首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some Effects of Competition and Density of Plants on Dry Weight Produced   总被引:1,自引:0,他引:1  
RENNIE  J. C. 《Annals of botany》1974,38(5):1003-1012
Plant weights were compared for different levels of shoot density,root density, shoot interaction and root interaction. Also,the effects of these treatments on the shoot—root ratiowere studied. Plant weight increased with decreases in shootand root density. Generally, plants grown with shoots or rootsintermingled with those of adjacent plants had greater weightthan those grown with shoots or roots separated. Competitionwas detected only at the highest shoot density where adjacentplants with isolated roots had greater weight than adjacentplants with intermingled roots. This is hypothesized to be aphytotoxic effect due to shoot confinement. No effects of densityor intermingling on the shoot-root ratio were evident.  相似文献   

2.
Two methods for estimating the size of the maize (Zea mays l.) root system from soil cores taken in the field were compared. The spatially weighed block method of estimation accounted for variation in root density by using 18 samples per plant which varied in distance from plant and soil depth. This method was compared to an estimation which averaged all of the 18 samples together. Both methods gave surprisingly similar estimates for total root growth. Increased root growth in the surface soil layers, due to tillage and N fertilization, did not impact on the estimation of total root growth. Total root length remained unchanged or increased with N fertilization, while root weight remained the same or decreased. Root mass per length decreased with N fertilization. The estimated size of the root system was used to calculate root:shoot weight ratios. The largest root:shoot ratio was found in the vegetative stage and decreased throughout the rest of the season. In this field experiment, the estimated size of the root system at 8 weeks after planting was not significantly different from the size at silking or harvest. Nitrogen fertilization significantly decreased the root:shoot weight ratio. However, tillage did not significantly change the ratio.  相似文献   

3.
对0(对照)和20g·L-1NaCl胁迫条件下杂交狗牙根(Cynodondactylon×C.transvaalensis)品种‘苏植2号’(‘SuzhiNo.2’)和‘Tifgreen’不同部位的生长状况以及Na+和K+积累的差异进行了研究,并分析了2个品种间Na+、K+转运调控机制的差异。结果显示:在NaCl胁迫条件下,2个品种的叶片相对枯黄率、地下茎和根系的相对干质量、叶片和根系的Na+含量和Na+/K+比以及钠钾选择性转运系数增加;修剪茎叶及冠层和地上部的相对干质量、植株相对总干质量以及叶片和根系的K+含量均降低,但茎叶含水量无显著变化。NaCl胁迫条件下,不同土层中2个品种的根系相对干质量均不同程度增加,且20-40和40-60cm土层中根系干质量的增幅大于0-20cm土层;在0-20cm土层中2个品种根系的分配比例均有所降低,而在20-40和40-60cm土层中则不同程度提高。与‘Tifgreen’相比,NaCl胁迫条件下‘苏植2号’叶片相对枯黄率、Na+含量和Na+/K+比更低,修剪茎叶及冠层和地上部的相对干质量、植株相对总干质量、叶片K+含量和钠钾选择性转运系数更高;在20-40和40-60cm土层中‘苏植2号’根系相对干质量显著高于‘Tifgreen’,根系分配比例总体也高于‘Tifgreen’。综合比较结果表明:‘苏植2号’的抗盐性强于‘Tifgreen’,可能与其深层根系分配量更高和钠钾选择性转运能力较强有关。  相似文献   

4.
In this paper we firstly show some general responses of biomass partitioning upon nitrogen deprivation. Secondly, these responses are explained in terms of allocation of carbon and nitrogen, photosynthesis and respiration, using a simulation model. Thirdly, we present a hypothesis for the regulation of biomass partitioning to shoots and roots.Shortly after nitrogen deprivation, the relative growth rate (RGR) of the roots generally increases and thereafter decreases, whereas that of the shoot decreases immediately. The increased RGR of the root and decreased RGR of the shoot shortly after a reduction in the nitrogen supply, cause the root weight ratio (root weight per unit plant weight) to increase rapidly.We showed previously that allocation of carbon and nitrogen to shoots and roots can satisfactorily be described as a function of the internal organic plant nitrogen concentration. Using these functions in a simulation model, we analyzed why the relative growth rate of the roots increases shortly after a reduction in nitrogen supply. The model predicts that upon nitrogen deprivation, the plant nitrogen concentration and the rate of photosynthesis per unit plant weight rapidly decrease, and the allocation of recently assimilated carbon and nitrogen to roots rapidly increases. Simulations show that the increased relative growth rate of the root upon nitrogen deprivation is explained by decreased use of carbon for root respiration, due to decreased carbon costs for nitrogen uptake. The stimulation of the relative growth rate of the root is further amplified by the increased allocation of carbon and nitrogen to roots. Using the simple relation between the plant nitrogen concentration and allocation, the model describes plant responses quite realistically.Based on information in the literature and on our own experiments we hypothesize that allocation of carbon is mediated by sucrose and cytokinins. We propose that nitrogen deprivation leads to a reduced cytokinin production, a decreased rate of cytokinin export from the roots to the shoot, and decreased cytokinin concentrations. A reduced cytokinin concentration in the shoot represses cell division in leaves, whereas a low cytokinin concentration in roots neutralizes the inhibitory effect of cytokinins on cell division. A reduced rate of cell division in the leaves leads to a reduced unloading of sucrose from the phloem into the expanding cells. Consequently, the sucrose concentration in the phloem nearby the expanding cells increases, leading to an increase in turgor pressure in the phloem nearby the leaf's division zone. In the roots, cell division continues and no accumulation of sugars occurs in dividing cells, leading to only marginal changes in osmotic potential and turgor pressure in the phloem nearby the root's cell division zone. These changes in turgor pressure in the phloem of roots and sink leaves affect the turgor pressure gradients between source leaf-sink leaf and source leaf-root in such a way that relatively more carbohydrates are exported to the roots. As a consequence RWR increases after nitrogen deprivation. This hypothesis also explains the strong relationship between allocation and the plant nitrogen status.  相似文献   

5.
Episodic whole plant growth patterns in Ligustrum   总被引:1,自引:0,他引:1  
Episodic growth of Ligustrum japonicum Thunb. plants was determined by measuring total shoot and root fresh weight nondestructively. Episodic growth patterns were apparent in shoot elongation, shoot and root fresh weight as a percent of total fresh weight, shoot and root relative growth rates (RGRs and RGRr) and two-dimensional measurements of the root system. Increases in root growth and initiation of lateral root branching were coincident with changes in percent of total fresh weight in the root and RGRr. The rate of fresh weight gain of roots, shoots and the whole plant increased continuously throughout two experiments and thus episodic growth patterns were not apparent from these values. Alternating episodes of shoot and root growth, which is shown by percent fresh weight allocation and RGR, did not directly correspond to shoot elongation and cessation of elongation. Continuous, nondestructive measurement of total shoot and root growth reveals important changes in growth which may be obscured by other measurement techniques.  相似文献   

6.
BACKGROUND AND AIMS: Growth of bedding plants, in small peat plugs, relies on nutrients in the irrigation solution. The object of the study was to find a way of modifying the nutrient supply so that good-quality seedlings can be grown rapidly and yet have the high root : shoot ratios essential for efficient transplanting. METHODS: A new procedure was devised in which the concentrations of nutrients in the irrigation solution were modified during growth according to changing plant demand, instead of maintaining the same concentrations throughout growth. The new procedure depends on published algorithms for the dependence of growth rate and optimal plant nutrient concentrations on shoot dry weight W(s) (g m(-2)), and on measuring evapotranspiration rates and shoot dry weights at weekly intervals. Pansy, Viola tricola 'Universal plus yellow' and petunia, Petunia hybrida 'Multiflora light salmon vein' were grown in four independent experiments with the expected optimum nutrient concentration and fractions of the optimum. Root and shoot weights were measured during growth. KEY RESULTS: For each level of nutrient supply W(s) increased with time (t) in days, according to the equation DeltaW(s)/Deltat=K(2)W(s)/(100+W(s)) in which the growth rate coefficient (K(2)) remained approximately constant throughout growth. The value of K(2) for the optimum treatment was defined by incoming radiation and temperature. The value of K(2) for each sub-optimum treatment relative to that for the optimum treatment was logarithmically related to the sub-optimal nutrient supply. Provided the aerial environment was optimal, R(sb)/R(o) approximately W(o)/W(sb) where R is the root : shoot ratio, W is the shoot dry weight, and sb and o indicate sub-optimum and optimum nutrient supplies, respectively. Sub-optimal nutrient concentrations also depressed shoot growth without appreciably affecting root growth when the aerial environment was non-limiting. CONCLUSION: The new procedure can predict the effects of nutrient supply, incoming radiation and temperature on the time course of shoot growth and the root : shoot ratio for a range of growing conditions.  相似文献   

7.
黄土高原土壤紧实度对蚕豆生长的影响   总被引:18,自引:1,他引:18  
通过盆栽试验、连续 2年的田间小区试验和农户生产试验 ,研究了土壤紧实状况对蚕豆 (Viciafa ba)生长的影响 ,讨论了当地土壤容重较高的原因 ,并提出了改进措施 .结果表明 ,随着 0~ 7cm土层土壤容重的增加 ,蚕豆植株每株的茎与根干重降低 ,根腐病 (Fusariumspp .)引起的死亡率增加 ,种子产量减少 .田间试验条件下 ,与生长于容重为 1.5 5和 1.6 4 g·cm-3 小区内的植株相比 ,生长于容重 1.84 g·cm-3 小区内的植株每株茎与根干重可分别减少 2 7.9%和 30 .8% ,植株累计死亡率增加 2 1.0 %~ 4 8.7% ,种子产量每公顷减少 19.8% .在 8户蚕豆田中进行的多点生产试验表明 ,春季土壤容重与蚕豆幼苗的根与茎干重、秋季土壤容重与种子产量均呈显著负相关  相似文献   

8.
The role of arbuscular mycorrhizal (AM) fungi in aquatic and semi-aquatic environments is poorly understood, although they may play a significant role in the establishment and maintenance of wetland plant communities. We tested the hypothesis that AM fungi have little effect on plant response to phosphorus (P) supply in inundated soils as evidenced by an absence of increased plant performance in inoculated (AM+) versus non-inoculated (AM-) Lythrum salicaria plants grown under a range of P availabilities (0-40 mg/l P). We also assessed the relationship between P supply and levels of AM colonization under inundated conditions. The presence of AM fungi had no detectable benefit for any measures of plant performance (total shoot height, shoot dry weight, shoot fresh weight, root fresh weight, total root length or total root surface area). AM+ plants displayed reduced shoot height at 10 mg/l P. Overall, shoot fresh to dry weight ratios were higher in AM+ plants although the biological significance of this was not determined. AM colonization levels were significantly reduced at P concentrations of 5 mg/l and higher. The results support the hypothesis that AM fungi have little effect on plant response to P supply in inundated conditions and suggest that the AM association can become uncoupled at relatively high levels of P supply.  相似文献   

9.
以自然光照为对照,对轻度、中度和重度遮光条件下(遮光率分别为24%、48%和72%)川西柳叶菜( Epilobium fangii C. J. Chen et al.)的部分形态、生长和生理指标进行比较分析。分析结果显示:遮光处理对川西柳叶菜的MDA含量无显著影响,对叶长、花冠宽、叶干质量分配比例以及叶绿素a( Chla)、叶绿素b( Chlb)和类胡萝卜素(Car)含量及Chla/Chlb值有显著影响(P<0.05),对其余指标有极显著影响(P<0.01)。与对照相比,3个遮光处理组的单株根数、株高、主茎长和基径总体上显著下降,根长在轻度和中度遮光条件下略升高、在重度遮光条件下显著升高;3个遮光处理组的单株叶片数和叶长总体上显著下降,叶宽在轻度和中度遮光条件下略下降、在重度遮光条件下显著升高,叶厚在轻度遮光条件下显著升高、在中度遮光条件下略下降、在重度遮光条件下显著下降;3个遮光处理组的花柄长、花管长和花冠高显著升高,单株开花数在轻度遮光条件下略下降、在中度遮光条件下显著升高、在重度遮光条件下显著下降,花冠宽在轻度和中度遮光条件下略升高、在重度遮光条件下显著升高。与对照相比,3个遮光处理组的全株干质量和茎干质量分配比例均显著下降;根干质量分配比例和根冠比在轻度遮光条件下显著升高、在中度和重度遮光条件下略下降;地上部干质量分配比例在轻度遮光条件下显著下降、在中度和重度遮光条件下略升高;叶干质量分配比例在轻度和中度遮光条件下略下降、在重度遮光条件下略升高。在轻度和中度遮光条件下,叶片的Chla、Chlb和Car含量基本上显著高于对照,Chla/Chlb值分别略低于或显著低于对照;而在重度遮光条件下这4个指标均略高于对照。与对照相比,轻度和中度遮光条件下叶片的H2 O2含量和SOD活性略升高,MDA含量和总抗氧化能力略下降;总酚含量在轻度遮光条件下略下降、在中度遮光条件下略升高;重度遮光条件下这5个指标均显著升高。随着遮光程度的增强,川西柳叶菜的单株根数、株高、主茎长、基径和叶厚逐渐下降,而叶宽、全株干质量、叶干质量分配比例、H2 O2含量、SOD活性和总酚含量逐渐升高;其中,在中度遮光条件下,其单株开花数、花柄长、花管长、花冠高、花冠宽和花干质量分配比例最高。结果表明:在遮光条件下,川西柳叶菜可在形态、生长和生理上调整生长策略,完成发育过程;并且,中度遮光有利于其生殖分配,提高其观赏价值。  相似文献   

10.
J. van Andel 《Oecologia》1975,19(4):329-337
Summary From a study of differently aged populations of the perennial plant species Chamaenerion angustifolium a concept was deduced concerning the population dynamics of the species. The age structure was determined by counting the rings of periderm in the roots. After the establishment of seedlings vegetative propagation is the main factor in population development. The longevity of populations depends on exogenic factors, since older root samples—if isolated from the population—appeared to be as viable as were younger specimens. The oldest population studied had been able to persist for about thirty years due to the mineral cycle brought about by the population itself. In still developing populations a greater number of shoots tend to sprout from younger roots than from older roots, when compared per unit root weight. The shoot density in full-grown populations (in which further root expansion does not occur) is related to the root biomass per unit area. It was suggested that the allocation of reserve assimilates within the roots is an endogenic factor determining the shoot density. After the early sprouting phase the shoot development depends mainly on environmental factors.  相似文献   

11.
Interactions between root and shoot competition vary among species   总被引:9,自引:0,他引:9  
James F. Cahill  Jr. 《Oikos》2002,99(1):101-112
Understanding how the competition varies with productivity is essential for differentiating among alternative models of plant community organization. Prior attempts to explain shifts in root and shoot competition along gradients have generally assumed an additive interaction between the two competitive forms, using an experimental design which does not fully separate both above‐ and belowground processes. At the most basic level, few field studies have separated root and shoot competition, and we have limited knowledge about both the relative importance of these processes, and how they interact to affect plant growth in the field. Presented here are findings from a field study in which root and shoot competition were experimentally separated by using root exclusion tubes and neighbor tiebacks in an early successional community. Individuals of four species (Abutilon theophrasti, Amaranthus retroflexus, Rumex crispus, and Plantago lanceolata) were grown at two levels of fertilization with full competition, aboveground competition only, belowground competition only, or neither above‐ nor belowground competition. Competition was measured as competitive response, which is the natural log of the relative biomass of a target plant grown with competition compared to growth without competition. In contrast to predictions from current models of productivity‐competition relationships, but in agreement with other experimental studies, there was no change in the strengths or root, shoot, or total competition with a modest increase in productivity. Despite no effect of fertilization on the strength of competition, the form of interaction between root and shoot competition varied both as a function of species identity and fertilization. For both of the rosette forming species, the combined effects of root and shoot competition were less than predicted assuming no interaction (a “negative interaction”), with one species switching from a negative to an additive interaction with fertilization. The fact that fertilization caused a shift in the root‐shoot interaction, but not in the total strength of root and shoot competition, suggests that the root‐shoot interaction is itself a highly labile variable. If root‐shoot interactions are common in natural systems, then simply measuring the strength of one form of competition in no way provides any information about the overall importance of that competitive form to plant growth.  相似文献   

12.
The effect of mutual shading on the root/shoot ratio and on the number of nodal roots of maize was studied. Plants of two varieties (Dea and LG2281) were grown in individual pots of 9 L, at three plant densities: 7.5, 11 and 15 plants m–2. A control experiment was carried out in order to study if root growth was affected by the small size of the pots. Maize plants (cv Dea) were grown at a low plant density (7.5 plants m–2) in pots of two different volumes (9 and 25 L respectively). In both experiments plants were watered every two hours with a nutrient solution. Some plants were sampled at five dates in the main experiment and the following data were recorded: foliar stage; root, stem and leaf dry weight; number of root primordia and number of emerged roots per phytomer. The final sampling date occurred at silking.Results of the control experiment showed that the root biomass was lower in small pots but the number of nodal roots per phytomer was not affected.Results of the main experiment showed that the total plant biomass and the root/shoot ratio were lower at high plant density. The number of emerged roots was strongly reduced on the upper phytomer (P8). This reduction was mainly due to a lower percentage of root primordia which elongated. A proposed interpretation is that the number of roots which emerge on upper phytomers is controlled by carbohydrate availability.  相似文献   

13.
Disturbed communities are observed to be more susceptible to invasion by exotic species, suggesting that some attributes of the invaders may interact with disturbance regime to facilitate invasion success. Alternanthera philoxeroides, endemic to South America, is an amphibious clonal weed invading worldwide. It tends to colonize disturbed habitats such as riparian zones, floodplain wetlands and agricultural areas. We developed an analytical model to explore the interactive effects of two types of physical disturbances, shoot mowing and root fragmentation, on biomass production dynamics of A. philoxeroides. The model is based on two major biological assumptions: (1) allometric growth of root (belowground) vs. shoot (aboveground) biomass and (2) exponential regrowth of shoot biomass after mowing. The model analysis revealed that the interaction among allometric growth pattern, shoot mowing frequency and root fragmentation intensity might lead to diverse plant ‘fates’. For A. philoxeroides whose root allocation decreases with growing plant size, control by shoot mowing was faced with two dilemmas. (1) Shoot regrowth can be effectively suppressed by frequent mowing. However, frequent shoot mowing led to higher biomass allocation to thick storage roots, which enhanced the potential for faster future plant growth. (2) In the context of periodic shoot mowing, individual shoot biomass converged to a stable equilibrium value which was independent of the root fragmentation intensity. However, root fragmentation resulted in higher equilibrium population shoot biomass and higher frequency of shoot mowing required for effective control. In conclusion, the interaction between allometric growth and physical disturbances may partially account for the successful invasion of A. philoxeroides; improper mechanical control practices could function as disturbances and result in exacerbated invasion.  相似文献   

14.
Boron nutrition and chilling tolerance of warm climate crop species   总被引:1,自引:0,他引:1  
Huang L  Ye Z  Bell RW  Dell B 《Annals of botany》2005,96(5):755-767
BACKGROUND: Field observations and glasshouse studies have suggested links between boron (B)-deficiency and leaf damage induced by low temperature in crop plants, but causal relationships between these two stresses at physiological, biochemical and molecular levels have yet to be explored. Limited evidence at the whole-plant level suggests that chilling temperature in the root zone restricts B uptake capacity and/or B distribution/utilization efficiency in the shoot, but the nature of this interaction depends on chilling tolerance of species concerned, the mode of low temperature treatment (abrupt versus gradual temperature decline) and growth conditions (e.g. photon flux density and relative humidity) that may exacerbate chilling stress. SCOPE: This review explores roles of B nutrition in chilling tolerance of continual root or transient shoot chills in crop species adapted to warm season conditions. It reviews current research on combined effects of chilling temperature (ranging from >0 to 20 degrees C) and B deficiency on growth and B nutrition responses in crop species differing in chilling tolerance. CONCLUSION: For subtropical/tropical species (e.g. cucumber, cassava, sunflower), root chilling at 10-17 degrees C decreases B uptake efficiency and B utilization in the shoot and increases the shoot : root ratio, but chilling-tolerant temperate species (e.g. oilseed rape, wheat) require much lower root chill temperatures (2-5 degrees C) to achieve the same responses. Boron deficiency exacerbates chilling injuries in leaf tissues, particularly under high photon flux density. Suggested mechanisms for B x chilling interactions in plants are: (a) chilling-induced reduction in plasmalemma hydraulic conductivity, membrane fluidity, water channel activity and root pressure, which contribute to the decrease in root hydraulic conductance, water uptake and associated B uptake; (b) chilling-induced stomatal dysfunction affecting B transport from root to shoot and B partitioning in the shoot; and (c) B deficiency induced sensitivity to photo-oxidative damage in leaf cells. However, specific evidence for each of the mechanisms is still lacking. Impacts of B status on chilling tolerance in crop species have important implications for the management of B supply during sensitive stages of growth, such as early growth after planting and early reproductive development, both of which can coincide with the occurrence of chilling temperatures in the field.  相似文献   

15.
Summary A model of the way the rate of growth of a plant may be affected by the level of supply of a nutrient is presented. Growth rate is linked to the nutrient level of the photosynthetic tissues, which is assumed to control changes in the net assimilation rate, the leaf area per unit shoot weight, the shoot: root ratio, the root surface area, and the distribution of nutrient between root and shoot. The uptake of nutrient depends on the concentration of nutrient at the root surface, the root surface area and its absorbing power. All these relationships may be determined in stirred solution culture. A method of applying this information to soil grown plants is suggested.Soil Science Laboratory, Department of Agricultural Science, University of Oxford  相似文献   

16.
A meta-analysis of plant responses to dark septate root endophytes   总被引:1,自引:0,他引:1  
? Dark septate endophytes (DSE) frequently colonize roots in the natural environment, but the effects of these fungi on plants are obscure, with previous studies indicating negative, neutral or positive effects on plant performance. ? In order to reach a consensus for how DSE influence plant performance, meta-analyses were performed on data from 18 research articles, in which plants had been inoculated with DSE in sterile substrates. ? Negative effects of DSE on plant performance were not recorded. Positive effects were identified on total, shoot and root biomass, and on shoot nitrogen (N) and phosphorus contents, with increases of 26-103% in these parameters for plants inoculated with DSE, relative to uninoculated controls. Inoculation increased total, shoot and root biomass by 52-138% when plants had not been supplied with additional inorganic N, or when all, or the majority, of N was supplied in organic form. Inoculation with the DSE Phialocephala fortinii was found to increase shoot and root biomass, shoot P concentration and shoot N content by 44-116%, relative to uninoculated controls. ? The analyses here suggest that DSE enhance plant performance under controlled conditions, particularly when all, or the majority, of N is available in organic form.  相似文献   

17.
不同土壤水分条件下容重对玉米生长的影响   总被引:26,自引:2,他引:24  
刘晚苟  山仑 《应用生态学报》2003,14(11):1906-1910
用玉米作为实验材料。进行分根实验研究不同土壤水分条件下容重对玉米生长的影响,种子根平分在装有塿土的分隔的白铁皮桶中,土壤容重分4种处理:低容重(两边容重都为1.20g·cm-3)、中容重(两边容重都为1.33g·cm-3)、高容重(两边容重都为1.45g·cm-3)和混合容重(一边为1.20g·cm-3,另一边为1.45g·cm-3),土壤水分控制在高基质势(-0.17MPa)和低基质势(-0.86MPa)两个水平,结果表明,当植株生长在紧实土壤或土壤基质势从-0.17MPa降到-0.86MPa时。根长、根干重和地上部干重都显著降低,并且地上部干重的降幅更大,紧实土壤使根长降低的同时还使根的直径增大,无论是容重增大还是土壤水分含量降低所引起的高土壤阻力都使叶片扩展速度降低和植株变小,生长在紧实土壤中的植株变小不仅是因为叶片扩展速度降低,同时是成熟叶片叶面积缩小的结果。然而,当植株生长在混合容重土壤中时,处在低容重土壤中的根系生长得到加强,补偿甚至超补偿高容重土壤中根系生长的不足,整个植株的生长状况与低容重土壤中生长的植株接近。  相似文献   

18.
The hypothesis that changing the fertility level of the substratewould change the self-thinning line (different slope or intercept)followed by high-density populations was tested by sowing populationsof Ocimum basilicum L. at two densities on a soil-based pottingmix adjusted to three fertility levels (F0, F1 and F2). Fertilitylevel significantly affected the slope of the thinning linesfor both shoot and root biomass. For shoot biomass, more mortalityoccurred per unit increase in biomass as fertility level declined(the slope of the thinning line became flatter). The slope ofthe log shoot biomassvs. log density relationship was -0.5 atthe F2-, zero at the F1-, and 0.94 at the F0-fertility. Forthe log root biomassvs. log density lines, slopes were zeroat the F2- and F0-fertility levels, and -0.32 at F1. Packingof shoot biomass into canopies of individual plants correlatedwell with observed exponents of self-thinning lines at the F2-and F1-fertility level. Plants at the F2-fertility level requiredmore canopy space to support a given shoot biomass than plantsat F1, indicating that shoot competition was more intense atthe F2-fertility level for a given biomass. Leaf area indexand size inequality also increased with fertility level fora given shoot biomass. Density-dependent mortality in populationsgrown at the F0-fertility level was highly unusual in havinga positive slope for the shoot biomass vs. density relationship.Shoot growth per plant was static as density declined in theF0-populations; however, root growth per plant increased. Allmeasurements of shoot growth (mass, height, canopy extension,leaf area) remained static in the F0-populations: root massand length increased in comparison. It is argued that root competitionbecame sufficiently intense to cause the density-dependent mortalityseen at the F0-fertility level, with little contribution ofshoot competition to mortality. Copyright 1999 Annals of BotanyCompany Ocimum basilicum, self-thinning, root competition, shoot competition, fertility level and competition, density-dependent mortality, allometric self-thinning.  相似文献   

19.
分别采用不同基质配比(即泥炭和珍珠岩体积比分别为1:0、2:1和3:1)、不同促侧根措施(包括主根截短和200 mg·L-1 IBA溶液灌根单一措施以及上述2种单一措施的复合措施)和不同栽培容器(包括穴盘、营养钵和无纺布育苗袋)对凤丹( Paeonia ostii T. Hong et J. X. Zhang)容器苗进行培育,分析了容器苗的形态指标、单株质量、根冠比及部分生理指标的差异,并在此基础上筛选出适宜凤丹容器苗培育的栽培措施。分析结果表明:在泥炭-珍珠岩(体积比3:1)混合基质中,凤丹容器苗的单株侧根数、单株地下部鲜质量和干质量、根冠比以及叶片的总叶绿素含量、可溶性糖含量和含水量均显著高于其他基质。采取主根截短单一措施或复合措施后,容器苗的单株叶面积、单株侧根数、单株地下部鲜质量和干质量、根冠比及叶片含水量均显著高于对照(不做任何处理)和采取200 mg·L-1 IBA溶液灌根单一措施的容器苗,其中,采取复合措施的容器苗大部分指标最高。在无纺布育苗袋和营养钵中栽培的容器苗的株高、根颈直径、单株侧根数以及叶片的总叶绿素含量、可溶性糖含量和含水量显著高于在穴盘中栽培的容器苗;其中,在无纺布育苗袋中栽培的容器苗的单株侧根数以及叶片的总叶绿素含量和含水量均最高,且这3个指标显著高于在营养钵中栽培的容器苗。研究结果显示:不同栽培措施对凤丹容器苗的生长及生理均有一定影响,总体上看,对根系的单株侧根数、主根长、地下部质量和根冠比以及叶片的叶面积、总叶绿素含量、可溶性糖含量和含水量的影响均较大。根据实验结果,初步筛选出适宜凤丹容器苗培育的栽培措施,即用无纺布育苗袋,以泥炭-珍珠岩(体积比3:1)混合基质为栽培基质,实施主根截短和200 mg·L-1 IBA溶液灌根复合措施。  相似文献   

20.
Nitrate assimilation was examined in two cultivars (Banner Winterand Herz Freya) of Vicia faba L. supplied with a range of nitrateconcentrations. The distribution between root and shoot wasassessed. The cultivars showed responses to increased applied nitrateconcentration. Total plant dry weight and carbon content remainedconstant while shoot: root dry weight ratio, total plant nitrogen,total plant leaf area and specific leaf area (SLA) all increased.The proportion of total plant nitrate and nitrate reductase(NR) activity found in the shoot of both cultivars increasedwith applied nitrate concentrations as did NO3: Kjeldahl-Nratios of xylem sap. The cultivars differed in that a greaterproportion of total plant NR activity occurred in the shootof cv. Herz Freya at all applied nitrate concentrations, andits xylem sap NO3: Kjeldahl-N ratio and SLA were consistentlygreater. It is concluded that the distribution of nitrate assimilationbetween root and shoot of V. faba varies both with cultivarand with external nitrate concentration. Vicia faba L., field bean, nitrate assimilation, nitrate reductase, xylem sap analysis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号