首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In higher plants ferredoxin (Fd):NADP(+) oxidoreductase (FNR) and Fd are each distributed in photosynthetic and non-photosynthetic organs as distinct isoproteins. We have cloned cDNAs for leaf FNR (L-FNR I and L-FNR II) and root FNR (R-FNR) from maize (Zea mays L.), and produced recombinant L-FNR I and R-FNR to study their enzymatic functions through kinetic and Fd-binding analyses. The K(m) value obtained by assay for a diaphorase activity indicated that R-FNR had a 10-fold higher affinity for NADPH than L-FNR I. When we assayed for NADPH-cytochrome c reductase activity using maize photosynthetic Fd (Fd I) and non-photosynthetic Fd (Fd III), the R-FNR showed a marked difference in affinity between these two Fd isoproteins; the K(m) for Fd III was 3.0 microM and that for Fd I was 29 microM. Consistent with this, the dissociation constant for the R-FNR:Fd III complex was 10-fold smaller than that of the R-FNR:Fd I complex. This differential binding capacity was confirmed by an affinity chromatography of R-FNR on Fd-sepharose with stronger binding to Fd III. L-FNR I showed no such differential interaction with Fd I and Fd III. These data demonstrated that R-FNR has the ability to discriminate between these two types of Fds. We propose that the stronger interaction of R-FNR with Fd III is crucial for an efficient electron flux of NADPH-FNR-Fd cascade, thus supporting Fd-dependent metabolism in non-photosynthetic organs.  相似文献   

2.
3.
Sulfite reductase (SiR) catalyzes the reduction of sulfite to sulfide in chloroplasts and root plastids using ferredoxin (Fd) as an electron donor. Using purified maize (Zea mays L.) SiR and isoproteins of Fd and Fd-NADP(+) reductase (FNR), we reconstituted illuminated thylakoid membrane- and NADPH-dependent sulfite reduction systems. Fd I and L-FNR were distributed in leaves and Fd III and R-FNR in roots. The stromal concentrations of SiR and Fd I were estimated at 1.2 and 37 microM, respectively. The molar ratio of Fd III to SiR in root plastids was approximately 3:1. Photoreduced Fd I and Fd III showed a comparable ability to donate electrons to SiR. In contrast, when being reduced with NADPH via FNRs, Fd III showed a several-fold higher activity than Fd I. Fd III and R-FNR showed the highest rate of sulfite reduction among all combinations tested. NADP(+) decreased the rate of sulfite reduction in a dose-dependent manner. These results demonstrate that the participation of Fd III and high NADPH/NADP(+) ratio are crucial for non-photosynthetic sulfite reduction. In accordance with this view, a cysteine-auxotrophic Escherichia coli mutant defective for NADPH-dependent SiR was rescued by co-expression of maize SiR with Fd III but not with Fd I.  相似文献   

4.
Ferredoxin:NADP+ oxidoreductase is an enzyme associated with the stromal side of the thylakoid membrane in the chloroplast. It is involved in photosynthetic linear electron transport to produce NADPH and is supposed to play a role in cyclic electron transfer, generating a transmembrane pH gradient allowing ATP production, if photosystem II is non-functional or no NADP+ is available for reduction. Different FNR isoforms have been described in non-photosynthetic tissues, where the enzyme catalyses the NADPH-dependent reduction of ferredoxin (Fd), necessary for some biosynthetic pathways. Here, we report the isolation and purification of two FNR isoproteins from wheat leaves, called FNR-A and FNR-B. These forms of the enzyme were identified as products of two different genes, as confirmed by mass spectrometry. The molecular masses of FNR-A and FNR-B were 34.3 kDa and 35.5 kDa, respectively. The isoelectric point of both FNR-A and FNR-B was about 5, but FNR-B appeared more acidic (of about 0.2 pH unit) than FNR-A. Both isoenzymes were able to catalyse a NADPH-dependent reduction of dibromothymoquinone and the mixture of isoforms catalysed reduction of cytochrome c in the presence of Fd. For the first time, the pH- and ionic strength dependent oligomerization of FNRs is observed. No other protein was necessary for complex formation. The putative role of the two FNR isoforms in photosynthesis is discussed based on current knowledge of electron transport in chloroplasts.  相似文献   

5.
6.
The sequence and expression of mRNA homologous to a cDNA encoding a non-photosynthetic ferredoxin (Fd1) from Citrus fruit was investigated. The non-photosynthetic nature of this ferredoxin was deduced from: (1) amino acid sequence alignments showing better scores with non-photosynthetic than with photosynthetic ferredoxins, (2) higher expression in tissues containing plastids other than chloroplast such as petals, young fruits, roots and peel of fully coloured fruits, and (3) the absence of light-dark regulation characteristic of photosynthetic ferredoxins. In a phylogenetic tree constructed with higher-plant ferredoxins, Citrus fruit ferredoxin clustered together with root ferredoxins and separated from the photosynthetic ferredoxins. Non photosynthetic (root and fruit) ferredoxins, but not the photosynthetic ferredoxins, have their closest homologs in cyanobacteria. Analysis of ferredoxin genomic organization suggested that non-photosynthetic ferredoxins exist in Citrus as a small gene family. Expression of Fd1 is developmentally regulated during flower opening and fruit maturation, both processes may be mediated by ethylene in Citrus. Exogenous ethylene application also induced the expression of Fd1 both in flavedo and leaves. The induction of non-photosynthetic ferredoxins could be related with the demand for reducing power in non-green, but biosynthetically active, tissues.  相似文献   

7.
8.
9.
Ferredoxin (Fd) and ferredoxin-NADP(+)-reductase (FNR) are two terminal physiological partners of the photosynthetic electron transport chain. Based on a nuclear magnetic resonance (NMR)-restrained-docking approach, two alternative structural models of the Fd-FNR complex in the presence of NADP+ are proposed. The protein docking simulations were performed with the software BiGGER. NMR titration revealed a 1:1 stoichiometry for the complex and allowed the mapping of the interacting residues at the surface of Fd. The NMR chemical shifts were encoded into distance constraints and used with theoretically calculated electronic coupling between the redox cofactors to propose experimentally validated docked complexes.  相似文献   

10.
Plant-type ferredoxin (Fd), a [2Fe-2S] iron-sulfur protein, functions as an one-electron donor to Fd-NADP(+) reductase (FNR) or sulfite reductase (SiR), interacting electrostatically with them. In order to understand the protein-protein interaction between Fd and these two different enzymes, 10 acidic surface residues in maize Fd (isoform III), Asp-27, Glu-30, Asp-58, Asp-61, Asp-66/Asp-67, Glu-71/Glu-72, Asp-85, and Glu-93, were substituted with the corresponding amide residues by site-directed mutagenesis. The redox potentials of the mutated Fds were not markedly changed, except for E93Q, the redox potential of which was more positive by 67 mV than that of the wild type. Kinetic experiments showed that the mutations at Asp-66/Asp-67 and Glu-93 significantly affected electron transfer to the two enzymes. Interestingly, D66N/D67N was less efficient in the reaction with FNR than E93Q, whereas this relationship was reversed in the reaction with SiR. The static interaction of the mutant Fds with each the two enzymes was analyzed by gel filtration of a mixture of Fd and each enzyme, and by affinity chromatography on Fd-immobilized resins. The contributions of Asp-66/Asp-67 and Glu-93 were found to be most important for the binding to FNR and SiR, respectively, in accordance with the kinetic data. These results allowed us to map the acidic regions of Fd required for electron transfer and for binding to FNR and SiR and demonstrate that the interaction sites for the two enzymes are at least partly distinct.  相似文献   

11.
In higher plants, [2Fe-2S] ferredoxin (Fd) proteins are the unique electron acceptors from photosystem I (PSI). Fds are soluble, and distribute electrons to many enzymes, including Fd:NADP(H) reductase (FNR), for the photoreduction of NADP(+). In addition to well studied [2Fe-2S] Fd proteins, higher plants also possess genes for significantly different, as yet uncharacterized Fd proteins, with extended C termini (FdCs). Whether these FdC proteins function as photosynthetic electron transfer proteins is not known. We examined whether these proteins play a role as alternative electron acceptors at PSI, using quantitative RT-PCR to follow how their expression changes in response to acceptor limitation at PSI, in mutant Arabidopsis plants lacking 90-95% of photosynthetic [2Fe-2S] Fd. Expression of the gene encoding one FdC protein, FdC1, was identified as being strongly up-regulated. We confirmed that this protein was chloroplast localized and increased in abundance on PSI acceptor limitation. We purified the recombinant FdC1 protein, which exhibited a UV-visible spectrum consistent with a [2Fe-2S] cluster, confirmed by EPR analysis. Measurements of electron transfer show that FdC1 is capable of accepting electrons from PSI, but cannot support photoreduction of NADP(+). Whereas FdC1 was capable of electron transfer with FNR, redox potentiometry showed that it had a more positive redox potential than photosynthetic Fds by around 220 mV. These results indicate that FdC1 electron donation to FNR is prevented because it is thermodynamically unfavorable. Based on our data, we speculate that FdC1 has a specific function in conditions of acceptor limitation at PSI, and channels electrons away from NADP(+) photoreduction.  相似文献   

12.
Wheat leaves contain two isoproteins of the photosynthetic ferredoxin:NADP(+) reductase (pFNRI and pFNRII). Truncated forms of both enzymes have been detected in vivo, but only pFNRII displays N-terminal length-dependent changes in activity. To investigate the impact of N-terminal truncation on interaction with ferredoxin (Fd), recombinant pFNRII proteins, differing by deletions of up to 25 amino acids, were generated. During purification of the isoproteins found in vivo, the longer forms of pFNRII bound more strongly to a Fd affinity column than did the shorter forms, pFNRII(ISKK) and pFNRII[N-2](KKQD). Further truncation of the N-termini resulted in a pFNRII protein which failed to bind to a Fd column. Similar k(cat) values (104-140 s(-1)) for cytochrome c reduction were measured for all but the most truncated pFNRII[N-5](DEGV), which had a k(cat) of 38 s(-1). Stopped-flow kinetic studies, examining the impact of truncation on electron flow between mutant pFNRII proteins and Fd, showed there was a variation in k(obs) from 76 to 265 s(-1) dependent on the pFNRII partner. To analyze the sites which contribute to Fd binding at the pFNRII N-terminal, three mutants were generated, in which a single or double lysine residue was changed to glutamine within the in vivo N-terminal truncation region. The mutations affected binding of pFNRII to the Fd column. Based on activity measurements, the double lysine residue change resulted in a pFNRII enzyme with decreased Fd affinity. The results highlight the importance of this flexible N-terminal region of the pFNRII protein in binding the Fd partner.  相似文献   

13.
The mechanism by which plants regulate channelling of photosynthetically derived electrons into different areas of chloroplast metabolism remains obscure. Possible fates of such electrons include use in carbon assimilation, nitrogen assimilation and redox signalling pathways, or return to the plastoquinone pool through cyclic electron flow. In higher plants, these electrons are made accessible to stromal enzymes, or for cyclic electron flow, as reduced ferredoxin (Fd), or NADPH. We investigated how knockout of an Arabidopsis ( Arabidopsis thaliana ) ferredoxin:NADPH reductase (FNR) isoprotein and the loss of strong thylakoid binding by the remaining FNR in this mutant affected the channelling of photosynthetic electrons into NADPH- and Fd-dependent metabolism. Chlorophyll fluorescence data show that these mutants have complex variation in cyclic electron flow, dependent on light conditions. Measurements of electron transport in isolated thylakoid and chloroplast systems demonstrated perturbed channelling to NADPH-dependent carbon and Fd-dependent nitrogen assimilating metabolism, with greater competition in the mutant. Moreover, mutants accumulate greater biomass than the wild type under low nitrate growth conditions, indicating that such altered chloroplast electron channelling has profound physiological effects. Taken together, our results demonstrate the integral role played by FNR isoform and location in the partitioning of photosynthetic reducing power.  相似文献   

14.
Kimata Y  Hase T 《Plant physiology》1989,89(4):1193-1197
Four ferredoxin isoproteins were identified in the C4 plant Zea mays L. by analysis of extracts from leaves, mesocotyls, and roots of the young seedlings. The relative amounts of the isoproteins isolated from the photosynthetic and nonphotosynthetic organs were different. All the isoproteins were present in the leaves of green and etiolated plants, whereas two out of the four isoproteins were not detected in the roots or in the mesocotyls. During the greening of etiolated seedlings, the level of the two isoproteins unique to the leaf increased markedly. Analysis of the cellular and subcellular distribution of the two major leaf isoproteins showed that one isoprotein was present in the chloroplasts of both mesophyll and bundle sheath cells, whereas the other was only found in the chloroplasts of bundle sheath cells. This is the first report of the cell-specific expression of ferredoxin isoproteins in the leaves of a C4 plant.  相似文献   

15.
All oxygenic photosynthetically derived reducing equivalents are utilized by combinations of a single multifuctional electron carrier protein, ferredoxin (Fd), and several Fd-dependent oxidoreductases. We report the first crystal structure of the complex between maize leaf Fd and Fd-NADP(+) oxidoreductase (FNR). The redox centers in the complex--the 2Fe-2S cluster of Fd and flavin adenine dinucleotide (FAD) of FNR--are in close proximity; the shortest distance is 6.0 A. The intermolecular interactions in the complex are mainly electrostatic, occurring through salt bridges, and the interface near the prosthetic groups is hydrophobic. NMR experiments on the complex in solution confirmed the FNR recognition sites on Fd that are identified in the crystal structure. Interestingly, the structures of Fd and FNR in the complex and in the free state differ in several ways. For example, in the active site of FNR, Fd binding induces the formation of a new hydrogen bond between side chains of Glu 312 and Ser 96 of FNR. We propose that this type of molecular communication not only determines the optimal orientation of the two proteins for electron transfer, but also contributes to the modulation of the enzymatic properties of FNR.  相似文献   

16.
Ferredoxin (Fd) and Fd-NADP(+) reductase (FNR) are redox partners responsible for the conversion between NADP(+) and NADPH in the plastids of photosynthetic organisms. Introduction of specific disulfide bonds between Fd and FNR by engineering cysteines into the two proteins resulted in 13 different Fd-FNR cross-linked complexes displaying a broad range of activity to catalyze the NADPH-dependent cytochrome c reduction. This variability in activity was thought to be mainly due to different levels of intramolecular electron transfer activity between the FNR and Fd domains. Stopped-flow analysis revealed such differences in the rate of electron transfer from the FNR to Fd domains in some of the cross-linked complexes. A group of the cross-linked complexes with high cytochrome c reduction activity comparable to dissociable wild-type Fd/FNR was shown to assume a similar Fd-FNR interaction mode as in the native Fd:FNR complex by analyses of NMR chemical shift perturbation and absorption spectroscopy. However, the intermolecular electron transfer of these cross-linked complexes with two Fd-binding proteins, nitrite reductase and photosystem I, was largely inhibited, most probably due to steric hindrance by the FNR moiety linked near the redox center of the Fd domain. In contrast, another group of the cross-linked complexes with low cytochrome c reduction activity tends to mediate higher intermolecular electron transfer activity. Therefore, reciprocal relationship of intramolecular and intermolecular electron transfer abilities was conferred by the linkage of Fd and FNR, which may explain the physiological significance of the separate forms of Fd and FNR in chloroplasts.  相似文献   

17.
18.
Fatty acid desaturation in plastids and chloroplasts depends on the electron-donor activity of ferredoxins. Using degenerate oligonucleotides designed from known photosynthetic and heterotrophic plant ferredoxin sequences, two full-length ferredoxin cDNAs were cloned from sunflower (Helianthus annuus L.) leaves and developing seeds, HaFd1 and HaFd2, homologous to photosynthetic and non-photosynthetic ferredoxins, respectively. Based on these cDNAs, the respective genomic sequences were obtained and the presence of DNA polymorphisms was investigated. Complete sequencing of the HaFd1 and HaFd2 genes in different lines indicated the presence of two haplotypes for HaFd2 and their alignment showed that sequence polymorphisms are restricted to the 5′-NTR intron. In addition, specific DNA markers for the HaFd1 and HaFd2 genes were developed that enabled the genes to be mapped. Accordingly, the HaFd1 locus maps to linkage group 10 of the public sunflower map, while the HaFd2 locus maps to linkage group 11. Both ferredoxins display different spatial-temporal patterns of expression. While HaFd2 is expressed at similar levels in all tissues tested (leaves, stem, roots, cotyledons and developing seeds), HaFd1 is more strongly expressed in green tissues than in all the other tissues tested. Both photosynthetic- and heterotrophic-ferredoxins are present in sunflower seeds and may contribute to fatty acid desaturation during oil accumulation. Nevertheless, the levels of HaFd2 expression during seed formation are distinct in lines that only varied in the HaFd2 haplotypes they expressed.  相似文献   

19.
Electron transfer between plant-type [2Fe-2S] ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) depends on the physical interaction between both proteins. We have applied a random mutagenesis approach with subsequent in vivo selection using the yeast two-hybrid system to obtain mutants of Toxoplasma gondii FNR with higher affinity for Fd. One mutant showed a 10-fold enhanced binding using affinity chromatography on immobilized Fd. A single serine-to-arginine exchange in the active site was responsible for its increased affinity. The mutant reductase was also enzymatically inactive. Homology modeling of the mutant FNR-Fd complex predicts substantial alterations of protein-FAD interactions in the active site of the enzyme with subsequent structural changes. Collectively, for the first time a point mutation in this important class of enzymes is described which leads to greatly enhanced affinity for its protein ligand.  相似文献   

20.
In higher plants there are two forms of ferredoxin NADP(+) oxidoreductase (FNR), a photosynthetic pFNR primarily required for the photoreduction of NADP(+), and a heterotrophic hFNR which generates reduced ferredoxin by utilizing electrons from NADPH produced during carbohydrate oxidation. The aim of this study was to investigate the presence of multiple forms of FNR in wheat leaves and the capacity of FNR isoforms to respond to changes in reductant demand through varied expression and N-terminal processing. Two forms of pFNR mRNA (pFNRI and pFNRII) were expressed in a similar pattern along the 12 cm developing primary wheat leaf, with the highest levels observed in plants grown continuously in the dark in the presence (pFNRI) or absence (pFNRII) of nitrate respectively. pFNR protein increased from the leaf base to tip. hFNR mRNA and protein was in the basal part of the leaf in plants grown in the presence of nitrate. FNR activity in plants grown in a light/dark cycle without nitrate was mainly due to pFNR, whilst hFNR contributed significantly in nitrate-fed plants. The potential role of distinct forms of FNR in meeting the changing metabolic capacity and reductant demands along the linear gradient of developing cells of the leaf are discussed. Furthermore, evidence for alternative N-terminal cleavage sites of pFNR acting as a means of discriminating between ferredoxins and the implications of this in providing a more effective flow of electrons through a particular pathway in vivo is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号