the temporal synthesis of 6% of the polypeptides. Extracts from asynchronous cells were fractionated to obtain total-membrane and deoxyribonucleic acid-binding polypeptide fractions. Subsequent electrophoresis of these cellular fractions revealed approximately 100 membrane polypeptides and 25 deoxyribonucleic acid-binding polypeptides. Eight of the regulated polypeptides were identified as membrane or deoxyribonucleic acid-binding proteins. The regulated polypeptides can be grouped into three main categories based on their interval of synthesis. The three categories are in direct correlation with the three distinct cell cycle stages. This analysis has also revealed a unique transition period in the cell cycle in which a significant proportion of gene expression is regulated.  相似文献   

3.
The study of the polypeptide structure of cardiac muscle proteins of the inbred mice 129 Re + dy/dy by two-dimensional electrophoresis has revealed quantitative and qualitative variations in four polypeptides out of 161 analyzed ones. It is supposed that the protein fractions N 14 and O 13 may contribute to the development of cardiac pathology. Gene-dosage dependence is identified for the fraction O 13.  相似文献   

4.
The methods of centrifugal elutriation, two-dimensional gel electrophoresis, and dual isotopic labeling were applied to the study and identification of a number of purified yeast proteins. The location of polypeptide spots corresponding to specific proteins was determined on two-dimensional gels. A dual-label method was used to determine the rates of synthesis through the cell cycle of the identified proteins as well as to confirm the results of previous studies from our laboratory on unidentified proteins. The identified proteins, and the more generally defined phosphorylated, heat shock, and heat stroke proteins were found to follow the general pattern of exponential increase in rate of synthesis through the cell cycle. In addition, colorimetric enzyme activity assays were used to examine the catabolic enzyme alpha-glucosidase (EC 3.2.1.20). Both the activity and synthesis of alpha-glucosidase were found to be nonperiodic with respect to the cell cycle. These data contrast with earlier reports of periodicity, which employed induction and selection synchrony to study enzyme expression through the yeast cell cycle.  相似文献   

5.
Nonpolysomal cytoplasmic (free) mRNA.protein (mRNP) complexes of embryonic chicken muscle were purified by a combination of oligo(dT)-cellulose chromatography and sucrose density gradient centrifugation. The protein moieties of the purified mRNP complex were analyzed by two-dimensional gel electrophoresis using separation according to charge in the first dimension and molecular weight in the second. Sixteen polypeptides of Mr = 27,000 to 75,000 were present in the mRNP complex. These mRNP polypeptides displayed different electrophoretic migration properties than those of ribosomal proteins. A protein kinase activity was found associated with the mRNP. This enenzyme was able to transfer phosphate group(s) from ATP to at least three acidic mRNP polypeptides of Mr = 27,000, 38,000, and 73,000 and one basic polypeptide of Mr = 75,000. Among these, the Mr = 38,000 acidic polypeptide was the best acceptor of phosphate groups.  相似文献   

6.
In fast twitch skeletal muscle, the signal for excitation-contraction coupling is transferred from transverse tubule across the triad junction; calcium is thereby released from the terminal cisternae of sarcoplasmic reticulum triggering muscle contraction. Recently, the feet structures of terminal cisternae, which bridge the gap at the triad junction, have been identified as the ryanodine receptor and in turn with the calcium release channels of sarcoplasmic reticulum. The latter consists of an oligomer of a single high molecular weight polypeptide (Mr 360,000). This study attempts to identify the component in the transverse tubule which ligands with the foot structure to form the triad junction. The purified ryanodine receptor, derivatized with sulfosuccinimidyl-2-(p-azidosalicylimido)-1,3'-dithiopropionate (SASD), a thiol-cleavable, 125I-iodinatable, and photoactive probe, was shown to selectively cross-link to a protein with Mr of 71,000 in isolated transverse tubules. This coupling protein was purified from transverse tubule by solubilization with the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) and then purified by sequential column chromatography. In the absence of sulfhydryl agents, the purified polypeptide has an Mr of 61,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A complementary approach using SASD was employed to confirm association of the coupling protein with the ryanodine receptor of terminal cisternae. We conclude that the transverse tubule coupling protein together with the ryanodine receptor (foot structure) is involved in the liganding between transverse tubule and terminal cisternae of sacroplasmic reticulum.  相似文献   

7.
Cardiac ryanodine receptor was purified from canine ventricle as a single polypeptide of Mr 400,000 by a stepwise sucrose density gradient centrifugation and heparin-Sepharose CL-4B column chromatography. The [3H]ryanodine binding capacity (Bmax) was 60-fold enriched from cardiac microsomes without a change in affinity for [3H]ryanodine. The purity of the final preparation was determined to be greater than 95% by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using this purified preparation as an antigen, we produced six monoclonal antibodies which immunoprecipitated the cardiac ryanodine receptor. Three of these antibodies recognized the cardiac receptor on immunoblot analysis. In contrast, no protein in the microsomes isolated from Type I (slow) or Type II (fast) skeletal muscles was recognized by these antibodies. The [3H]ryanodine binding to cardiac and skeletal muscle microsomes was dependent on free Ca2+ concentration. In skeletal muscle microsomes, the [3H]ryanodine binding was remarkably enhanced by the addition of ATP or KCl and inhibited by high free Ca2+, whereas it was less sensitive to these agents in cardiac microsomes. All of these results clearly demonstrate that the cardiac ryanodine receptor is different from the skeletal muscle receptors and is not present even in Type I (slow) skeletal muscle fibers, in which cardiac isoforms of some of the muscle proteins are constitutively expressed.  相似文献   

8.
The purified receptor for the 1,4-dihydropyridine Ca2+ channel blockers from rabbit skeletal muscle contains protein components of 170,000 Da (alpha 1), 175,000 Da (alpha 2), 52,000 Da (beta), and 32,000 Da (gamma) when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. Subunit-specific polyclonal antibodies have now been prepared and used to characterize the association of the 32,000-Da polypeptide (gamma subunit) with other subunits of the dihydropyridine receptor. Immunoblot analysis of fractions collected during purification of the dihydropyridine receptor shows that the 32,000-Da polypeptide copurified with alpha 1 and alpha 2 subunits at each step of the purification. In addition, monoclonal antibodies against the alpha 1 and beta subunits immunoprecipitate the digitonin-solubilized dihydropyridine receptor as a multisubunit complex which includes the 32,000-Da polypeptide. Polyclonal antibodies generated against both the nonreduced and reduced forms of the alpha 2 subunit and the gamma subunit have been used to show that the 32,000-Da polypeptide is not a proteolytic fragment of a larger component of the dihydropyridine receptor and not disulfide linked to the alpha 2 subunit. In addition, polyclonal antibodies against the rabbit skeletal muscle 32,000-Da polypeptide specifically react with similar proteins in skeletal muscle of other species including avian and amphibian species. Thus, our results demonstrate that the 32,000-Da polypeptide (gamma subunit) is an integral and distinct component of the dihydropyridine receptor.  相似文献   

9.
The sarcoplasmic reticulum from skeletal muscle constitutes an elaborate membrane system that contains a considerable number of integral and very large proteins that exist in highly complex supramolecular clusters. Conventional proteomics using two-dimensional gel electrophoresis greatly underestimates the presence of these proteins. Here, we have applied one-dimensional gradient gels and on-membrane digestion to overcome this technical problem. Mass spectrometric analysis has determined the presence of 31 distinct protein species in the sarcoplasmic reticulum, including key Ca2+-handling proteins such as the ryanodine receptor, Ca2+-ATPase, calsequestrin and sarcalumenin. Immunoblotting confirmed the relative position of these Ca2+-regulatory elements in analytical gel replicas. Interestingly, aldolase and phosphofructokinase were found to be present in the purified sarcoplasmic reticulum, supporting the idea of a close physical coupling between the glycolytic pathway and the energy-dependent sarcoplasmic reticulum. Hence, on-membrane digestion is highly suitable as the method of choice for studying integral and high-molecular-mass proteins in proteomic studies.  相似文献   

10.
Tritiated analogues of the Ca2+ channel blockers such as [3H] PN200-110, [3H] verapamil and [3H] diltiazem have been used to identify and isolate Ca2+ antagonist receptors. The Ca2+ antagonist binding sites were solubilized from skeletal muscle transverse tubules with the detergent CHAPS and purified by wheat germ lectin column chromatography and sucrose density gradient centrifugation. The isolated proteins retained their ability to bind the various classes of Ca2+ channel blockers. Polypeptides of 170, 150, 108, 56, and 32 kDa were found to be present in the purified receptor fraction when analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis under non-reducing conditions. The apparent molecular weight of the 170 kDa polypeptide changed to 145 kDa in the presence of reducing agents, as where the apparent molecular weight of the 150, 108, 56 and 32 kDa peptides remained unchanged. An endogenous protein-kinase present in the original membranes, co-purified with the receptor and stimulated the phosphorylation of the 150 and 56 kDa polypeptides in the isolated fraction.  相似文献   

11.
The 1,4-dihydropyridine receptor purified from rabbit skeletal muscle contains four polypeptide components of 175,000 Da (nonreduced)/150,000 Da (reduced), 170,000, 52,000, and 32,000 Da (Leung, A. T., Imagawa, T., and Campbell, K. P. (1987) J. Biol. Chem. 262, 7943-7946). A monoclonal antibody specific to the 52,000-Da polypeptide component of the dihydropyridine receptor has been produced and used in immunoprecipitation and immunoblotting experiments to demonstrate that the 52,000-Da polypeptide is an integral subunit of the purified dihydropyridine receptor. Peptide mapping experiments with 32P-labeled dihydropyridine receptor have also demonstrated that the 52,000-Da polypeptide is distinct from and not a proteolytic fragment of the 170,000-Da subunit. Densitometric scanning of Coomassie Blue-stained sodium dodecyl sulfate-polyacrylamide gels of the purified dihydropyridine receptor has demonstrated that the 52,000-Da polypeptide exists in a 1:1 stoichiometric ratio with the 170,000-, 175,000/150,000-, and 32,000-Da subunits of the dihydropyridine receptor. Electron microscopy of the freeze-dried, rotary-shadowed dihydropyridine receptor has shown that the preparation contains a homogeneous population of 16 x 22-nm ovoidal particles large enough to contain all four polypeptides of the dihydropyridine receptor. The particles have two distinct components of similar size which may represent the location in the molecule of the two larger subunits.  相似文献   

12.
In a recent paper we gave evidence by two-dimensional electrophoresis that, in man, the class II antigen associated glycoprotein p31 (also called Ii, In, M1, DRγ, XMl) is expressed not only in the membranes of B lymphocytes but also in those of muscle, liver and brain. It can therefore be assumed that the p31 is not really associated with the human class II antigens but is a ubiquitous molecule.
Here we demonstrate for the first time that the muscle membranes of cattle and pig contain corresponding polypeptides, with a molecular weight of about 31 kDa and an isoelectric point around 7.5, which comigrate in two-dimensional electrophoresis with p31 derived from the human muscle. Thus, in cattle and pig too, these proteins seem to be equivalent to the class II antigen associated p31, showing a tissue distribution wider than observed up to now. The molecules can be concentrated by ion-exchange chromatography.  相似文献   

13.
The presence of low molecular weight GTP-binding proteins was investigated in subcellular fractions from skeletal muscle. Skeletal muscle homogenate, transverse tubules, triads, sarcoplasmic reticulum membranes, and cytosol fractions were separated in sodium dodecyl sulfate-gel electrophoresis and blotted onto nitrocellulose. The presence of GTP-binding proteins was explored by incubation of these blots with [alpha-32P] GTP. GTP labeled two polypeptides of Mr = 23,000 and 29,000 in all the fractions examined. Binding of [alpha-32P]GTP was specific and dependent on Mg2+. The 23-kDa polypeptide was labeled to a higher extent with [alpha-32P]GTP than the 29-kDa polypeptide, although both were enriched in transverse tubule fractions. A GTP-binding polypeptide of 40 kDa was also enriched in transverse tubule preparations and identified as Gi alpha by immunostaining with anti-Gi alpha. Using a blot overlay approach and [alpha-32P]GTP-labeled cytosolic components, several polypeptides were identified that interact with the 23- and 29-kDa GTP-binding proteins. Among these components were polypeptides of Mr = 60,000, 47,000, 44,000, 42,000, and 38,000, which were mainly of cytosolic origin but also associated with triads and transverse tubule membranes. The 47-, 44-, 42-, and 38-kDa polypeptides were found to be structurally related to the glycolytic enzymes enolase, 3-phosphoglyceric phosphokinase, aldolase, and glycoeraldehyde-3-phosphate dehydrogenase, respectively. The purified glycolytic enzymes specifically bound the 23- and 29-kDa GTP-binding proteins under both denaturing and nondenaturing conditions. The association of the GTP-binding proteins with these polypeptides was resistant to detergents such as 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS), Triton X-100, and Tween. A 23-kDa GTP-binding protein purified from chromaffin cells bound to a 157-kDa polypeptide in triads and chromaffin cell membranes. The 157-kDa polypeptide was a minor component in these membranes and not related to the subunits of the dihydropyridine receptor. In view of the proposed function of low molecular weight GTP-binding proteins in processes such as membrane communication and secretion coupling, the association of these proteins with transverse tubules and triads in skeletal muscle is discussed in terms of a role in signal transmission.  相似文献   

14.
Monoclonal antibodies (mAb) and a polyclonal antiserum were produced against a kainic acid receptor (KAR) purified from frog brain. Several of the mAb and the antiserum immunoprecipitated [3H]kainic acid binding activity from solubilized preparations of frog brain and labeled a group of proteins on immunoblots that migrated at Mr = 48,000. These results confirm that the ligand binding subunit of the frog brain KAR is contained in the Mr = 48,000 proteins. Immunoblots from different frog tissues demonstrated that the antibody reactivity was highly concentrated in the frog nervous system with no detectable immunoreactivity observed in non-neuronal tissues. The purified KAR was radioiodinated and subjected to two-dimensional gel electrophoresis and autoradiography. A series of proteins was detected at Mr = 48,000 with isoelectric points from 5.5 to 6.3. The anti-KAR mAb and the antiserum reacted with the same group of proteins from frog whole brain after separation by two-dimensional gel electrophoresis. Peptide maps of the 125I-labeled KAR separated by two-dimensional gel electrophoresis demonstrated that the group of proteins clustered at Mr = 48,000 is homologous. mAb KAR-B1 reacted on immunoblots with a protein in rat brain with a Mr = 99,000. This protein comigrated with an unreduced form of the KAR in frog brain. It was present in rat cerebral cortex, hippocampus, and cerebellum but was not detected in thalamus, globus pallidus, or brain stem, nor was it detected in rat non-neuronal tissues. The presence of the Mr = 99,000 immunoreactive polypeptide in discrete areas of rat brain suggests that this protein may be part of a mammalian KAR or a related receptor.  相似文献   

15.
Acetylcholine receptor enriched membrane fragments were obtained from the electric organs of Torpedo marmorata. The purified membrane fragments contained several proteins in addition to the acetylcholine receptor subunits. One of these was shown to be actin by means of immune blotting with a monoclonal antibody. Brief treatment of the membranes with pH 11.0 buffer removed actin and the other non-receptor proteins including the receptor-associated 43 000 mol. wt. polypeptide. This polypeptide was shown to bind actin after transferring the proteins from one- and two-dimensional polyacrylamide gels to nitrocellulose paper and incubating the nitrocellulose blots with actin. Specifically bound actin was demonstrated using the monoclonal antibodies to actin. No calcium or calmodulin dependency of binding was observed. The findings suggest that the 43 000 mol. wt. polypeptide is a link between the membrane-bound acetylcholine receptor and the cytoskeleton.  相似文献   

16.
A large polypeptide having a molecular weight of 240,000 as determined by electrophoresis in the presence of sodium dodecyl sulfate has been identified in whole cell homogenates from chick skeletal muscle myoblasts and the rat myoblast L6 cell line. A similar polypeptide was identified in both thigh and breast chicken skeletal muscle, but the latter contained less of this protein per g of tissue. Antibodies made to gizzard filamin (an actin-binding protein having a molecular weight of 240,000) cross-reacted with the partially purified Mr = 240,000 protein from chicken skeletal muscle. With use of the indirect immunofluorescence technique, the filamin antibody localized in the Z-line region of chicken skeletal muscle myofibrils. These results indicate that skeletal muscle contains a filamin-like protein that may form an integral part of the myofibril structure.  相似文献   

17.
The synthesis of lauroyl sucrose capable of solubilizing 100% of beta-adrenergic receptors from bovine cerebellum membranes has been carried out. The preparative procedure for isolation of homogeneous beta-adrenergic receptors including affinity chromatography on the novel support, oxprenolol-Sepharose, is described. According to SDS-PAAG electrophoresis data, the Mr value for the beta-adrenergic receptor is 61 kD. The purified beta-adrenergic receptor can interact with the purified GTP-binding regulatory protein of adenylate cyclase (Gs) after their reconstitution into liposomes. Trypsin treatment of the purified receptor does not interfere with its functional properties, nor does it change the hydrodynamic parameters under non-denaturing conditions despite the fact that the polypeptide chain of the receptor is cleaved by trypsin.  相似文献   

18.
The human pancreatic adenocarcinoma cell line T3M4 has been treated with two agents, gemcitabine (2',2'-difluorodeoxycytidine, a drug interfering with DNA synthesis) and trichostatin A (a drug interfering with histone acetylation), both separately and in association. The association of the two drugs showed a marked cooperative effect in inhibiting proliferation and inducing apoptosis of the cells. In an effort to identify differentially expressed proteins in the different drug treatments, the proteomic expression has been studied by two-dimensional gel electrophoresis comparing untreated cells with cells treated with trichostatin A and/or gemcitabine. A total of 81 differentially expressed polypeptide chains have been visualized by setting a 2.5-fold threshold value. Of these, 56 were identified via MALDI-TOF and Q-TOF MS analyses. Most of the regulated proteins are involved in two major biological processes, namely apoptotic cell death and proliferation. Our results demonstrate that the level of activation/repression of the proteins involved in these processes correlates with the growth inhibition and the apoptotic response of the cells subjected to single or combined drug treatment.  相似文献   

19.
The dihydropyridine receptor associated with the voltage-dependent Ca2+ channel from rabbit skeletal muscle has been purified using the tritiated derivative of (+)-PN 200-110. The drug was used not only as a marker associated with the solubilized receptor but also in direct binding experiments performed after each purification step. 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate solubilization of a microsomal preparation resulted in an extract with a specific binding activity of 10 pmol/mg of protein. A combination of chromatographic steps utilizing anion exchange, lectin affinity, and gel filtration resulted in an 80-fold purification to a specific binding activity of 800 pmol/mg of protein. The affinity of (+)-[3H]PN 200-110 for the solubilized receptor was only slightly altered after the purification procedure. The KD values were 0.7 and 1.8 nM on the starting material and the most purified fractions, respectively. The subunit composition of the dihydropyridine receptor was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was consistent with three polypeptides of Mr 142,000, 33,000, and 32,000. The last two small components were not covalently associated with the larger one. In spite of a careful investigation of the conditions which improved the stability of the dihydropyridine receptor, a partial denaturation could not be prevented during purification. This resulted in an underestimation of receptor purity when calculated from the maximal specific binding activity as compared to the enrichment in the three polypeptides observed after polyacrylamide gel electrophoresis. Finally, application of the same purification procedure to solubilized microsomal preparations of chick and frog skeletal muscle demonstrated the presence of a large polypeptide component of Mr 135,000-141,000 associated with the Ca2+ channel from these sources. The doublet of small molecular weight was not found with the frog muscle.  相似文献   

20.
Several complementary techniques, including immunocytochemical and immunobiochemical analyses, two-dimensional gel electrophoresis, and peptide mapping, were used in this study to examine the involvement of caldesmon in lymphocyte receptor capping. We have found a lymphoma 140-kDa polypeptide that is structurally similar to muscle caldesmon, suggesting that this polypeptide may be a lymphoma caldesmon. When lymphoma 140-kDa polypeptide is extracted from permeabilized cells using 25 mM MgCl2, capping is inhibited. Adding the 140-kDa protein or gizzard caldesmon back to the extracted cells restores their ability to cap. These findings suggest that actin-linked regulatory proteins such as caldesmon may be critically important to actomyosin-mediated contraction which, in turn, is responsible for collecting receptors into cap structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号